CN109283098B - Method for measuring effective diffusion coefficient of radon in film - Google Patents

Method for measuring effective diffusion coefficient of radon in film Download PDF

Info

Publication number
CN109283098B
CN109283098B CN201811426571.6A CN201811426571A CN109283098B CN 109283098 B CN109283098 B CN 109283098B CN 201811426571 A CN201811426571 A CN 201811426571A CN 109283098 B CN109283098 B CN 109283098B
Authority
CN
China
Prior art keywords
radon
measuring
cylindrical barrel
measuring chamber
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811426571.6A
Other languages
Chinese (zh)
Other versions
CN109283098A (en
Inventor
袁红志
谭延亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hengyang Normal University
Original Assignee
Hengyang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hengyang Normal University filed Critical Hengyang Normal University
Priority to CN201811426571.6A priority Critical patent/CN109283098B/en
Publication of CN109283098A publication Critical patent/CN109283098A/en
Application granted granted Critical
Publication of CN109283098B publication Critical patent/CN109283098B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N2013/003Diffusion; diffusivity between liquids

Abstract

The measuring device comprises a measuring chamber, a radon measuring instrument, a pump and an annular sealing gasket. The measuring chamber comprises a cylindrical barrel body and threaded end covers connected to two ends of the cylindrical barrel body, an air outlet end connector and an air inlet end connector are arranged on the barrel wall of the cylindrical barrel body, an annular sealing gasket is installed in an annular groove of each threaded end cover, the air outlet end connector on the measuring chamber is connected with the air inlet end of the radon measuring instrument, the air outlet end of the radon measuring instrument is connected with the air inlet end of the pump, and the air outlet end of the pump is connected with the air inlet end connector of the measuring chamber. The measuring method comprises a measuring process and a calculating process, wherein during measurement, a film material to be measured is cut into circular film pieces with the diameter the same as the outer diameter of the port of the cylindrical barrel, the circular film pieces are respectively attached to two ends of the cylindrical barrel and are tightly pressed and sealed by threaded end covers, the cylindrical measuring chamber is placed into a standard radon chamber, the variation trend of the radon concentration in the cylindrical barrel is measured, and the effective diffusion coefficient of the radon in the film is obtained by the calculating method after the measurement.

Description

Method for measuring effective diffusion coefficient of radon in film
Technical Field
The invention relates to the technical field of nuclear radiation detection, in particular to a device and a method for measuring an effective diffusion coefficient of radon in a film.
Background
Radon is a radioactive inert gas harmful to human body, and mainly comes from the precipitation on the surface of the medium in the air environment. Due to mine radiation protection and indoor radon contamination issues, dense films are needed to block radon from entering working and residential environments. The effective diffusion coefficient of radon in a film can be used for evaluating the blocking performance of the film on radon, the existing method for measuring the effective diffusion coefficient of radon in the film generally divides the inner cavity of a measuring chamber into two measuring cavities by using a film, wherein one measuring cavity is injected with high-concentration radon, the high-concentration radon enters the other measuring cavity through the film by diffusion effect, and the effective diffusion coefficient of radon in the film can be obtained by calculating by comparing the steady or dynamic radon concentration changes of the two measuring cavities. The existing measuring method measures the effective diffusion coefficient of radon in a film only by using one film, and the measuring process is long in time.
Disclosure of Invention
It is an object of the present invention to overcome the above-mentioned deficiencies of the prior art and to provide an apparatus and method for measuring the effective diffusion coefficient of radon in a membrane.
The technical scheme of the invention is as follows: the device for measuring the effective diffusion coefficient of radon in the membrane comprises a measuring chamber, a radon measuring instrument and a pump.
The measuring chamber include the cylindrical barrel of a both ends threaded and connect the end cover at cylindrical barrel both ends, the symmetry is equipped with air outlet end connector and air inlet end connector on the section of thick bamboo wall of cylindrical barrel, the internal diameter of cylindrical barrel is D1, is equipped with annular groove in the end cover, installs annular sealing pad in annular groove, the aperture on the end cover board of end cover is D2, wherein, D1 is D2.
The air outlet end joint on the measuring chamber is connected with the air inlet end on the emanometer through a pipeline, the air outlet end on the emanometer is connected with the air inlet end of the pump through a pipeline, and the air outlet end of the pump is connected with the air inlet end joint on the measuring chamber through a pipeline.
The method for measuring the effective diffusion coefficient of radon in the membrane by using the measuring device comprises a measuring process and a calculating process.
Firstly, a measuring process:
A. cutting a film to be measured into circular film sheets with the diameter the same as the outer diameter of the port of the cylindrical barrel, respectively attaching the two film sheets to two ends of the cylindrical barrel, and tightly pressing and sealing by using threaded end covers, wherein the surface of the film sheet exposed in the air is an outer surface, and the surface in the cylindrical barrel is an inner surface;
B. starting the pump, and uniformly mixing the gas in the measuring chamber with the gas in the measuring cavity of the emanometer under the action of the pump;
C. and (3) placing the measuring chamber into a standard radon chamber, and measuring the change trend of the radon concentration in the measuring chamber by a radon measuring instrument.
Secondly, calculating:
because the flow rate of the pump is large, the radon concentration in the measuring cavity of the radon measuring instrument is equal to that in the measuring chamber, the radon concentration in the air of the external environment is very low, and the initial radon concentration is approximately 0;
the one-dimensional diffusion equation of radon in the pellicle membrane is as follows:
Figure 357327DEST_PATH_IMAGE002
(1)
in the formula (1), DeIs radon in thicknessEffective diffusion coefficient in the membrane, wherein lambda is decay constant of radon, C (z, t) is radon concentration at different vertical distances from the inner surface to the outer surface of the membrane at different time points, t is time, and z is vertical position from any point in the membrane to the outer surface of the membrane;
after diffusion has stabilized, according to fick's law:
Figure 336784DEST_PATH_IMAGE004
(2)
in the formula (2), J is the radon exhalation rate of the inner surface of the thin film piece;
the radon detector 2 measures the radon concentration C in the cavity1(t) is:
Figure 178838DEST_PATH_IMAGE006
(3)
in the formula (3), S is the circular area in the cavity of the measuring chamber; v is the sum of the volume in the cavity of the measuring chamber, the volume of the airflow pipeline and the volume of the measuring cavity of the emanometer; n is the number of thin film pieces, and in the formula (3), n = 2;
when the radon concentration in the measuring chamber tends to a constant value, i.e. when the radon concentration in the measuring chamber tends to a constant value
Figure 574047DEST_PATH_IMAGE008
The radon exhalation rate can be obtained by changing the formula (3):
Figure 453666DEST_PATH_IMAGE010
(4)
because the thickness d of the thin film piece is very small, the vertical distribution of radon concentration in the thin film piece can be linearly approximated;
substituting formula (4) into formula (2) to obtain:
Figure 276129DEST_PATH_IMAGE012
(5)
wherein C is the radon concentration of a standard radon chamber;
formula (5) can vary as:
Figure 605479DEST_PATH_IMAGE014
(6)
the effective diffusion coefficient can be obtained by the formula (6);
the further technical scheme of the invention is as follows: the cylindrical measuring cavity is communicated with the inner cavity of the cylindrical barrel, the inner diameter of the cylindrical measuring cavity is the same as that of the cylindrical barrel, and the end structure and the structure of the threaded end cover connected with the end are the same as those of the cylindrical barrel and the threaded end cover connected with the cylindrical barrel.
The method for measuring the effective diffusion coefficient of radon in the membrane by using the measuring device through a plurality of membranes comprises the following steps:
firstly, a measuring process:
A. cutting a film to be measured into circular film sheets with the diameter the same as the outer diameter of the port of the cylindrical barrel 1-1, respectively attaching the film sheets to the two ends of the cylindrical barrel and the ports of the plurality of cylindrical measuring cavities, and tightly pressing and sealing the film sheets by using threaded end covers, wherein the surface of the film sheet exposed in the air is an outer surface, and the surfaces in the cylindrical barrel and the cavity are inner surfaces;
B. starting the pump, and uniformly mixing the gas in the measuring chamber with the gas in the measuring cavity of the emanometer under the action of the pump;
C. and (3) placing the measuring chamber into a standard radon chamber, and measuring the change trend of the radon concentration in the measuring chamber by a radon measuring instrument.
Secondly, calculating:
radon concentration C in the radon detector1(t) is:
Figure DEST_PATH_IMAGE015
(7)
in the formula (7), S is the circular area in the cavity of the measuring chamber; v is the sum of the volume in the cavity of the measuring chamber, the volume of the airflow pipeline and the volume of the measuring cavity of the emanometer; n is the number of the thin film pieces;
when the radon concentration in the measuring chamber tends to a constant value, i.e. when the radon concentration in the measuring chamber tends to a constant value
Figure 866696DEST_PATH_IMAGE008
The radon exhalation rate can be obtained by changing the formula (3):
Figure DEST_PATH_IMAGE017
(8)
because the thickness d of the thin film piece is very small, the vertical distribution of radon concentration in the thin film piece can be linearly approximated;
substituting formula (8) into formula (2) to obtain:
Figure DEST_PATH_IMAGE019
(9)
formula (9, C is the radon concentration of a standard radon chamber;
formula (9) can vary as:
Figure DEST_PATH_IMAGE021
(10)
the effective diffusion coefficient can be obtained from equation (10).
Compared with the prior art, the invention has the following characteristics:
the measuring device provided by the invention has the advantages of simple structure, simple measuring process and calculation method, quick diffusion reaching equilibrium time, high radon concentration in the measuring chamber and capability of obtaining more accurate effective diffusion coefficient of radon in the film by the simple calculation method.
The detailed structure of the present invention will be further described with reference to the accompanying drawings and the detailed description.
Drawings
FIG. 1 is a schematic diagram of a measuring apparatus according to one embodiment;
FIG. 2 is a schematic view of the structure of a cylindrical measuring chamber;
FIG. 3 is a top view of FIG. 2;
FIG. 4 is a schematic structural view of a threaded end cap;
FIG. 5 is a cross-sectional view A-A of FIG. 4;
fig. 6 is a schematic structural diagram of a measuring device in the second embodiment.
Detailed Description
The first embodiment is a device for measuring the effective diffusion coefficient of radon in a membrane, which comprises a measuring chamber 1, a radon measuring instrument 2, a pump 3 and an annular sealing gasket 4.
The measuring chamber 1 comprises a cylindrical barrel 1-1 with threads at two ends and threaded end covers 1-2 connected to two ends of the cylindrical barrel 1-1, an air outlet end connector 1-1 and an air inlet end connector 1-1-2 are symmetrically arranged on the barrel wall of the cylindrical barrel 1-1, the inner diameter of the cylindrical barrel 1-1 is D1, an annular groove 1-2-1 is arranged in the threaded end cover 1-2, an annular sealing gasket 4 is arranged in the annular groove 1-2-1, and the aperture of a cover plate at the end of the threaded end cover 1-2 is D2, wherein D1 is D2.
An air outlet end connector 1-1-1 on the measuring chamber 1 is connected with an air inlet end on the radon measuring instrument 2 through a pipeline, an air outlet end on the radon measuring instrument 2 is connected with an air inlet end of the pump 3 through a pipeline, and an air outlet end of the pump 3 is connected with an air inlet end connector 1-1-2 on the measuring chamber 1 through a pipeline.
The method for measuring the effective diffusion coefficient of radon in the membrane by using the measuring device comprises a measuring process and a calculating process.
Firstly, a measuring process:
A. cutting a film to be measured into circular film sheets 5 with the diameter the same as the outer diameter of a port of a cylindrical barrel 1-1, respectively attaching the two film sheets 5 to two ends of the cylindrical barrel 1-1, and tightly pressing and sealing by using a threaded end cover 1-2, wherein the surface of the film sheet 5 exposed in the air is an outer surface, and the surface in the cylindrical barrel 1-1 is an inner surface;
B. starting the pump 3, and uniformly mixing the gas in the measuring chamber 1 and the gas in the measuring cavity of the emanometer 2 under the action of the pump 3;
C. the measuring chamber 1 is placed in a standard radon chamber, and the variation trend of the radon concentration in the measuring chamber 1 is measured by a radon measuring instrument 2.
Secondly, calculating:
because the flow rate of the pump 3 is larger, the radon concentration in the measuring cavity of the radon measuring instrument 2 is equal to the radon concentration in the measuring chamber 1, the radon concentration in the air of the external environment is very low, and the initial radon concentration is approximately 0;
the one-dimensional diffusion equation of radon in the pellicle membrane 5 is:
Figure 597892DEST_PATH_IMAGE002
(1)
in the formula (1), DeIs the effective diffusion coefficient of radon in the thin film piece 5, lambda is the decay constant of radon, C (z, t) is the radon concentration at different points of time in the thin film at different vertical distances from the outer surface, t is time, z is the vertical position from any point in the thin film piece 5 to the outer surface of the thin film piece 5;
after diffusion has stabilized, according to fick's law:
Figure 778206DEST_PATH_IMAGE004
(2)
in the formula (2), J is the radon exhalation rate of the inner surface of the thin film piece 5;
the radon detector 2 measures the radon concentration C in the cavity1(t) is:
Figure 532535DEST_PATH_IMAGE022
(3)
in the formula (3), S is the circular area in the cavity of the measuring chamber 1; v is the sum of the volume in the cavity of the measuring chamber 1, the volume of the airflow pipeline and the volume of the measuring cavity of the radon measuring instrument 2; n is the number of the thin film pieces, and in the formula (3), n is 2;
when the radon concentration in the measuring chamber 1 tends to a constant value, i.e. when the radon concentration in the measuring chamber approaches a constant value
Figure 331864DEST_PATH_IMAGE008
The radon exhalation rate can be obtained by changing the formula (3):
Figure 855249DEST_PATH_IMAGE010
(4)
because the thickness d of the thin film piece 5 is very small, the vertical distribution of radon concentration in the thin film piece 5 can be linearly approximated;
substituting formula (4) into formula (2) to obtain:
Figure DEST_PATH_IMAGE023
(5)
in the formula (5), C is the radon concentration of a standard radon chamber;
formula (5) can vary as:
Figure 673643DEST_PATH_IMAGE014
(6)
the effective diffusion coefficient can be obtained from equation (6).
The second embodiment is different from the first embodiment in that: four cylindrical measuring cavities 6 are additionally arranged on the wall of the cylindrical barrel body 1-1, the cylindrical measuring cavities 6 are communicated with the inner cavity of the cylindrical barrel body 1-1, the inner diameter of the cavity of the cylindrical measuring cavity 6 is the same as that of the cavity of the cylindrical barrel body 1-1, and the end head structure and the structure of the threaded end cover 6-1 connected with the end head are the same as those of the end head structure of the cylindrical barrel body 1-1 and the threaded end cover 1-2 connected with the cylindrical barrel body 1-1.
The method for measuring the effective diffusion coefficient of radon in the film by using the measuring device through six films comprises the following steps:
firstly, a measuring process:
A. cutting a film to be measured into circular film sheets 5 with the diameter the same as the outer diameter of the port of the cylindrical barrel 1-1, respectively attaching six film sheets 5 to two ends of the cylindrical barrel 1-1 and the ports of the other four cylindrical measuring cavities 6, and tightly pressing and sealing the film sheets by using threaded end covers, wherein the surface of each film sheet 5 exposed in the air is an outer surface, and the surfaces in the cylindrical barrel 1-1 and the cylindrical measuring cavities 6 are inner surfaces;
B. starting the pump 3, and uniformly mixing the gas in the measuring chamber 1 and the gas in the measuring cavity of the emanometer 2 under the action of the pump 3;
C. the measuring chamber 1 is placed in a standard radon chamber, and the variation trend of the radon concentration in the measuring chamber 1 is measured by a radon measuring instrument 2.
Secondly, calculating:
radon concentration C in the radon detector 21(t) is:
Figure 977586DEST_PATH_IMAGE006
(7)
in the formula (7), S is the circular area in the cavity of the measuring chamber 1; v is the sum of the volume in the cavity of the measuring chamber 1, the volume of the airflow pipeline and the volume of the measuring cavity of the radon measuring instrument 2; n is the number of the thin film pieces, and in the formula (7), n is 6;
when the radon concentration in the measuring chamber 1 tends to a constant value, i.e. when the radon concentration in the measuring chamber approaches a constant value
Figure 252709DEST_PATH_IMAGE008
The radon exhalation rate can be obtained by changing the formula (3):
Figure DEST_PATH_IMAGE025
(8)
because the thickness d of the thin film piece 5 is very small, the vertical distribution of radon concentration in the thin film piece 5 can be linearly approximated;
substituting formula (8) into formula (2) to obtain:
Figure DEST_PATH_IMAGE027
(9)
in formula (9), C is the radon concentration of a standard radon chamber;
formula (9) can vary as:
Figure DEST_PATH_IMAGE029
(10)
the effective diffusion coefficient can be obtained from equation (10).

Claims (2)

1. The method for measuring the effective diffusion coefficient of radon in the film is characterized by comprising the following steps: measuring the effective diffusion coefficient of radon in a film by using a device for measuring the effective diffusion coefficient of radon in a film material, wherein the device comprises a measuring process and a calculating process;
firstly, a measuring process:
A. cutting a film to be measured into circular film sheets with the diameter the same as the outer diameter of the port of the cylindrical barrel, respectively attaching the two film sheets to two ends of the cylindrical barrel, and tightly pressing and sealing by using threaded end covers, wherein the surface of the film sheet exposed in the air is an outer surface, and the surface in the cylindrical barrel is an inner surface;
B. starting the pump, and uniformly mixing the gas in the measuring chamber with the gas in the measuring cavity of the emanometer under the action of the pump;
C. placing the measuring chamber into a standard radon chamber, and measuring the variation trend of radon concentration in the measuring chamber by a radon measuring instrument;
secondly, calculating:
because the flow rate of the pump is large, the radon concentration in the measuring cavity of the radon measuring instrument is equal to that in the measuring chamber, the radon concentration in the air of the external environment is very low, and the initial radon concentration is approximately 0;
the one-dimensional diffusion equation of radon in the pellicle membrane is as follows:
Figure DEST_PATH_IMAGE001
(1)
in the formula (1), DeIs the effective diffusion coefficient of radon in the pellicle membrane, and lambda is the decay constant of radon,c (z, t) is the radon concentration at different points of time at different vertical distances from the inner surface of the film sheet to the outer surface of the film sheet, t is time, and z is the vertical position from any point in the film sheet to the outer surface of the film sheet;
after diffusion has stabilized, according to fick's law:
Figure 904186DEST_PATH_IMAGE002
(2)
in the formula (2), J is the radon exhalation rate of the inner surface of the thin film piece;
the radon detector 2 measures the radon concentration C in the cavity1(t) is:
Figure DEST_PATH_IMAGE003
(3)
in the formula (3), S is the circular area in the cavity of the measuring chamber; v is the sum of the volume in the cavity of the measuring chamber, the volume of the airflow pipeline and the volume of the measuring cavity of the emanometer; n is the number of thin film pieces, and in the formula (3), n = 2;
when the radon concentration in the measuring chamber tends to a constant value, i.e. when the radon concentration in the measuring chamber tends to a constant value
Figure 257545DEST_PATH_IMAGE004
The radon exhalation rate can be obtained by changing the formula (3):
Figure DEST_PATH_IMAGE005
(4)
because the thickness d of the thin film piece is very small, the vertical distribution of radon concentration in the thin film piece can be linearly approximated;
substituting formula (4) into formula (2) to obtain:
Figure 37282DEST_PATH_IMAGE006
(5)
in the formula (5), C is the radon concentration of a standard radon chamber;
formula (5) can vary as:
Figure DEST_PATH_IMAGE007
(6)
the effective diffusion coefficient can be obtained by the formula (6);
the device for measuring the effective diffusion coefficient of radon in the film material adopted by the method comprises a measuring chamber, a radon measuring instrument, a pump and an annular sealing gasket;
the measuring chamber comprises a cylindrical barrel body with threads at two ends and threaded end covers connected to two ends of the cylindrical barrel body, an air outlet end connector and an air inlet end connector are symmetrically arranged on the barrel wall of the cylindrical barrel body, the inner diameter of the cylindrical barrel body is D1, an annular groove is arranged in each threaded end cover, an annular sealing gasket is arranged in each annular groove, and the hole diameter of each threaded end cover plate is D2, wherein D1 is D2;
the air outlet end joint on the measuring chamber is connected with the air inlet end on the emanometer through a pipeline, the air outlet end on the emanometer is connected with the air inlet end of the pump through a pipeline, and the air outlet end of the pump is connected with the air inlet end joint on the measuring chamber through a pipeline.
2. The method for measuring the effective diffusion coefficient of radon in the film is characterized by comprising the following steps: the method comprises the steps that a device for measuring the effective diffusion coefficient of radon in a film material is adopted to measure the effective diffusion coefficient of radon in the film through a plurality of films, and the device comprises a measuring process and a calculating process;
firstly, a measuring process:
A. cutting a film to be measured into circular film sheets with the diameter the same as the outer diameter of the port of the cylindrical barrel, respectively attaching the film sheets to the two ends of the cylindrical barrel and the ports of the plurality of cylindrical measuring cavities, and tightly pressing and sealing the film sheets by using threaded end covers, wherein the surface of the film sheet exposed in the air is an outer surface, and the surfaces in the cylindrical barrel and the cavity are inner surfaces;
B. starting the pump, and uniformly mixing the gas in the measuring chamber with the gas in the measuring cavity of the emanometer under the action of the pump;
C. placing the measuring chamber into a standard radon chamber, and measuring the variation trend of radon concentration in the measuring chamber by a radon measuring instrument;
secondly, calculating:
radon concentration C in the radon detector1(t) is:
Figure 370175DEST_PATH_IMAGE003
(7)
in the formula (7), S is the circular area in the cavity of the measuring chamber; v is the sum of the volume in the cavity of the measuring chamber, the volume of the airflow pipeline and the volume of the measuring cavity of the emanometer, and n is the number of the thin film pieces;
when the radon concentration in the measuring chamber tends to a constant value, i.e. when the radon concentration in the measuring chamber tends to a constant value
Figure 184547DEST_PATH_IMAGE004
The radon exhalation rate can be obtained by changing the formula (3):
Figure 7009DEST_PATH_IMAGE008
(8)
because the thickness d of the thin film piece is very small, the vertical distribution of radon concentration in the thin film piece can be linearly approximated;
substituting formula (8) into formula (2) to obtain:
Figure DEST_PATH_IMAGE009
(9)
in formula (9), C is the radon concentration of a standard radon chamber;
formula (9) can vary as:
Figure 211726DEST_PATH_IMAGE010
(10)
the effective diffusion coefficient can be obtained by the formula (10);
the device for measuring the effective diffusion coefficient of radon in the film material adopted by the method comprises a measuring chamber, a radon measuring instrument, a pump and an annular sealing gasket;
the measuring chamber comprises a cylindrical barrel body with threads at two ends and threaded end covers connected to two ends of the cylindrical barrel body, an air outlet end connector and an air inlet end connector are symmetrically arranged on the barrel wall of the cylindrical barrel body, the inner diameter of the cylindrical barrel body is D1, an annular groove is arranged in each threaded end cover, an annular sealing gasket is arranged in each annular groove, and the hole diameter of each threaded end cover plate is D2, wherein D1 is D2;
the wall of the cylindrical barrel is also provided with a plurality of cylindrical measuring cavities, the cylindrical measuring cavities are communicated with the inner cavity of the cylindrical barrel, the inner diameter of the cavity of the cylindrical measuring cavity is the same as that of the cavity of the cylindrical barrel, and the end structure and the structure of the threaded end cover connected with the end are the same as those of the end structure of the cylindrical barrel and the threaded end cover connected with the cylindrical barrel;
the air outlet end joint on the measuring chamber is connected with the air inlet end on the emanometer through a pipeline, the air outlet end on the emanometer is connected with the air inlet end of the pump through a pipeline, and the air outlet end of the pump is connected with the air inlet end joint on the measuring chamber through a pipeline.
CN201811426571.6A 2018-11-27 2018-11-27 Method for measuring effective diffusion coefficient of radon in film Active CN109283098B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811426571.6A CN109283098B (en) 2018-11-27 2018-11-27 Method for measuring effective diffusion coefficient of radon in film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811426571.6A CN109283098B (en) 2018-11-27 2018-11-27 Method for measuring effective diffusion coefficient of radon in film

Publications (2)

Publication Number Publication Date
CN109283098A CN109283098A (en) 2019-01-29
CN109283098B true CN109283098B (en) 2021-04-20

Family

ID=65173187

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811426571.6A Active CN109283098B (en) 2018-11-27 2018-11-27 Method for measuring effective diffusion coefficient of radon in film

Country Status (1)

Country Link
CN (1) CN109283098B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621039A (en) * 2012-03-20 2012-08-01 衡阳师范学院 Method for measuring gaseous diffusion coefficient with double-flow gaseous quasi-static process
CN102809526A (en) * 2012-08-27 2012-12-05 中国石油大学(华东) Method for measuring diffusion coefficient of carbon dioxide in saturated oil core
CN104502237A (en) * 2014-12-15 2015-04-08 中国石油大学(华东) Device for measuring diffusion coefficient of CO2 diffusing from aqueous phase to oil phase and operating method thereof
CN106092827A (en) * 2016-06-03 2016-11-09 沈阳大学 The gas transfer diffusion coefficient measurement apparatus of a kind of thin-film material and method
JP2018133228A (en) * 2017-02-16 2018-08-23 トヨタ自動車株式会社 Oxygen diffusion coefficient measurement device
CN108760583A (en) * 2018-04-27 2018-11-06 南华大学 Block for construction precipitation rate of radon and neutralisation precipitation rate of radon test device and test method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621039A (en) * 2012-03-20 2012-08-01 衡阳师范学院 Method for measuring gaseous diffusion coefficient with double-flow gaseous quasi-static process
CN102809526A (en) * 2012-08-27 2012-12-05 中国石油大学(华东) Method for measuring diffusion coefficient of carbon dioxide in saturated oil core
CN104502237A (en) * 2014-12-15 2015-04-08 中国石油大学(华东) Device for measuring diffusion coefficient of CO2 diffusing from aqueous phase to oil phase and operating method thereof
CN106092827A (en) * 2016-06-03 2016-11-09 沈阳大学 The gas transfer diffusion coefficient measurement apparatus of a kind of thin-film material and method
JP2018133228A (en) * 2017-02-16 2018-08-23 トヨタ自動車株式会社 Oxygen diffusion coefficient measurement device
CN108760583A (en) * 2018-04-27 2018-11-06 南华大学 Block for construction precipitation rate of radon and neutralisation precipitation rate of radon test device and test method

Also Published As

Publication number Publication date
CN109283098A (en) 2019-01-29

Similar Documents

Publication Publication Date Title
CN104880394B (en) A kind of concrete air infiltration test equipment and its method of testing
CN101644700A (en) Method and device for measuring radon exhalation rate on medium surface
US3614243A (en) Variable path-length gas cell
CN109186864B (en) Vacuum standard leak with minimum leak rate
CN104034377B (en) Air compressor flow measurement device and calibration system and method thereof
CN109283098B (en) Method for measuring effective diffusion coefficient of radon in film
CN106198457B (en) Multi-channel liquid transmission and scatterometry device and method
CN109269943B (en) Method for rapidly measuring effective diffusion coefficient of radon in film
CN109612903B (en) Device and method for measuring effective diffusion coefficient of radon in film by electrostatic collection method
Carrié et al. Model error due to steady wind in building pressurization tests
CN109655856B (en) Device and method for rapidly measuring effective diffusion coefficient of radon in film by electrostatic collection method
CN109655870B (en) Device and method for arbitrarily adjusting radon exhalation rate and effective decay constant by using gas flow type radon source
CN209841626U (en) Concrete permeability measuring and clamping device based on I-shaped sealing rubber sleeve
CN108061631B (en) Test method for measuring leakage of grate seal structure
JPS5460994A (en) Measuring method of gas permeability of porous substances
CN212008214U (en) Radon diffusion coefficient measuring device
CN210834052U (en) Expiratory valve air tightness test system
CN211955133U (en) Testing device of air purification filtering material for ventilation system
CN113325461B (en) Method for adjusting radon exhalation rate and effective decay constant by using radon chamber
CN113325460B (en) Method for adjusting radon exhalation rate and effective decay constant of radon exhalation rate standard device
CN208537472U (en) A kind of online moisture separator of mass spectrum
CN216978747U (en) A cavity structures and gas permeation tester for gas permeation test
CN112946717B (en) Portable radon exhalation rate and radon concentration reference device and reference constant value method
JPS6146789B2 (en)
RU2568962C1 (en) Device to measure flow parameters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant