JP2018133228A - Oxygen diffusion coefficient measurement device - Google Patents

Oxygen diffusion coefficient measurement device Download PDF

Info

Publication number
JP2018133228A
JP2018133228A JP2017026739A JP2017026739A JP2018133228A JP 2018133228 A JP2018133228 A JP 2018133228A JP 2017026739 A JP2017026739 A JP 2017026739A JP 2017026739 A JP2017026739 A JP 2017026739A JP 2018133228 A JP2018133228 A JP 2018133228A
Authority
JP
Japan
Prior art keywords
porous body
oxygen
diffusion coefficient
oxygen diffusion
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017026739A
Other languages
Japanese (ja)
Other versions
JP6894253B2 (en
Inventor
敦巳 井田
Atsumi Ida
敦巳 井田
敦巳 山本
Atsumi Yamamoto
敦巳 山本
大甫 林
Daisuke Hayashi
大甫 林
祥太 真籠
Shota Makago
祥太 真籠
加藤 育康
Ikuyasu Kato
育康 加藤
友貴 佐埜
Tomoki Sano
友貴 佐埜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Toyota Motor Corp
Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Soken Inc filed Critical Toyota Motor Corp
Priority to JP2017026739A priority Critical patent/JP6894253B2/en
Publication of JP2018133228A publication Critical patent/JP2018133228A/en
Application granted granted Critical
Publication of JP6894253B2 publication Critical patent/JP6894253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To enable measurement of an oxygen diffusion coefficient of a porous body by maintaining a water-containing state of the porous body.SOLUTION: Disclosed is an oxygen diffusion coefficient measurement device for measuring an oxygen diffusion coefficient of a thin film porous body used for a fuel cell in a pressurized state held by a pair of pressure members. At least one of pressure members is provided with a recess on a pressure surface brought into contact with the porous body. In the recess, a member having lower elasticity than that of the porous body and also having higher water- repellency than that of the porous body is provided so as to fill the recess.SELECTED DRAWING: Figure 3

Description

本発明は、多孔体の酸素拡散係数を測定する装置に関する。   The present invention relates to an apparatus for measuring an oxygen diffusion coefficient of a porous body.

多孔体の酸素拡散係数を測定する装置の一例として、特許文献1には、実際に使用される状態により近い環境(加圧環境)で測定を行なうために、測定対象の多孔体を加圧する加圧部材の加圧面に長尺狭幅の複数の溝部(凹部)が設けられている例が記載されている。この酸素拡散係数測定装置は、例えば、燃料電池のガス拡散層として用いられる薄膜状の多孔体の酸素拡散係数の測定に適用される。   As an example of an apparatus for measuring the oxygen diffusion coefficient of a porous body, Patent Document 1 describes an additional process for pressurizing a porous body to be measured in order to perform measurement in an environment (pressure environment) that is closer to the actual use state. An example is described in which a plurality of long narrow grooves (recesses) are provided on the pressure surface of the pressure member. This oxygen diffusion coefficient measuring apparatus is applied to, for example, measurement of the oxygen diffusion coefficient of a thin-film porous body used as a gas diffusion layer of a fuel cell.

特開2016−48175号公報Japanese Patent Laying-Open No. 2006-48175 特開2016−205924号公報JP, 2006-205924, A

ここで、燃料電池の発電時、反応ガスは、ガス拡散層表面を流通しつつガス拡散層内に拡散されて透過する。また、燃料電池の発電において、酸素極で水が生成されると、生成された水(以下、生成水とも称する。)はガス拡散層内を流通して、ガス拡散層表面を流れる反応ガスの流れに伴って燃料電池外に排出される。このため、燃料電池のガス拡散層として用いられる多孔体は、使用状態に応じた含水状態を維持した状態で酸素拡散係数の測定が行なわれることが望ましい。   Here, during power generation of the fuel cell, the reaction gas is diffused and permeated into the gas diffusion layer while circulating on the surface of the gas diffusion layer. Further, in the power generation of the fuel cell, when water is generated at the oxygen electrode, the generated water (hereinafter also referred to as generated water) circulates in the gas diffusion layer, and the reaction gas flowing on the surface of the gas diffusion layer. It is discharged out of the fuel cell with the flow. For this reason, it is desirable that the porous body used as the gas diffusion layer of the fuel cell is subjected to measurement of the oxygen diffusion coefficient in a state in which the water-containing state corresponding to the use state is maintained.

しかしながら、特許文献1の酸素拡散係数測定装置では、加圧面に溝部を有しているため、多孔体が加圧面で加圧された状態において、多孔体中に含まれる液体状態の水(以下、液水とも称する。)が溝部へ排出されてしまい、多孔体の含水状態を維持することができない、という問題がある。そこで、多孔体の含水状態を維持して多孔体の酸素拡散係数の測定を可能とする技術が望まれていた。   However, since the oxygen diffusion coefficient measuring apparatus of Patent Document 1 has a groove on the pressure surface, in a state where the porous body is pressurized on the pressure surface, liquid water (hereinafter, (It is also referred to as liquid water.) Is discharged to the groove, and the water content of the porous body cannot be maintained. Therefore, a technique that enables measurement of the oxygen diffusion coefficient of the porous body while maintaining the moisture content of the porous body has been desired.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms.

(1)本発明の一形態によれば、燃料電池に用いられる薄膜状の多孔体の酸素拡散係数を一対の加圧部材で挟持した加圧状態で測定する酸素拡散係数測定装置が提供される。この酸素拡散係数測定装置は、少なくとも一方の加圧部材は、前記多孔体に接する加圧面に凹部が設けられており、前記凹部には、前記多孔体よりも低弾性を有し、かつ、前記多孔体よりも高撥水性を有する部材が、前記凹部を満たすように設けられている。
この形態の酸素拡散係数測定装置によれば、凹部に設けられている部材は測定対象の多孔体よりも高撥水性であるため、多孔体が加圧面で加圧された際に、多孔体に含まれる液水が、凹部の部材へ移動することが抑制される。これにより、測定対象の多孔体の含水状態を維持して、多孔体の酸素拡散係数の測定が可能である。また、凹部に設けられている部材は測定対象の多孔体よりも低弾性であるため、多孔体が加圧面で加圧された際に、多孔体を凹部にたわみ込ませることができる。これにより、測定対象の多孔体に加わる加圧状態を実際に燃料電池に組み込まれた状態に近い加圧状態として、多孔体の酸素拡散係数の測定が可能である。従って、実際に燃料電池に組み込まれた状態に近い環境下で測定対象の多孔体の酸素拡散係数を測定できる。
(1) According to one aspect of the present invention, there is provided an oxygen diffusion coefficient measuring device that measures an oxygen diffusion coefficient of a thin film porous body used in a fuel cell in a pressurized state sandwiched between a pair of pressure members. . In this oxygen diffusion coefficient measuring apparatus, at least one of the pressurizing members is provided with a recess in a pressurizing surface in contact with the porous body, the recess has a lower elasticity than the porous body, and A member having higher water repellency than the porous body is provided so as to fill the recess.
According to the oxygen diffusion coefficient measuring apparatus of this embodiment, since the member provided in the recess has higher water repellency than the porous body to be measured, when the porous body is pressurized on the pressing surface, It is suppressed that the liquid water contained moves to the member of a recessed part. Thereby, it is possible to measure the oxygen diffusion coefficient of the porous body while maintaining the moisture content of the porous body to be measured. In addition, since the member provided in the recess has lower elasticity than the porous body to be measured, the porous body can be bent into the recess when the porous body is pressurized on the pressing surface. As a result, the oxygen diffusion coefficient of the porous body can be measured by setting the pressurized state applied to the porous body to be measured as a pressurized state close to the state actually incorporated in the fuel cell. Therefore, it is possible to measure the oxygen diffusion coefficient of the porous body to be measured in an environment close to the state where it is actually incorporated in the fuel cell.

なお、本発明は、種々の態様で実現することが可能である。例えば、酸素拡散係数測定方法等の形態で実現することができる。   Note that the present invention can be realized in various modes. For example, it is realizable with forms, such as an oxygen diffusion coefficient measuring method.

本発明の一実施形態としての酸素拡散係数測定装置の概略構成を示す説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which shows schematic structure of the oxygen diffusion coefficient measuring apparatus as one Embodiment of this invention. 多孔体保持体の概略構成を示す説明図。Explanatory drawing which shows schematic structure of a porous body holding body. 図1の酸素拡散係数測定装置のうち多孔体保持体を含む周辺部分を拡大して示す説明図。Explanatory drawing which expands and shows the peripheral part containing a porous body holding body among the oxygen diffusion coefficient measuring apparatuses of FIG. 測定対象の多孔体を予め定めた測定条件の含水状態とする方法について示す説明図。Explanatory drawing shown about the method of making the porous body of a measuring object into the moisture-containing state of the predetermined measurement conditions. 酸素拡散係数測定装置による測定対象の多孔体の酸素拡散係数の測定手順を示すフローチャート。The flowchart which shows the measurement procedure of the oxygen diffusion coefficient of the porous body of a measuring object by an oxygen diffusion coefficient measuring apparatus. 図5の測定手順に従って測定される酸素拡散係数を示すグラフ。The graph which shows the oxygen diffusion coefficient measured according to the measurement procedure of FIG. 測定対象の多孔体を予め定めた測定条件の含水状態とする他の方法について示す説明図。Explanatory drawing shown about the other method of making the porous body of a measuring object into the water-containing state of the predetermined measurement conditions.

A.実施形態:
A1.酸素拡散係数測定装置の構成:
図1は本発明の一実施形態としての酸素拡散係数測定装置の概略構成を示す説明図である。図1では、各構成を明瞭に示すために、一部の構成にハッチングを付している。本実施形態の酸素拡散係数測定装置100は、燃料電池に用いられる薄膜状の多孔体を、一定の含水状状態とするとともに、一対の加圧部材で挟持した加圧状態とした上で、多孔体内に酸素を流通させて、多孔体の酸素拡散係数を測定することが可能な装置である。
A. Embodiment:
A1. Configuration of oxygen diffusion coefficient measuring device:
FIG. 1 is an explanatory diagram showing a schematic configuration of an oxygen diffusion coefficient measuring apparatus as one embodiment of the present invention. In FIG. 1, in order to show each structure clearly, a part of structure is hatched. The oxygen diffusion coefficient measuring apparatus 100 according to the present embodiment has a thin porous body used for a fuel cell in a certain water-containing state and a pressurized state sandwiched between a pair of pressing members, and is porous. This is a device capable of measuring the oxygen diffusion coefficient of a porous body by circulating oxygen through the body.

酸素拡散係数測定装置100は、測定対象の多孔体を収容する多孔体保持体10と、押圧部30と、載置台40と、酸素濃度検出センサ60と、酸素消費型電池70と、酸素拡散係数算出装置80と、電池制御装置90と、を備える。酸素濃度検出センサ60及び酸素消費型電池70は、支持部材50によって、載置台40の下部に配置される。   The oxygen diffusion coefficient measuring apparatus 100 includes a porous body holder 10 that accommodates a porous body to be measured, a pressing unit 30, a mounting table 40, an oxygen concentration detection sensor 60, an oxygen consuming battery 70, and an oxygen diffusion coefficient. A calculation device 80 and a battery control device 90 are provided. The oxygen concentration detection sensor 60 and the oxygen consuming battery 70 are disposed below the mounting table 40 by the support member 50.

図2は、多孔体保持体10の概略構成を示す説明図である。図2は、図1の紙面に平行な平面で切断した多孔体保持体10の断面を示す。多孔体保持体10は、測定対象の多孔体110を保持するための上部保持体120及び下部保持体130を備える。   FIG. 2 is an explanatory diagram showing a schematic configuration of the porous body holder 10. FIG. 2 shows a cross section of the porous body holder 10 cut along a plane parallel to the paper surface of FIG. The porous body holder 10 includes an upper holder 120 and a lower holder 130 for holding the measurement target porous body 110.

測定対象の多孔体110は、燃料電池のガス拡散層として利用される部材であり、カーボンフェルト、カーボンペーパー、カーボンクロス、金属製の多孔体、エキスパンドメタル等の部材が例示される。   The porous body 110 to be measured is a member used as a gas diffusion layer of a fuel cell, and examples thereof include carbon felt, carbon paper, carbon cloth, metallic porous body, and expanded metal.

上部保持体120は、その下面に多孔体110の外形に対応する大きさの上部保持溝部122を有しており、上部保持溝部122の多孔体110に接する底面に、燃料電池セパレータの溝流路に対応する長尺狭幅の複数の溝部(凹部)124を備える。上部保持体120は、例えば、カーボンを圧縮してガス不透過とした緻密質カーボンによって形成されている。   The upper holding body 120 has an upper holding groove 122 having a size corresponding to the outer shape of the porous body 110 on the lower surface thereof, and a groove flow path of the fuel cell separator on the bottom surface of the upper holding groove 122 contacting the porous body 110. Are provided with a plurality of long narrow grooves (recesses) 124 corresponding to. The upper holding body 120 is made of, for example, dense carbon that has been made carbon impermeable by compressing carbon.

溝部124には、溝部124を満たすように部材150が埋設されている。部材150は、測定対象の多孔体110よりも低弾性で、かつ、多孔体110よりも高撥水性を有する部材であれば良く、特に限定は無い。   A member 150 is embedded in the groove portion 124 so as to fill the groove portion 124. The member 150 is not particularly limited as long as it is a member having lower elasticity than the porous body 110 to be measured and higher water repellency than the porous body 110.

下部保持体130は、上部保持体120と同様に、その上面に多孔体110の外形に対応する大きさの下部保持溝部132を有している。下部保持溝部132の多孔体110に接する底面は、多孔体110の全面にわたって多孔体110に接する平面である。下部保持体130は、上部保持体120と同様に緻密質カーボンによって形成されている。なお、上部保持体120および下部保持体130は、プレス成形されたステンレス鋼などの金属材料によって形成してもよい。また、上部保持体120と下部保持体130とは、互いに異なる材料で形成してもよい。   Similar to the upper holding body 120, the lower holding body 130 has a lower holding groove 132 having a size corresponding to the outer shape of the porous body 110 on the upper surface thereof. The bottom surface of the lower holding groove 132 that is in contact with the porous body 110 is a plane that is in contact with the porous body 110 over the entire surface of the porous body 110. The lower holding body 130 is formed of dense carbon like the upper holding body 120. The upper holder 120 and the lower holder 130 may be formed of a metal material such as press-formed stainless steel. Further, the upper holder 120 and the lower holder 130 may be formed of different materials.

多孔体保持体10では、上部保持体120の上部保持溝部122と下部保持体130の下部保持溝部132との間で測定対象の多孔体110が挟持され、上部保持体120と下部保持体130のつなぎ目が接着剤140で覆われて固定されている。なお、上部保持体120および下部保持体130が「一対の加圧部材」に相当し、上部保持体120の上部保持溝部122の底面および下部保持体130の下部保持溝部132の底面が「多孔体に接する加圧面」に相当する。   In the porous body holder 10, the porous body 110 to be measured is sandwiched between the upper holding groove portion 122 of the upper holding body 120 and the lower holding groove portion 132 of the lower holding body 130, and the upper holding body 120 and the lower holding body 130 are separated. The joints are covered and fixed with an adhesive 140. The upper holding body 120 and the lower holding body 130 correspond to “a pair of pressure members”, and the bottom surface of the upper holding groove portion 122 of the upper holding body 120 and the bottom surface of the lower holding groove portion 132 of the lower holding body 130 are “porous bodies”. Corresponds to the “pressing surface in contact with”.

上部保持体120の上面と上部保持溝部122の底面との間には、多孔体110へガスを導入するための上部導入孔126が設けられており、下部保持体130の下面と下部保持溝部132の底面との間には、多孔体110からガスを排出するための下部排出孔136が設けられている。   An upper introduction hole 126 for introducing gas into the porous body 110 is provided between the upper surface of the upper holding body 120 and the bottom surface of the upper holding groove portion 122, and the lower surface of the lower holding body 130 and the lower holding groove portion 132 are provided. A lower discharge hole 136 for discharging gas from the porous body 110 is provided between the bottom surface of the first and second surfaces.

図3は、図1の酸素拡散係数測定装置100のうち多孔体保持体10を含む周辺部分を拡大して示す説明図である。図3も、図2と同様の断面を示す。   FIG. 3 is an explanatory view showing, in an enlarged manner, a peripheral portion including the porous body holder 10 in the oxygen diffusion coefficient measuring apparatus 100 of FIG. FIG. 3 also shows a cross section similar to FIG.

載置台40は、多孔体保持体10が載置される載置面42と、多孔体保持体10中の多孔体110を透過して下部排出孔136から排出されたガス(酸素)が通過する透過ガス通過孔44と、を備える。押圧部30は、紙面上下方向に移動可能に構成され、ロードセル20による検出荷重に基づいて、多孔体保持体10に対して所定の面圧を付与する。これにより、多孔体保持体10は、載置台40と押圧部30とで挟持される。   The mounting table 40 passes through the mounting surface 42 on which the porous body holding body 10 is mounted and the gas (oxygen) discharged from the lower discharge hole 136 through the porous body 110 in the porous body holding body 10. A permeate gas passage hole 44. The pressing unit 30 is configured to be movable in the vertical direction on the paper surface, and applies a predetermined surface pressure to the porous body holding body 10 based on a load detected by the load cell 20. Thereby, the porous body holder 10 is sandwiched between the mounting table 40 and the pressing portion 30.

支持部材50は、凹部52および孔部54を備える。支持部材50には、凹部52の底面の端縁部に複数の酸素消費型電池70が埋設され、貫通孔である孔部54には、酸素濃度検出センサ60が嵌設される。支持部材50は、載置台40の載置面42の裏側の面(図1,3の紙面下側の面)に接触して配置され、載置台40の透過ガス通過孔44が凹部52に連通するように配置される。支持部材50は、多孔体110の下側(図3の紙面下側)に酸素消費型電池70および酸素濃度検出センサ60を配置し、これらを支持している。支持部材50の凹部52には、多孔体110を透過して、下部排出孔136および透過ガス通過孔44を介して排出された透過ガス(酸素)が収容される。   The support member 50 includes a recess 52 and a hole 54. In the support member 50, a plurality of oxygen consuming batteries 70 are embedded at the edge of the bottom surface of the recess 52, and the oxygen concentration detection sensor 60 is fitted into the hole 54 that is a through hole. The support member 50 is disposed in contact with the back surface of the mounting surface 42 of the mounting table 40 (the lower surface of the paper in FIGS. 1 and 3), and the permeate gas passage hole 44 of the mounting table 40 communicates with the recess 52. To be arranged. The support member 50 arranges and supports the oxygen-consuming battery 70 and the oxygen concentration detection sensor 60 on the lower side of the porous body 110 (the lower side in the drawing of FIG. 3). In the recess 52 of the support member 50, permeated gas (oxygen) that has permeated through the porous body 110 and discharged through the lower discharge hole 136 and the permeate gas passage hole 44 is accommodated.

酸素消費型電池70は、支持部材50の凹部52に存在するガス(空気)に接触するように凹部52の底部端縁に配置されている。酸素消費型電池70は、接触するガスに含まれる酸素を消費することにより電力を発生する電池である。なお、酸素消費型電池70としては、例えば、空気亜鉛電池を用いることができる。複数の酸素消費型電池70は、直列接続されている。   The oxygen consuming battery 70 is disposed at the bottom edge of the recess 52 so as to contact the gas (air) present in the recess 52 of the support member 50. The oxygen consuming battery 70 is a battery that generates electric power by consuming oxygen contained in a gas in contact therewith. As the oxygen consuming battery 70, for example, an air zinc battery can be used. The plurality of oxygen consuming batteries 70 are connected in series.

図1に示した電池制御装置90は、酸素消費型電池70の動作を制御し、凹部52(図3)に収容されたガス中の酸素の酸素消費型電池70による消費量を制御する。凹部52中の酸素が消費され、凹部52中の酸素濃度が低下すると、これに応じて、多孔体保持体10の外部の空気中の酸素が、多孔体保持体10の上部導入孔126から多孔体110に供給される。多孔体110に供給された酸素は、透過ガスとして多孔体110を透過し、下部排出孔136および透過ガス通過孔44を介して凹部52に供給される。図3に示した実線矢印は、酸素消費型電池70による酸素の消費に応じて発生する酸素(透過ガス)の流れを示す。なお、電池制御装置90による酸素消費型電池70の制御については後述する。   The battery control device 90 shown in FIG. 1 controls the operation of the oxygen consuming battery 70 and controls the consumption of oxygen in the gas contained in the recess 52 (FIG. 3) by the oxygen consuming battery 70. When the oxygen in the recess 52 is consumed and the oxygen concentration in the recess 52 decreases, oxygen in the air outside the porous body holder 10 correspondingly becomes porous from the upper introduction hole 126 of the porous body holder 10. Supplied to the body 110. Oxygen supplied to the porous body 110 passes through the porous body 110 as a permeated gas, and is supplied to the recess 52 through the lower discharge hole 136 and the permeated gas passage hole 44. The solid line arrows shown in FIG. 3 indicate the flow of oxygen (permeate gas) generated in response to oxygen consumption by the oxygen consuming battery 70. The control of the oxygen consuming battery 70 by the battery control device 90 will be described later.

酸素濃度検出センサ60は、支持部材50の孔部54に一部が嵌合して設けられる。酸素濃度検出センサ60の一部が支持部材50の孔部54に嵌合されることにより孔部54が封止される。酸素濃度検出センサ60は、酸素拡散係数測定装置100において、下部排出孔136、透過ガス通過孔44、凹部52および孔部54で構成される閉塞空間内の酸素濃度を検出する。本実施形態において、酸素濃度検出センサ60としてガルバニ電池式酸素センサを用いるが、ジルコニア式酸素センサ,磁気式酸素センサ等種々の酸素センサを用いることができる。   The oxygen concentration detection sensor 60 is provided by being partially fitted into the hole 54 of the support member 50. A part of the oxygen concentration detection sensor 60 is fitted into the hole 54 of the support member 50, thereby sealing the hole 54. In the oxygen diffusion coefficient measuring apparatus 100, the oxygen concentration detection sensor 60 detects the oxygen concentration in the closed space formed by the lower exhaust hole 136, the permeated gas passage hole 44, the concave portion 52, and the hole portion 54. In the present embodiment, a galvanic cell type oxygen sensor is used as the oxygen concentration detection sensor 60, but various oxygen sensors such as a zirconia type oxygen sensor and a magnetic type oxygen sensor can be used.

酸素拡散係数算出装置80は、以下で説明するように、電池制御装置90の制御により酸素消費型電池70を動作させた場合において、電池制御装置90により計測される酸素消費型電池70の電流量(電池電流量)および酸素濃度検出センサ60により検出される酸素濃度から酸素拡散係数を算出する。   As will be described below, the oxygen diffusion coefficient calculation device 80 has a current amount of the oxygen consumption battery 70 measured by the battery control device 90 when the oxygen consumption battery 70 is operated under the control of the battery control device 90. The oxygen diffusion coefficient is calculated from the (battery current amount) and the oxygen concentration detected by the oxygen concentration detection sensor 60.

A2.酸素拡散係数の測定方法:
以下では、酸素拡散係数測定装置100による酸素拡散係数の測定方法について説明する。図4は、測定対象の多孔体110を予め定めた測定条件の含水状態とする方法について示す説明図である。まず、乾燥状態の多孔体110を含む多孔体保持体10の重さを測定する。次に、図4に示すように、測定対象の多孔体110を収容した多孔体保持体10を、液水の入った容器の中に入れ、真空チャンバーの中で、多孔体110に液水を満水状態となるまで含浸させる。そして、満水状態となった多孔体110を含む多孔体保持体10の重さを測定する。そして、満水状態の多孔体保持体10の重さと乾燥状態の多孔体保持体10の重さとの差を求めることにより、満水状態で多孔体110に含浸されている液水量に相当する液水の重さを求める。そして、多孔体保持体10の重さが予め定めた測定条件の含水状態に対応する重さとなるまで、多孔体保持体10を放置して乾燥させる。以上のようにして、測定対象の多孔体110を予め定めた測定条件の含水状態とすることができる。
A2. Measuring method of oxygen diffusion coefficient:
Below, the measuring method of the oxygen diffusion coefficient by the oxygen diffusion coefficient measuring apparatus 100 is demonstrated. FIG. 4 is an explanatory diagram showing a method for bringing the porous body 110 to be measured into a water-containing state under predetermined measurement conditions. First, the weight of the porous body holder 10 including the dried porous body 110 is measured. Next, as shown in FIG. 4, the porous body holder 10 containing the porous body 110 to be measured is placed in a container containing liquid water, and liquid water is poured into the porous body 110 in a vacuum chamber. Impregnate until full. Then, the weight of the porous body holder 10 including the porous body 110 that has become full of water is measured. And by calculating | requiring the difference of the weight of the porous body holding body 10 of a full water state, and the weight of the porous body holding body 10 of a dry state, the liquid water corresponded to the amount of liquid water impregnated in the porous body 110 in a full water state Find the weight. Then, the porous body holding body 10 is left to dry until the weight of the porous body holding body 10 becomes a weight corresponding to a water-containing state of a predetermined measurement condition. As described above, the porous body 110 to be measured can be brought into a water-containing state under predetermined measurement conditions.

次に、予め定めた測定条件の含水状態を有する多孔体110を含む多孔体保持体10を載置台40に載置し、押圧部30によって予め定めた測定条件の面圧で押圧する(図1)。押圧部30による予め定めた測定条件の面圧は、多孔体保持体10の上部保持体120によって多孔体110に加えられる面圧が、実際の使用環境化で多孔体110に加えられる面圧の状態となるように設定される。   Next, the porous body holding body 10 including the porous body 110 having a moisture content in a predetermined measurement condition is mounted on the mounting table 40 and pressed by the pressing portion 30 with a surface pressure of the predetermined measurement condition (FIG. 1). ). The surface pressure under a predetermined measurement condition by the pressing unit 30 is the surface pressure applied to the porous body 110 by the upper holding body 120 of the porous body holding body 10 and the surface pressure applied to the porous body 110 in the actual use environment. It is set to be in a state.

図5は、酸素拡散係数測定装置100による測定対象の多孔体110の酸素拡散係数の測定手順を示すフローチャートである。図6は、図5の測定手順に従って測定される酸素拡散係数を示すグラフである。   FIG. 5 is a flowchart showing a procedure for measuring the oxygen diffusion coefficient of the porous body 110 to be measured by the oxygen diffusion coefficient measuring apparatus 100. FIG. 6 is a graph showing the oxygen diffusion coefficient measured according to the measurement procedure of FIG.

まず、酸素拡散係数算出装置80は、電池制御装置90により酸素消費型電池70をCCモードで制御し(ステップS10)、酸素濃度検出センサ60によって酸素濃度Cgの計測を行なう(ステップS20)。CCモードは、酸素消費型電池70が出力する電流量(電池電流量)が一定となるように酸素消費型電池70による酸素消費量を制御するモードである。そして、酸素拡散係数算出装置80は、酸素濃度CgがCg=0となるまで(ステップS30)、酸素消費型電池70のCCモード制御(ステップS10)および酸素濃度Cg計測(ステップS20)を継続する。   First, the oxygen diffusion coefficient calculating device 80 controls the oxygen consuming battery 70 in the CC mode by the battery control device 90 (step S10), and measures the oxygen concentration Cg by the oxygen concentration detection sensor 60 (step S20). The CC mode is a mode in which the amount of oxygen consumed by the oxygen consuming battery 70 is controlled so that the amount of current (battery current amount) output from the oxygen consuming battery 70 is constant. Then, the oxygen diffusion coefficient calculating device 80 continues the CC mode control (step S10) and the oxygen concentration Cg measurement (step S20) of the oxygen-consuming battery 70 until the oxygen concentration Cg reaches Cg = 0 (step S30). .

そして、酸素濃度CgがCg=0となった時点で(ステップS30)、電池制御装置90により酸素消費型電池70をCVモードに切り替えて制御し(ステップS40)、酸素濃度Cgの計測および電池電流量Iの計測を行い(ステップS50)、酸素拡散係数Dの算出を行なう(ステップS60)。CVモードは、酸素消費型電池70の出力電圧が一定電圧となるように酸素消費量を制御するモードである。酸素拡散係数D[m/s]は、下式(1)に従って算出される。
D=(L/(W×H))×(Q/ΔC) …(1)
L,W,Hは測定対象の多孔体110の長さ[m],幅[m],厚さ[m]である。Qは酸素拡散量(酸素消費型電池70による酸素消費量)[mol/s]である。ΔCは多孔体保持体10の外部(上部導入孔126側)における酸素濃度[mol/m]と、酸素濃度検出センサ60で検出される酸素濃度[mol/m]との差である。なお、多孔体保持体10の外部における酸素濃度は、大気中の酸素濃度[mol/m]である。
When the oxygen concentration Cg becomes Cg = 0 (step S30), the battery control device 90 controls the oxygen consumption battery 70 by switching to the CV mode (step S40), and the oxygen concentration Cg is measured and the battery current is measured. The amount I is measured (step S50), and the oxygen diffusion coefficient D is calculated (step S60). The CV mode is a mode for controlling the oxygen consumption so that the output voltage of the oxygen-consuming battery 70 becomes a constant voltage. The oxygen diffusion coefficient D [m 2 / s] is calculated according to the following formula (1).
D = (L / (W × H)) × (Q / ΔC) (1)
L, W, and H are the length [m], width [m], and thickness [m] of the porous body 110 to be measured. Q is an oxygen diffusion amount (oxygen consumption amount by the oxygen consumption type battery 70) [mol / s]. ΔC is the difference between the oxygen concentration [mol / m 3 ] outside the porous body holder 10 (upper introduction hole 126 side) and the oxygen concentration [mol / m 3 ] detected by the oxygen concentration detection sensor 60. The oxygen concentration outside the porous body holder 10 is the oxygen concentration [mol / m 3 ] in the atmosphere.

ここで、酸素拡散量Qは下式(2)に従って算出される。
Q=I/(4F) …(2)
Iは酸素消費型電池70が出力する電流量(電池電流量)[A]([c/s])である。
Here, the oxygen diffusion amount Q is calculated according to the following equation (2).
Q = I / (4F) (2)
I is a current amount (battery current amount) [A] ([c / s]) output from the oxygen consuming battery 70.

そして、酸素拡散係数算出装置80は、酸素濃度Cgが最大値Cgmaxに安定するまで、酸素消費型電池70のCVモード制御(ステップS40)、酸素濃度Cgと電池電流量Iの計測(ステップS50)、および酸素拡散係数D(ステップS60)の算出を継続し、終了する。   Then, the oxygen diffusion coefficient calculating device 80 performs CV mode control (step S40) of the oxygen-consuming battery 70 and measures the oxygen concentration Cg and the battery current amount I (step S50) until the oxygen concentration Cg is stabilized at the maximum value Cgmax. , And the calculation of the oxygen diffusion coefficient D (step S60) is continued and terminated.

以上のようにして、酸素拡散係数算出装置80は、Cg=Cgmaxで安定した状態で算出した酸素拡散係数Dを算出することができる。なお、測定対象の多孔体110の温度は、あらかじめ定めた温度に設定する必要はなく、測定実行時の雰囲気温度が測定されていればよい。   As described above, the oxygen diffusion coefficient calculation device 80 can calculate the oxygen diffusion coefficient D calculated in a stable state with Cg = Cgmax. Note that the temperature of the porous body 110 to be measured need not be set to a predetermined temperature, and the ambient temperature at the time of measurement may be measured.

なお、上記の酸素拡散係数の測定手順において、まず、CCモードにて酸素消費型電池70を動作させることにより、測定開始時に、酸素濃度検出センサ60によって酸素濃度が測定される酸素濃度測定空間(透過ガス通過孔44、凹部52、および孔部54)内に残存している酸素を消費して、酸素濃度の測定誤差を抑制することができる。また、CCモードの後CVモードで酸素消費型電池70を動作させることにより、以下の効果を得ることができる。すなわち、酸素濃度測定空間の酸素濃度が低い時には、酸素消費型電池70の酸素消費量(電池電流量に対応する)を小さく抑えることができ、安定した計測が可能である。一方、酸素濃度測定空間の酸素濃度が高くなった時には、酸素消費型電池70の酸素消費量が大きくなって、多孔体保持体10の外部(上部導入孔126側)と酸素濃度測定空間との間の酸素濃度差をできるだけ大きくすることができるので、酸素濃度の計測の精度を向上させ、酸素拡散係数Dの測定精度を向上させることができる。   In the above oxygen diffusion coefficient measurement procedure, first, the oxygen consumption battery 70 is operated in the CC mode, so that the oxygen concentration measurement space (in which the oxygen concentration is measured by the oxygen concentration detection sensor 60 at the start of measurement) ( Oxygen remaining in the permeate gas passage hole 44, the concave portion 52, and the hole portion 54) can be consumed to suppress measurement errors of the oxygen concentration. Further, by operating the oxygen consuming battery 70 in the CV mode after the CC mode, the following effects can be obtained. That is, when the oxygen concentration in the oxygen concentration measurement space is low, the oxygen consumption amount (corresponding to the battery current amount) of the oxygen consuming battery 70 can be kept small, and stable measurement is possible. On the other hand, when the oxygen concentration in the oxygen concentration measurement space becomes high, the oxygen consumption amount of the oxygen consuming battery 70 increases, and the outside of the porous body holder 10 (on the upper introduction hole 126 side) and the oxygen concentration measurement space are separated. Since the difference in oxygen concentration can be made as large as possible, the accuracy of measuring the oxygen concentration can be improved and the accuracy of measuring the oxygen diffusion coefficient D can be improved.

A3.実施形態の効果:
本実施形態の酸素拡散係数測定装置100では、上記したように、測定対象の多孔体110を挟持する上部保持体120の上部保持溝部122の底面に、燃料電池セパレータの溝流路に対応する長尺狭幅の複数の溝部(凹部)124を備える。そして、溝部124には、溝部124を満たすように部材150が埋設されている。溝部124に設けられている部材150は多孔体110よりも高撥水性を有するので、多孔体110が加圧された際に、多孔体110に含まれる液水が、溝部124へ移動して排水されてしまうことが抑制される。これにより、予め定めた測定条件の含水状態を維持して多孔体110の酸素拡散係数Dの測定を行なうことが可能である。
A3. Effects of the embodiment:
In the oxygen diffusion coefficient measuring apparatus 100 of the present embodiment, as described above, the length corresponding to the groove flow path of the fuel cell separator is formed on the bottom surface of the upper holding groove portion 122 of the upper holding body 120 that holds the porous body 110 to be measured. A plurality of grooves (recesses) 124 having a narrow width are provided. A member 150 is embedded in the groove portion 124 so as to fill the groove portion 124. Since the member 150 provided in the groove portion 124 has higher water repellency than the porous body 110, when the porous body 110 is pressurized, the liquid water contained in the porous body 110 moves to the groove portion 124 and is drained. It is suppressed that it is done. Thereby, it is possible to measure the oxygen diffusion coefficient D of the porous body 110 while maintaining the water-containing state under the predetermined measurement conditions.

また、溝部124に設けられている部材150は多孔体110よりも低弾性を有するので、予め定めた測定条件の面圧で多孔体110が加圧された際に、面圧の大きさに応じて多孔体110を溝部124にたわみ込ませることができる。これにより、多孔体110に加わる加圧状態を実際に燃料電池に組み込まれて燃料電池セパレータから加圧された状態に近い状態として、多孔体110の酸素拡散係数の測定を行なうことが可能である。   In addition, since the member 150 provided in the groove portion 124 has lower elasticity than the porous body 110, when the porous body 110 is pressurized with a surface pressure under a predetermined measurement condition, it depends on the magnitude of the surface pressure. Thus, the porous body 110 can be bent into the groove portion 124. As a result, the oxygen diffusion coefficient of the porous body 110 can be measured by setting the pressurized state applied to the porous body 110 to a state close to a state where the pressurized state is actually incorporated in the fuel cell and pressurized from the fuel cell separator. .

以上のように、本実施形態の酸素拡散係数測定装置100では、実際に燃料電池に組み込まれた状態に近い環境(含水状態および加圧状態)の下で測定対象の多孔体110の酸素拡散係数を測定することができる。   As described above, in the oxygen diffusion coefficient measuring apparatus 100 according to the present embodiment, the oxygen diffusion coefficient of the porous body 110 to be measured under an environment (hydrated state and pressurized state) close to the state actually incorporated in the fuel cell. Can be measured.

B.変形例:
なお、この発明は上記実施形態や変形例に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば、次のような変形も可能である。
B. Variations:
The present invention is not limited to the above-described embodiments and modifications, and can be carried out in various modes without departing from the gist thereof. For example, the following modifications are possible.

(1)図7は、測定対象の多孔体110を予め定めた測定条件の含水状態とする他の方法について示す説明図である。上記実施形態では、図4に示したように、測定対象の多孔体110を収容した多孔体保持体10を、液水の入った容器の中に入れ、真空チャンバーの中で、多孔体110に液水を満水状態となるまで含浸させていた。そして、多孔体保持体10の重さが予め定めた測定条件の含水状態に対応する重さとなるまで、多孔体保持体10を放置して乾燥させていた。これに対して、図7に示すように、予め定めた測定条件の含水状態に対応する量の液水を、液水注入装置160から多孔体保持体10に接続された配管162を介して、圧力センサ161で検出される液水の供給圧力が所定の圧力となるように保って、強制的に注入するようにしてもよい。この方法によれば、測定対象の多孔体110に短時間で所望量の液水を含水させることができる。 (1) FIG. 7 is an explanatory diagram showing another method for bringing the porous body 110 to be measured into a water-containing state under predetermined measurement conditions. In the above embodiment, as shown in FIG. 4, the porous body holder 10 containing the porous body 110 to be measured is placed in a container containing liquid water, and the porous body 110 is placed in the vacuum chamber. The liquid water was impregnated until it was full. And the porous body holding body 10 was left to dry until the weight of the porous body holding body 10 became the weight corresponding to the moisture content of the predetermined measurement conditions. On the other hand, as shown in FIG. 7, an amount of liquid water corresponding to the moisture content of a predetermined measurement condition is passed through a pipe 162 connected to the porous body holder 10 from the liquid water injection device 160. The liquid water supply pressure detected by the pressure sensor 161 may be maintained at a predetermined pressure and forcibly injected. According to this method, a desired amount of liquid water can be contained in the porous body 110 to be measured in a short time.

(2)上記実施形態において、複数の酸素消費型電池70が直列接続された構成を例示したが、これに限定されない。例えば、複数の酸素消費型電池70が並列接続された構成にしても良いし、1つの酸素消費型電池70を備える構成にしても良い。 (2) In the above embodiment, the configuration in which the plurality of oxygen consuming batteries 70 are connected in series is exemplified, but the present invention is not limited to this. For example, a configuration in which a plurality of oxygen consuming batteries 70 are connected in parallel may be used, or a configuration including one oxygen consuming battery 70 may be used.

(3)上記実施形態において、酸素消費型電池70として空気亜鉛電池を用いた構成を例示したが、リチウム,アルミニウム等他の金属を用いた空気金属電池を用いても良い。また、酸素と水素を用いて発電する種々の燃料電池を用いても良い。なお、酸素消費型電池70において用いられる電池の種類に応じて、式(2)を変更すれば良い。 (3) In the above embodiment, the configuration using the air zinc battery as the oxygen consuming battery 70 is exemplified, but an air metal battery using other metals such as lithium and aluminum may be used. Various fuel cells that generate power using oxygen and hydrogen may be used. In addition, what is necessary is just to change Formula (2) according to the kind of battery used in the oxygen consumption type battery 70. FIG.

(4)上記実施形態において、多孔体保持体10の上部保持体120の上部保持溝部122の底面に溝部124を有する構成を例示した。しかしながら、これに限定されるものではなく、下部保持体130の下部保持溝部132の底面に溝部を有する構成としても良く、上部保持体120および下部保持体130の両方に溝部を有する構成としても良い。 (4) In the said embodiment, the structure which has the groove part 124 in the bottom face of the upper holding groove part 122 of the upper holding body 120 of the porous body holding body 10 was illustrated. However, the present invention is not limited to this, and a configuration in which a groove portion is provided on the bottom surface of the lower holding groove portion 132 of the lower holding body 130 or a configuration in which both the upper holding body 120 and the lower holding body 130 have a groove portion may be employed. .

なお、この発明は上記の実施形態や変形例に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態の技術的特徴は、上述の課題の一部又は全部を解決するために、或いは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。   In addition, this invention is not restricted to said embodiment and modification, In the range which does not deviate from the summary, it is possible to implement in various aspects. For example, the technical features of the embodiments corresponding to the technical features in each embodiment described in the summary section of the invention are intended to solve part or all of the above-described problems, or part of the above-described effects. Or, in order to achieve the whole, it is possible to replace or combine as appropriate. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.

10…多孔体保持体
20…ロードセル
30…押圧部
40…載置台
42…載置面
44…透過ガス通過孔
50…支持部材
52…凹部
54…孔部
60…酸素濃度検出センサ
70…酸素消費型電池
80…酸素拡散係数算出装置
90…電池制御装置
100…酸素拡散係数測定装置
110…多孔体
120…上部保持体
122…上部保持溝部
124…溝部
126…上部導入孔
130…下部保持体
132…下部保持溝部
136…下部排出孔
140…接着剤
150…部材
160…液水注入装置
161…圧力センサ
162…配管
DESCRIPTION OF SYMBOLS 10 ... Porous body holding body 20 ... Load cell 30 ... Pressing part 40 ... Mounting stand 42 ... Mounting surface 44 ... Permeate gas passage hole 50 ... Support member 52 ... Recessed part 54 ... Hole part 60 ... Oxygen concentration detection sensor 70 ... Oxygen consumption type Battery 80 ... Oxygen diffusion coefficient calculation device 90 ... Battery control device 100 ... Oxygen diffusion coefficient measurement device 110 ... Porous body 120 ... Upper holding body 122 ... Upper holding groove portion 124 ... Groove portion 126 ... Upper introduction hole 130 ... Lower holding body 132 ... Lower portion Holding groove 136 ... Lower discharge hole 140 ... Adhesive 150 ... Member 160 ... Liquid water injection device 161 ... Pressure sensor 162 ... Piping

Claims (1)

燃料電池に用いられる薄膜状の多孔体の酸素拡散係数を一対の加圧部材で挟持した加圧状態で測定する酸素拡散係数測定装置であって、
少なくとも一方の加圧部材は、前記多孔体に接する加圧面に凹部が設けられており、
前記凹部には、前記多孔体よりも低弾性を有し、かつ、前記多孔体よりも高撥水性を有する部材が、前記凹部を満たすように設けられている、酸素拡散係数測定装置。
An oxygen diffusion coefficient measuring device for measuring an oxygen diffusion coefficient of a thin-film porous body used in a fuel cell in a pressurized state sandwiched between a pair of pressure members,
At least one of the pressurizing members is provided with a concave portion on the pressurizing surface in contact with the porous body,
An oxygen diffusion coefficient measuring apparatus, wherein the recess is provided with a member having lower elasticity than the porous body and higher water repellency than the porous body so as to fill the recess.
JP2017026739A 2017-02-16 2017-02-16 Oxygen diffusion coefficient measuring device Active JP6894253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017026739A JP6894253B2 (en) 2017-02-16 2017-02-16 Oxygen diffusion coefficient measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017026739A JP6894253B2 (en) 2017-02-16 2017-02-16 Oxygen diffusion coefficient measuring device

Publications (2)

Publication Number Publication Date
JP2018133228A true JP2018133228A (en) 2018-08-23
JP6894253B2 JP6894253B2 (en) 2021-06-30

Family

ID=63247559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017026739A Active JP6894253B2 (en) 2017-02-16 2017-02-16 Oxygen diffusion coefficient measuring device

Country Status (1)

Country Link
JP (1) JP6894253B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109269943A (en) * 2018-11-27 2019-01-25 衡阳师范学院 The device and method of rapid survey radon effective diffusion cofficient in the film
CN109283098A (en) * 2018-11-27 2019-01-29 衡阳师范学院 Measure the device and method of radon effective diffusion cofficient in the film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205797A (en) * 2006-01-31 2007-08-16 Nissan Motor Co Ltd Oxygen diffusion coefficient measurement method for porous body and its measurement instrument
JP2013033016A (en) * 2011-06-29 2013-02-14 Nippon Soken Inc Device and method for measuring oxygen diffusion coefficient
JP2013156176A (en) * 2012-01-31 2013-08-15 Nippon Soken Inc Sample holder and gas diffusion coefficient measurement device
JP2016048175A (en) * 2014-08-27 2016-04-07 株式会社日本自動車部品総合研究所 Diffusion coefficient measuring device and diffusion coefficient measuring method
JP2016205840A (en) * 2015-04-16 2016-12-08 株式会社日本自動車部品総合研究所 Oxygen diffusion coefficient measurement device
JP2016205924A (en) * 2015-04-20 2016-12-08 株式会社日本自動車部品総合研究所 Oxygen diffusion coefficient measurement device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205797A (en) * 2006-01-31 2007-08-16 Nissan Motor Co Ltd Oxygen diffusion coefficient measurement method for porous body and its measurement instrument
JP2013033016A (en) * 2011-06-29 2013-02-14 Nippon Soken Inc Device and method for measuring oxygen diffusion coefficient
JP2013156176A (en) * 2012-01-31 2013-08-15 Nippon Soken Inc Sample holder and gas diffusion coefficient measurement device
JP2016048175A (en) * 2014-08-27 2016-04-07 株式会社日本自動車部品総合研究所 Diffusion coefficient measuring device and diffusion coefficient measuring method
JP2016205840A (en) * 2015-04-16 2016-12-08 株式会社日本自動車部品総合研究所 Oxygen diffusion coefficient measurement device
JP2016205924A (en) * 2015-04-20 2016-12-08 株式会社日本自動車部品総合研究所 Oxygen diffusion coefficient measurement device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109269943A (en) * 2018-11-27 2019-01-25 衡阳师范学院 The device and method of rapid survey radon effective diffusion cofficient in the film
CN109283098A (en) * 2018-11-27 2019-01-29 衡阳师范学院 Measure the device and method of radon effective diffusion cofficient in the film
CN109269943B (en) * 2018-11-27 2021-04-20 衡阳师范学院 Method for rapidly measuring effective diffusion coefficient of radon in film
CN109283098B (en) * 2018-11-27 2021-04-20 衡阳师范学院 Method for measuring effective diffusion coefficient of radon in film

Also Published As

Publication number Publication date
JP6894253B2 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
KR100985164B1 (en) Fuel cell system and fuel cell system operating method
CA2691988C (en) Method and apparatus for examining ion-conductive electrolyte membrane
US7687164B2 (en) On-line system identification and control of fuel cell humidification via HFR measurements
KR20120103602A (en) Fuel cell and method for stopping a fuel cell
US20170317365A1 (en) Method for operating a fuel cell system
US9065099B2 (en) Controlling fuel cell
JP2018133228A (en) Oxygen diffusion coefficient measurement device
JP2014132561A (en) Method for controlling fuel cell humidification
US9236622B2 (en) Fuel cell system with wetness sensor
JPWO2007110969A1 (en) Method and apparatus for measuring fuel cell crossover loss
JP4973138B2 (en) Fuel cell system
JP5691385B2 (en) Degradation judgment system for fuel cells
Chlistunoff Oxygen permeability of cast ionomer films from chronoamperometry on microelectrodes
JP2010015945A (en) Fuel cell system
JP2012059586A (en) Fuel cell system and method of measuring content of radical scavenging promoter in fuel cell
JP6897626B2 (en) Fuel cell system and metal ion content estimation method
Velayutham et al. Nafion based amperometric hydrogen sensor
KR101937826B1 (en) Apparatus for measuring oxygen permeability of ion exchange membranes and method for measuring oxygen permeability of ion exchange membranes using the same
KR20230088392A (en) Measurement methods and fuel cell systems for detecting rogue gases
JP2009238445A (en) Catalyst layer forming device
JP5734635B2 (en) Control method of fuel cell stack
Fujii et al. Degradation investigation of PEMFC by scanning electron microscopy and direct gas mass spectroscopy
JP2007048487A (en) Fuel cell system
US20200020988A1 (en) Porous body quality inspection apparatus and method for inspecting quality of porous body
Herrera et al. New reference electrode approach for fuel cell performance evaluation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210603

R151 Written notification of patent or utility model registration

Ref document number: 6894253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151