JP2007205797A - Oxygen diffusion coefficient measurement method for porous body and its measurement instrument - Google Patents

Oxygen diffusion coefficient measurement method for porous body and its measurement instrument Download PDF

Info

Publication number
JP2007205797A
JP2007205797A JP2006023382A JP2006023382A JP2007205797A JP 2007205797 A JP2007205797 A JP 2007205797A JP 2006023382 A JP2006023382 A JP 2006023382A JP 2006023382 A JP2006023382 A JP 2006023382A JP 2007205797 A JP2007205797 A JP 2007205797A
Authority
JP
Japan
Prior art keywords
porous body
oxygen
diffusion coefficient
oxygen sensor
oxygen diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006023382A
Other languages
Japanese (ja)
Other versions
JP4915903B2 (en
Inventor
Shixue Wang
世学 王
Yutaka Tazaki
豊 田崎
Toshiaki Takahashi
敏昭 高橋
Yoshiro Uko
義郎 宇高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Yokohama National University NUC
Original Assignee
Nissan Motor Co Ltd
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Yokohama National University NUC filed Critical Nissan Motor Co Ltd
Priority to JP2006023382A priority Critical patent/JP4915903B2/en
Publication of JP2007205797A publication Critical patent/JP2007205797A/en
Application granted granted Critical
Publication of JP4915903B2 publication Critical patent/JP4915903B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and instrument for measuring an oxygen diffusion coefficient even when liquid water is contained in a porous body. <P>SOLUTION: A porous body holder 3 is attached to a negative electrode 5 of a galvanic battery-type oxygen sensor 2 while the porous body 1 with liquid water impregnated thereinto is held in the vicinity of the oxygen sensor 2 in a tubular part 3b of this holder 3. This measurement instrument 10, comprising the oxygen sensor 2 with the porous body 1 held thereon and the holder 3, is mounted on an electronic force balance 15 and housed in an airtight container 14. Here, the liquid water impregnated into the porous body 1 gradually evaporates while oxygen included in air in the airtight container 14 permeates the porous body 1. Its permeation amount is detected by the oxygen sensor 2 to calculate the oxygen diffusion coefficient of the porous body 1 by using an output from the oxygen sensor 2. Further, the mass of remaining liquid water without evaporating from the porous body 1 is measured by using the balance 15 to calculate the water content percentage of the porous body 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、測定対象となる多孔体の酸素拡散係数を測定する方法およびその測定装置に関し、詳しくは、多孔体内に液水が含まれているときでも、その酸素拡散係数を測定できる方法およびその測定装置に関する。   The present invention relates to a method for measuring an oxygen diffusion coefficient of a porous body to be measured and an apparatus for measuring the same, and more specifically, a method capable of measuring the oxygen diffusion coefficient even when liquid water is contained in the porous body and its It relates to a measuring device.

従来から多孔体内の細孔径などを測定する方法として様々な技術が提案されている。その一つとして、耐熱性および耐圧性の材料で形成された容器内に、測定対象となる多孔体を収容するとともに所定のガスを封入しておき、この容器内のガスに対して周期的な容積変動を与え、その容積変動と圧力変動との位相差および振幅を検出し、この検出した位相差および振幅、並びに予め測定しておいた多孔体の気孔径などの基礎データに基づいて、拡散理論式から求めたシミュレーション式により多孔体のガス拡散係数を算出するものがあった(特許文献1参照)。
特開昭61−205843号公報
Conventionally, various techniques have been proposed as a method for measuring the pore diameter in a porous body. As one of them, a porous body to be measured is accommodated in a container formed of a heat-resistant and pressure-resistant material, and a predetermined gas is sealed, and the gas in the container is periodically cycled. Apply volume fluctuation, detect phase difference and amplitude between volume fluctuation and pressure fluctuation, and diffuse based on the detected phase difference and amplitude, and basic data such as pore diameter of porous material measured in advance There is one that calculates a gas diffusion coefficient of a porous body by a simulation formula obtained from a theoretical formula (see Patent Document 1).
JP-A 61-205843

しかしながら、この特許文献1に記載の技術は、容器内に封入されたガスの圧力変動を伴う測定方法であるので、多孔体内に液水が含まれているときには利用できなかった。
すなわち、容器内に収容した多孔体の細孔内に液水が存在している場合において、容器内を高圧にするとガスが凝縮して多孔体内に浸入する一方で、容器内を低圧にすると多孔体内に含まれた液水が蒸発する。このように、容器内のガス圧力を変動させると、多孔体内の含水量が変動することになるので、基礎データとして検出するガスの容積変動と圧力変動との位相差および振幅の検出値が不安定となり、多孔体のガス拡散係数を正確に求めることができなかった。
However, since the technique described in Patent Document 1 is a measurement method that involves pressure fluctuations of gas sealed in a container, it cannot be used when liquid water is contained in the porous body.
That is, in the case where liquid water is present in the pores of the porous body accommodated in the container, the gas condenses and enters the porous body when the pressure in the container is increased, while the porous structure becomes porous when the pressure in the container is decreased. Liquid water contained in the body evaporates. As described above, when the gas pressure in the container is changed, the water content in the porous body is changed, so that the phase difference and the detected value of the amplitude between the volume change of the gas detected as the basic data and the pressure change are not valid. As a result, the gas diffusion coefficient of the porous body could not be determined accurately.

ここで、燃料電池を構成するMEA(Membrane-Electrode-Assembly:膜電極一体構造の触媒層)やGDL(Gas-Diffusion-Layer:ガス拡散層)などの多孔体においては、酸素と水素とから電気をつくるときに生成された水が、多孔体内を通って外部に放出されるようになっている。このとき、多孔体内に含まれている液水の量によって、多孔体の酸素透過率が大きく変動し、燃料電池の発電能力に大きな影響を与えることになるが、上記特許文献1に記載の技術では、多孔体内の含水量に対する酸素の酸素拡散係数を測定できないという問題点があった。   Here, in porous bodies such as MEA (Membrane-Electrode-Assembly: membrane electrode integrated structure) and GDL (Gas-Diffusion-Layer) constituting the fuel cell, electricity is generated from oxygen and hydrogen. The water generated when making the water is discharged to the outside through the porous body. At this time, the oxygen permeability of the porous body varies greatly depending on the amount of liquid water contained in the porous body, which greatly affects the power generation capability of the fuel cell. However, there was a problem that the oxygen diffusion coefficient of oxygen with respect to the water content in the porous body could not be measured.

そこで、本発明は、このような問題点に対処し、多孔体内に液水が含まれているときでも、その酸素拡散係数を簡便に測定できる方法および装置を提供することを目的とする。   Therefore, the present invention addresses such problems and an object thereof is to provide a method and apparatus that can easily measure the oxygen diffusion coefficient even when liquid water is contained in a porous body.

本発明は、測定対象となる多孔体を保持した多孔体ホルダーを、ガルバニ電池式の酸素センサーの陰極側に取り付ける。このとき、多孔体の一端面が気体に接するようにし、この多孔体の他端面を酸素センサーの陰極側に対向させる。これにより、この多孔体の一端面側の気体は、該多孔体を透過して酸素センサーで検出され、この酸素センサーの出力を用いて、多孔体の酸素拡散係数を算出する。   In the present invention, a porous body holder holding a porous body to be measured is attached to the cathode side of a galvanic cell type oxygen sensor. At this time, one end surface of the porous body is in contact with the gas, and the other end surface of the porous body is opposed to the cathode side of the oxygen sensor. Thereby, the gas on the one end surface side of the porous body passes through the porous body and is detected by the oxygen sensor, and the oxygen diffusion coefficient of the porous body is calculated using the output of the oxygen sensor.

本発明によれば、ガルバニ電池式の酸素センサーを用いて、多孔体の酸素拡散係数を測定することができる。このとき、多孔体内に液水が含まれているときでも、その酸素拡散係数を測定できるので、燃料電池を構成するMEAやGDLなどの多孔体を測定対象とすることができる。   ADVANTAGE OF THE INVENTION According to this invention, the oxygen diffusion coefficient of a porous body can be measured using a galvanic cell type oxygen sensor. At this time, since the oxygen diffusion coefficient can be measured even when liquid water is contained in the porous body, a porous body such as MEA or GDL that constitutes the fuel cell can be used as a measurement object.

以下、本発明の実施形態を添付図面に基づいて詳細に説明する。
図1は本発明による多孔体の酸素拡散係数測定方法およびその測定装置の基本的な構成を示す断面図である。この装置は、測定対象となる多孔体1の酸素拡散係数を測定するもので、ガルバニ電池式の酸素センサー2と、多孔体ホルダー3と、演算手段4とを含んで構成されている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 is a sectional view showing a basic configuration of a porous body oxygen diffusion coefficient measuring method and measuring apparatus according to the present invention. This apparatus measures an oxygen diffusion coefficient of a porous body 1 to be measured, and includes a galvanic cell type oxygen sensor 2, a porous body holder 3, and a calculation means 4.

図1に示すように、ガルバニ電池式の酸素センサー2は、例えば金(Au)などの貴金属でできた陰極5と、例えば鉛(Pb)などの卑金属でできた陽極6とから一対の電極を構成し、この陰極5と陽極6とを箱体7の内部に満たされた水酸化カリウム(KOH)などの電解液8に浸したものである。また、陰極5の外側には、ガス透過性の隔膜9を被覆している。   As shown in FIG. 1, a galvanic cell type oxygen sensor 2 has a pair of electrodes composed of a cathode 5 made of a noble metal such as gold (Au) and an anode 6 made of a base metal such as lead (Pb). The cathode 5 and the anode 6 are soaked in an electrolytic solution 8 such as potassium hydroxide (KOH) filled in the box 7. Further, a gas permeable diaphragm 9 is coated on the outside of the cathode 5.

ここで、酸素センサー2の陰極5には、隔膜9を介して外部から酸素(O2)が供給されるようになっているが、この酸素は、以下の(1)式に示すように、陽極6から放出された電子を取り込み、水酸化物イオン(OH-)に還元される。
2+2H2O+4e- → 4OH- ・・・(1)
一方、酸素センサー2の陽極6では、以下の(2)〜(4)式に示す一連の酸化反応が起きている。
Here, oxygen (O 2 ) is supplied from the outside to the cathode 5 of the oxygen sensor 2 through the diaphragm 9, and this oxygen is expressed by the following equation (1): The electrons emitted from the anode 6 are taken in and reduced to hydroxide ions (OH ).
O 2 + 2H 2 O + 4e → 4OH (1)
On the other hand, at the anode 6 of the oxygen sensor 2, a series of oxidation reactions shown in the following formulas (2) to (4) occur.

2Pb → 2Pb2++4e- ・・・(2)
2Pb2++4OH- → 2Pb(OH)2 ・・・(3)
2Pb(OH)2+2KOH → 2KHPbO2+2H2O ・・・(4)
そして、箱体7の外面には、陰極5に接続された端子11と、陽極6に接続された端子12とが設けられており、これらの二つの端子11,12は、演算手段4に接続されている。この演算手段4は、測定対象となる多孔体1を透過する酸素の速さを示す酸素拡散係数を算出するものである。この演算手段4により、多孔体1の酸素拡散係数を算出する処理については、後に詳しく説明する。
2Pb → 2Pb 2+ + 4e (2)
2Pb 2+ + 4OH → 2Pb (OH) 2 (3)
2Pb (OH) 2 + 2KOH → 2KHPbO 2 + 2H 2 O (4)
A terminal 11 connected to the cathode 5 and a terminal 12 connected to the anode 6 are provided on the outer surface of the box 7. These two terminals 11 and 12 are connected to the computing means 4. Has been. This computing means 4 calculates an oxygen diffusion coefficient indicating the speed of oxygen passing through the porous body 1 to be measured. A process for calculating the oxygen diffusion coefficient of the porous body 1 by the calculation means 4 will be described in detail later.

ここで、端子11と端子12とを結線すると、隔膜9を透過して陰極5に到達した酸素の量に比例した電流が流れるので、演算手段4において、酸素センサー2から出力された電流を測定することにより、酸素センサー2の陰極5に到達した酸素の量およびその濃度を求めることができる。
このような構成の酸素センサー2の陰極5側には、多孔体ホルダー3が取り付けられている。この多孔体ホルダー3は、測定対象となる多孔体1を保持する部材であって、酸素センサー2の隔膜9をカバー部3aで覆うようになっており、このカバー部3aの略中央部には、鉛直方向に延びた円筒状の筒状部3bが形成されている。この多孔体ホルダー3は、多孔体1の形状や性質等に合わせて、筒状部3bの内径や長さを異ならせたものが複数種類ある。
Here, when the terminal 11 and the terminal 12 are connected, a current proportional to the amount of oxygen that has passed through the diaphragm 9 and reached the cathode 5 flows. Therefore, the calculation means 4 measures the current output from the oxygen sensor 2. By doing so, the amount of oxygen reaching the cathode 5 of the oxygen sensor 2 and its concentration can be determined.
A porous holder 3 is attached to the cathode 5 side of the oxygen sensor 2 having such a configuration. The porous body holder 3 is a member for holding the porous body 1 to be measured, and covers the diaphragm 9 of the oxygen sensor 2 with a cover portion 3a. In the substantially central portion of the cover portion 3a, A cylindrical tubular portion 3b extending in the vertical direction is formed. There are a plurality of types of porous body holders 3 in which the inner diameter and the length of the cylindrical portion 3b are varied in accordance with the shape and properties of the porous body 1.

この多孔体ホルダー3の筒状部3bの内径φは、適切な大きさの多孔体1を保持するために、例えば3〜10mm程度が好ましい。なお、本実施形態では、図2に示すように、筒状部3bの内径φは5mmで、その長さLは2mmとする。
そして、この多孔体ホルダー3の筒状部3bには、例えば燃料電池を構成するMEAやGDLなどの多孔体1が保持されている。このとき、多孔体1の一端面が外部の気体に接し、その他端面が酸素センサー2の陰極5に対向するように保持されている。なお、本実施形態では、多孔体1は乾燥、あるいは含水しており、その厚さを2mmとする。
In order to hold the porous body 1 having an appropriate size, the inner diameter φ of the cylindrical portion 3b of the porous body holder 3 is preferably about 3 to 10 mm, for example. In the present embodiment, as shown in FIG. 2, the cylindrical portion 3b has an inner diameter φ of 5 mm and a length L of 2 mm.
And the porous body 1 such as MEA or GDL constituting the fuel cell is held in the cylindrical portion 3b of the porous body holder 3, for example. At this time, one end surface of the porous body 1 is held in contact with an external gas, and the other end surface is held so as to face the cathode 5 of the oxygen sensor 2. In the present embodiment, the porous body 1 is dried or hydrated, and its thickness is 2 mm.

次に、このように構成された多孔体の酸素拡散係数測定装置による測定方法について、図1を参照して説明する。
多孔体1を保持した多孔体ホルダー3および酸素センサー2からなる測定装置10において、酸素センサー2の隔膜9と、多孔体ホルダー3と、多孔体1とで囲まれた狭い空間A内には空気が存在している。この空間A内の空気中に含まれる酸素は、隔膜9を透過して陰極5で還元反応するので、空間A内における酸素濃度は徐々に低下していく。これにより、多孔体1の下面側の酸素濃度は、多孔体1の上面側の空気中の酸素濃度と比べて低くなっていくので、この多孔体1の上下両面間で酸素濃度差ΔCが生じる。すると、この酸素濃度差ΔCにより、多孔体1の上面側の空気中に含まれる酸素が多孔体1を透過して空間A内に拡散していくようになる。
Next, a measuring method using the oxygen diffusion coefficient measuring apparatus for the porous body configured as described above will be described with reference to FIG.
In a measuring device 10 including a porous body holder 3 and an oxygen sensor 2 holding the porous body 1, air is contained in a narrow space A surrounded by the diaphragm 9 of the oxygen sensor 2, the porous body holder 3, and the porous body 1. Is present. Since oxygen contained in the air in the space A passes through the diaphragm 9 and undergoes a reduction reaction at the cathode 5, the oxygen concentration in the space A gradually decreases. As a result, the oxygen concentration on the lower surface side of the porous body 1 becomes lower than the oxygen concentration in the air on the upper surface side of the porous body 1, so that an oxygen concentration difference ΔC occurs between the upper and lower surfaces of the porous body 1. . Then, due to this oxygen concentration difference ΔC, oxygen contained in the air on the upper surface side of the porous body 1 permeates the porous body 1 and diffuses into the space A.

また、上述したように、空間A内の空気中に含まれる酸素が酸素センサー2の陰極5で還元反応すると、この陰極5に到達した酸素量に比例した電流が酸素センサー2から出力するので、この酸素センサー2の出力Iに基づいて、酸素センサー2の陰極5に到達した酸素の量Vo2=V(I)を求めることができる。また、空間A内の空気に含まれる酸素濃度C2は、酸素センサー2の出力Iの関数C(I)で表すことができる。 Further, as described above, when oxygen contained in the air in the space A undergoes a reduction reaction at the cathode 5 of the oxygen sensor 2, a current proportional to the amount of oxygen reaching the cathode 5 is output from the oxygen sensor 2. Based on the output I of the oxygen sensor 2, the amount of oxygen Vo 2 = V (I) reaching the cathode 5 of the oxygen sensor 2 can be obtained. The oxygen concentration C 2 contained in the air in the space A can be expressed by a function C (I) of the output I of the oxygen sensor 2.

ここで、酸素センサー2の陰極5に到達した酸素の量Vo2は、多孔体1の上下面間における酸素濃度差ΔCに比例し、多孔体1の酸素拡散係数Dに比例し、多孔体1の厚さLに反比例することから、以下の(5)式に示す関係が成立している。
酸素量Vo2=酸素濃度差ΔC×酸素拡散係数D/厚さL ・・・(5)
この(5)式を変形すると、以下の(6)式が得られる。
Here, the amount of oxygen Vo 2 reaching the cathode 5 of the oxygen sensor 2 is proportional to the oxygen concentration difference ΔC between the upper and lower surfaces of the porous body 1 and proportional to the oxygen diffusion coefficient D of the porous body 1. Therefore, the relationship shown in the following formula (5) is established.
Oxygen amount Vo 2 = oxygen concentration difference ΔC × oxygen diffusion coefficient D / thickness L (5)
When this equation (5) is modified, the following equation (6) is obtained.

酸素拡散係数D=酸素量Vo2×厚さL/酸素濃度差ΔC ・・・(6)
ここで、空気中における酸素の体積比は20.9%であることから、空気中の酸素濃度C1を求めることができる。よって、多孔体1の上下面間における酸素濃度差ΔCは、演算手段4で算出した酸素濃度C(I)を用いて、以下の(7)式で表せる。
酸素濃度差ΔC=(空気中の酸素濃度C1)−C(I) ・・・(7)
なお、多孔体1の厚さLは既知であり、本実施形態では、上述のように2mmである。
Oxygen diffusion coefficient D = oxygen amount Vo 2 × thickness L / oxygen concentration difference ΔC (6)
Here, since the volume ratio of oxygen in the air is 20.9%, the oxygen concentration C 1 in the air can be obtained. Therefore, the oxygen concentration difference ΔC between the upper and lower surfaces of the porous body 1 can be expressed by the following equation (7) using the oxygen concentration C (I) calculated by the calculation means 4.
Oxygen concentration difference ΔC = (oxygen concentration in air C 1 ) −C (I) (7)
In addition, the thickness L of the porous body 1 is known, and is 2 mm as described above in the present embodiment.

よって、多孔体1の酸素拡散係数Dは、酸素センサー2の出力を用いて、上記(6)式および(7)式を用いて演算手段4で算出することができる。
このように、本実施形態によれば、ガルバニ電池式の酸素センサー2を用いて、多孔体1の酸素拡散係数Dを簡便に測定することができる。なお、以上の説明では、多孔体1は乾燥しているとしたが、内部に液水が含まれた湿状態のものでもよい。
Therefore, the oxygen diffusion coefficient D of the porous body 1 can be calculated by the calculation means 4 using the above equations (6) and (7) using the output of the oxygen sensor 2.
Thus, according to this embodiment, the oxygen diffusion coefficient D of the porous body 1 can be easily measured using the galvanic cell type oxygen sensor 2. In the above description, the porous body 1 is dry. However, the porous body 1 may be in a wet state in which liquid water is contained.

図3は、本発明の第2の実施形態を示す説明図である。この実施形態は、測定対象となる多孔体1内に液水を含浸させておき、この液水を含浸させた多孔体1を、多孔体ホルダー3の基部側にて酸素センサー2の近傍で保持するようにしたものである。
ここで、測定対象となる多孔体1に液水を含浸させる処理について説明する。まず、多孔体ホルダー3に取り付ける前に、多孔体1を超音波洗浄して細孔内のゴミを取り除いておく。この多孔体1を十分に乾燥させ、そのときの重さを予め計測する。次に、図4に示すように、このような前処理によりゴミが取り除かれた多孔体1を、トレー18中の純水19に浸し、それを気密容器20内に収納した状態で真空ポンプ21を作動する。これにより、気密容器20内の空気が外部に排出されて真空状態となり、その状態で多孔体1の細孔内に純水19を含浸させることができる。そして、この液水を含浸させた多孔体1の重さも計測する。なお、本実施形態では、多孔体1の厚さを1mmとし、その空隙率εを60%とする。このように多孔体1に液水を含浸させたことによって、例えば重さが6.0mgだけ増加したときは、その細孔内に6.0mgの液水が含浸したことになる。
FIG. 3 is an explanatory view showing a second embodiment of the present invention. In this embodiment, the porous body 1 to be measured is impregnated with liquid water, and the porous body 1 impregnated with the liquid water is held near the oxygen sensor 2 on the base side of the porous body holder 3. It is what you do.
Here, a process for impregnating the porous body 1 to be measured with liquid water will be described. First, before attaching to the porous body holder 3, the porous body 1 is ultrasonically cleaned to remove dust in the pores. The porous body 1 is sufficiently dried, and the weight at that time is measured in advance. Next, as shown in FIG. 4, the porous body 1 from which dust has been removed by such pretreatment is immersed in pure water 19 in the tray 18, and stored in an airtight container 20 in a vacuum pump 21. Actuate. Thereby, the air in the hermetic container 20 is discharged to the outside and is in a vacuum state, and the pure water 19 can be impregnated into the pores of the porous body 1 in this state. And the weight of the porous body 1 impregnated with this liquid water is also measured. In the present embodiment, the thickness of the porous body 1 is 1 mm, and the porosity ε is 60%. Thus, when the porous body 1 is impregnated with liquid water, for example, when the weight increases by 6.0 mg, 6.0 mg of liquid water is impregnated in the pores.

そして、図3に示すように、このように液水を含浸させた多孔体1を多孔体ホルダー3に保持しておき、この多孔体ホルダー3および酸素センサー2からなる測定装置10を、電子天秤15の秤量皿15aに載置した状態で、密閉容器14に収容する。この密閉容器14は、その内部の温度および湿度を調整する機能を備えている。
このとき、密閉容器14に収容された測定装置10の質量が電子天秤15で計測されている。このように、測定装置10の全体の質量を電子天秤15で継続的に計測し、その計測結果を演算手段4に出力することで、多孔体ホルダー3に保持された多孔体1内の含水量の経時変化を測定することができる。この電子天秤15は、多孔体1内の含水量の経時変化を高精度に測定できるものが用いられる。
Then, as shown in FIG. 3, the porous body 1 impregnated with liquid water in this way is held in the porous body holder 3, and the measuring device 10 comprising the porous body holder 3 and the oxygen sensor 2 is connected to an electronic balance. In a state where it is placed on 15 weighing pans 15a, it is housed in a sealed container 14. The sealed container 14 has a function of adjusting the temperature and humidity therein.
At this time, the mass of the measuring device 10 accommodated in the sealed container 14 is measured by the electronic balance 15. Thus, the moisture content in the porous body 1 held by the porous body holder 3 is obtained by continuously measuring the entire mass of the measuring apparatus 10 with the electronic balance 15 and outputting the measurement result to the calculation means 4. The change with time can be measured. As this electronic balance 15, an electronic balance 15 that can measure a change in water content with time in the porous body 1 with high accuracy is used.

また、密閉容器14内の測定装置10には送信器16が設けられ、また密閉容器14の外部の演算手段4には受信器17が設けられている。これにより、酸素センサー2で検出した値は、送受信器16から受信器17に送信され、演算手段4に入力される。なお、本実施形態では、多孔体ホルダー3は、その筒状部3bの長さLを50mmとする。
次に、このように構成された多孔体の酸素拡散係数測定装置による測定方法について、図5〜図7を参照して説明する。
The measuring device 10 in the sealed container 14 is provided with a transmitter 16, and the arithmetic means 4 outside the sealed container 14 is provided with a receiver 17. Thereby, the value detected by the oxygen sensor 2 is transmitted from the transmitter / receiver 16 to the receiver 17 and input to the computing means 4. In the present embodiment, the length L of the cylindrical portion 3b of the porous body holder 3 is 50 mm.
Next, the measuring method by the oxygen diffusion coefficient measuring apparatus of the porous body comprised in this way is demonstrated with reference to FIGS.

図5(a)に示す初期状態においては、多孔体1に6.0mgの液水が含浸しており、このときの多孔体1の含水率Sを100%とする。
図6において、曲線Sは、電子天秤15で測定した多孔体1内の含水量の経時変化を示すもので、多孔体1に含まれる液水が徐々に蒸発することにより、多孔体1の含水率Sが時間経過に伴って減少していくことが分かる。また、曲線Aは酸素の移動速度の経時変化を示し、曲線Bは水蒸気の移動速度の経時変化を示している。
In the initial state shown in FIG. 5 (a), 6.0 mg of liquid water is impregnated into the porous body 1, and the water content S of the porous body 1 at this time is set to 100%.
In FIG. 6, a curve S indicates a change over time in the water content in the porous body 1 measured by the electronic balance 15. The liquid water contained in the porous body 1 gradually evaporates, so that the water content of the porous body 1 is increased. It can be seen that the rate S decreases with time. Curve A represents the change over time in the oxygen transfer rate, and curve B represents the change over time in the water vapor transfer rate.

図5(a)に示す初期状態では、多孔体1の細孔内が液水で占められているので、多孔体1内を酸素が透過することはない。よって、図6の曲線Aに示すように、経過時間が0のときの酸素の移動速度は0である。このとき、図5(a)に示す酸素センサー2では酸素が検出されず、演算手段4では、多孔体の酸素拡散係数Dの値が0と算出される。
その後、図3に示す密閉容器14の内部の温度や湿度を調整し、多孔体1内に含浸させた液水が蒸発するように設定すると、多孔体1に含浸させた液水は、水蒸気となって多孔体1の外部に移動していく。
In the initial state shown in FIG. 5A, the pores of the porous body 1 are occupied by liquid water, so that oxygen does not permeate through the porous body 1. Therefore, as shown by a curve A in FIG. 6, the oxygen moving speed when the elapsed time is zero is zero. At this time, oxygen is not detected by the oxygen sensor 2 shown in FIG. 5A, and the value of the oxygen diffusion coefficient D of the porous body is calculated as 0 by the calculation means 4.
Then, if the temperature and humidity inside the sealed container 14 shown in FIG. 3 are adjusted and the liquid water impregnated in the porous body 1 is set to evaporate, the liquid water impregnated in the porous body 1 Then, it moves to the outside of the porous body 1.

ここで、図5(b)は、多孔体1に含浸している液水の一部が蒸発し、多孔体1の内部に3.0mgの液水が残っている状態を示している。このとき、多孔体1の含水率Sは、50%であり、多孔体1内の半数の細孔が酸素の通り道となるので、図6の曲線Aに示すように、酸素の移動速度が0より大きな値となる。このとき、図5(b)に示すように、空気中に含まれている酸素が多孔体ホルダー3の筒状部3bから取り込まれて、多孔体1を通過して酸素センサー2に拡散していく。このような多孔体1の酸素拡散係数Dを、演算手段4で継続的に算出しておく。   Here, FIG. 5B shows a state in which a part of the liquid water impregnated in the porous body 1 is evaporated and 3.0 mg of liquid water remains inside the porous body 1. At this time, the moisture content S of the porous body 1 is 50%, and half of the pores in the porous body 1 serve as oxygen passages. Therefore, as shown by a curve A in FIG. A larger value. At this time, as shown in FIG. 5 (b), oxygen contained in the air is taken in from the cylindrical portion 3 b of the porous body holder 3, passes through the porous body 1 and diffuses into the oxygen sensor 2. Go. The oxygen diffusion coefficient D of the porous body 1 is continuously calculated by the calculation means 4.

そして、このまま時間が経過すると、多孔体1に含浸させた液水は、さらに蒸発する。図5(c)は、多孔体1の内部に1.5mgの液水が残っている状態を示している。このとき、多孔体1の含水率Sは25%であり、多孔体1の細孔内に占める液水の量がさらに少なくなって酸素の通り道が広くなるので、図6の曲線Aに示すように、酸素の移動速度はさらに増大する。この多孔体1の酸素拡散係数Dについても、演算手段4で継続的に算出しておく。   And if time passes as it is, the liquid water which impregnated the porous body 1 will further evaporate. FIG. 5C shows a state in which 1.5 mg of liquid water remains inside the porous body 1. At this time, the moisture content S of the porous body 1 is 25%, and the amount of liquid water occupied in the pores of the porous body 1 is further reduced and the path for oxygen becomes wider, so that the curve A in FIG. In addition, the oxygen transfer rate is further increased. The oxygen diffusion coefficient D of the porous body 1 is also continuously calculated by the calculation means 4.

このような多孔体1の含水率Sと、演算手段4で算出した酸素拡散係数Dとの関係を表すグラフを図7に示す。多孔体1の含水率Sは、測定時間の経過に伴って減少していくのに対し、演算手段4で算出される多孔体1の酸素拡散係数Dの値は、時間経過に伴って増加していく。この図7に示す測定結果のグラフから、多孔体1の含水率Sに対する酸素拡散係数Dを求めることができる。   A graph showing the relationship between the moisture content S of the porous body 1 and the oxygen diffusion coefficient D calculated by the calculation means 4 is shown in FIG. The moisture content S of the porous body 1 decreases as the measurement time elapses, whereas the oxygen diffusion coefficient D of the porous body 1 calculated by the calculation means 4 increases with the passage of time. To go. From the graph of the measurement result shown in FIG. 7, the oxygen diffusion coefficient D with respect to the moisture content S of the porous body 1 can be obtained.

ここで、多孔体ホルダー3の筒状部3b内の酸素が多孔体1を透過するときには、まず多孔体1の上面に近い位置にある酸素から移動し始め、多孔体1から離れた位置にある酸素が徐々に移動して拡散が進んでいく。したがって、多孔体ホルダー3の筒状部3bの先端部側においては、酸素濃度が空気中の酸素濃度(20.9%)とほとんど等しいと推定できるが、多孔体1の上面の近傍では、筒状部3bの先端部よりも酸素濃度が低くなる。このように筒状部3bの内側では、酸素の濃度勾配が発生するので、上記(6)式および(7)式を用いて、多孔体1の酸素拡散係数Dを算出することができない。   Here, when oxygen in the cylindrical portion 3 b of the porous body holder 3 permeates the porous body 1, it first starts to move from oxygen at a position close to the upper surface of the porous body 1 and is at a position away from the porous body 1. Oxygen moves gradually and diffusion proceeds. Therefore, it can be estimated that the oxygen concentration is almost equal to the oxygen concentration in the air (20.9%) on the tip side of the cylindrical portion 3b of the porous body holder 3, but in the vicinity of the upper surface of the porous body 1, the cylinder The oxygen concentration is lower than that of the tip of the shape portion 3b. As described above, since an oxygen concentration gradient is generated inside the cylindrical portion 3b, the oxygen diffusion coefficient D of the porous body 1 cannot be calculated using the above equations (6) and (7).

この場合は、密閉容器14内の空気中の酸素が、多孔体ホルダー3の筒状部3b内の空気と、この多孔体ホルダー3に保持された多孔体1とを通過するときの拡散抵抗Rを用いて、多孔体1の酸素拡散係数Dを求める。この拡散抵抗Rは、図3に示すように、多孔体ホルダー3の筒状部3bにて空気が占める部分の長さをL1とし、この空気中の酸素拡散抵抗をD1とし、多孔体1の厚さをL2とし、この多孔体1の酸素拡散係数をD2とすると、以下の(8)式で表せる。   In this case, diffusion resistance R when oxygen in the air in the sealed container 14 passes through the air in the cylindrical portion 3 b of the porous body holder 3 and the porous body 1 held by the porous body holder 3. Is used to determine the oxygen diffusion coefficient D of the porous body 1. As shown in FIG. 3, the diffusion resistance R is such that the length of the portion occupied by air in the cylindrical portion 3 b of the porous body holder 3 is L1, the oxygen diffusion resistance in the air is D1, and the porous body 1 When the thickness is L2, and the oxygen diffusion coefficient of the porous body 1 is D2, it can be expressed by the following equation (8).

拡散抵抗R=Σ(L/D)=L1/D1+L2/D2 ・・・(8)
このとき、酸素センサー2で検出する酸素の量Vo2は、筒状部3bの先端部と基部との酸素濃度差ΔCに比例し、拡散抵抗Rに反比例することから、以下の(9)式に示す関係が成立している。
酸素量Vo2=酸素濃度差ΔC/拡散抵抗R ・・・(9)
この(9)式に上記(8)式を代入すると、以下の(10)式が得られる。
Diffusion resistance R = Σ (L / D) = L1 / D1 + L2 / D2 (8)
At this time, the amount of oxygen Vo 2 detected by the oxygen sensor 2 is proportional to the oxygen concentration difference ΔC between the tip and the base of the cylindrical portion 3b and inversely proportional to the diffusion resistance R. Therefore, the following equation (9) The relationship shown in is established.
Oxygen amount Vo 2 = oxygen concentration difference ΔC / diffusion resistance R (9)
Substituting the above equation (8) into this equation (9), the following equation (10) is obtained.

酸素量Vo2=ΔC/(L1/D1+L2/D2) ・・・(10)
なお、本実施形態では、上述のように、多孔体1の厚さL2が1mmであり、多孔体ホルダー3の筒状部3bの長さLが50mmであるので、L1=49mmである。また、湿度および温度が標準状態のときは、空気中の酸素拡散係数D1の値は、D1=Dair-O2=2×10-5(m2/s)であることが知られている。よって、これらの値を上記(10)式に代入すると、液水を含む多孔体1の酸素拡散係数D2を算出することができる。
Oxygen amount Vo 2 = ΔC / (L1 / D1 + L2 / D2) (10)
In the present embodiment, as described above, since the thickness L2 of the porous body 1 is 1 mm and the length L of the cylindrical portion 3b of the porous body holder 3 is 50 mm, L1 = 49 mm. Further, it is known that when the humidity and temperature are in the standard state, the value of the oxygen diffusion coefficient D1 in the air is D1 = Dair−O 2 = 2 × 10 −5 (m 2 / s). Therefore, when these values are substituted into the above equation (10), the oxygen diffusion coefficient D2 of the porous body 1 containing liquid water can be calculated.

このように、本実施形態によれば、測定対象となる多孔体1に液水を含浸させておき、この多孔体1を多孔体ホルダー3にて酸素センサー2の近傍に保持することにより、酸素の濃度勾配を考慮して、多孔体1が液水を含浸している状態から乾燥状態に変化するときの酸素拡散係数D2の変化を測定することができる。
また、上述したように、密閉容器14は、その内部の温度および湿度を調整する機能を備えており、多孔体ホルダー3に保持された多孔体1内に含浸させた液水の蒸発速度を制御できるようになっている。
Thus, according to the present embodiment, the porous body 1 to be measured is impregnated with liquid water, and the porous body 1 is held in the vicinity of the oxygen sensor 2 by the porous body holder 3, thereby In consideration of the concentration gradient, the change in the oxygen diffusion coefficient D2 when the porous body 1 changes from the state impregnated with liquid water to the dry state can be measured.
Further, as described above, the sealed container 14 has a function of adjusting the temperature and humidity therein, and controls the evaporation rate of the liquid water impregnated in the porous body 1 held by the porous body holder 3. It can be done.

ここで、密閉容器14内の温度および湿度を調整し、多孔体1内に含まれた液水の蒸発速度をコントロールする。図6において、酸素の移動速度を曲線A′で示し、また水蒸気の移動速度を曲線B′で示
している。ここでは、多孔体1内に含まれた液水を蒸発し易くすると、図6の曲線B′に示すように、水蒸気の移動速度が曲線Bに比べて大きくなる。また、水蒸気の移動する方向と、酸素が多孔体1内を拡散していく方向とは反対方向であるので、曲線A′に示すように、酸素の移動速度が曲線Aに比べて小さくなる。
Here, the temperature and humidity in the sealed container 14 are adjusted, and the evaporation rate of the liquid water contained in the porous body 1 is controlled. In FIG. 6, the moving speed of oxygen is indicated by a curve A ′, and the moving speed of water vapor is indicated by a curve B ′. Here, if the liquid water contained in the porous body 1 is easily evaporated, the moving speed of the water vapor becomes larger than that of the curve B as shown by a curve B ′ in FIG. Further, since the direction in which water vapor moves is opposite to the direction in which oxygen diffuses in the porous body 1, the oxygen moving speed is smaller than that in curve A, as shown by curve A '.

このように、本実施形態においては、密閉容器14の内部の温度および湿度を調整し、多孔体1内の液水の蒸発速度を制御することにより、この水蒸気の移動速度が多孔体1の酸素拡散係数Dに与える影響を測定することができる。よって、多孔体1の中でのガス拡散条件を想定してその拡散特性を測定できる。
なお、以上の説明においては、多孔体1に含まれる液水の蒸発速度と、多孔体1の酸素拡散係数Dとの関係についてのみ説明したが、密閉容器14内に収容された気体が、水蒸気と酸素の他に、ヘリウム(He)または窒素(N2)などを含む多成分共存のものであっても、同様に測定することができる。
As described above, in this embodiment, by adjusting the temperature and humidity inside the sealed container 14 and controlling the evaporation rate of the liquid water in the porous body 1, the movement speed of the water vapor is changed to the oxygen of the porous body 1. The influence on the diffusion coefficient D can be measured. Therefore, the diffusion characteristics can be measured assuming gas diffusion conditions in the porous body 1.
In the above description, only the relationship between the evaporation rate of the liquid water contained in the porous body 1 and the oxygen diffusion coefficient D of the porous body 1 has been described, but the gas contained in the sealed container 14 is water vapor. In addition to oxygen and oxygen, it can be measured in the same manner even if it is a multi-component coexisting material including helium (He) or nitrogen (N 2 ).

また、以上の説明では、多孔体1に含浸している液水が、酸素センサー2と多孔体ホルダー3と多孔体1とに囲まれた狭い空間A(図1参照)側に蒸発する影響については考慮していないが、実際には、多孔体1から蒸発した液水が空間Aに拡散し、多孔体1の含水率Sの測定に影響することが懸念される。そこで、実験の測定精度を向上するため、数種類厚さのスペーサを用いて多孔体1と隔膜9の隙間を調整し、この隙間による測定精度の影響を特定して実験データを補正してもよい。   In the above description, the liquid water impregnated in the porous body 1 evaporates toward the narrow space A (see FIG. 1) surrounded by the oxygen sensor 2, the porous body holder 3, and the porous body 1. However, in reality, there is a concern that the liquid water evaporated from the porous body 1 may diffuse into the space A and affect the measurement of the moisture content S of the porous body 1. Therefore, in order to improve the measurement accuracy of the experiment, the gap between the porous body 1 and the diaphragm 9 may be adjusted using spacers of several thicknesses, and the influence of the measurement accuracy due to this gap may be specified to correct the experimental data. .

図8は、本発明の第3の実施形態を示す説明図である。この実施形態は、液水を含浸させた多孔体1を、多孔体ホルダー3の先端部にて酸素センサー2から離れた位置で保持するようにしたものである。
この場合は、多孔体1に含浸させた液水は、酸素センサー2と多孔体ホルダー3と多孔体1とに囲まれた広い空間B側にも蒸発していき、この空間B内の気体に占める水蒸気の割合が徐々に大きくなる。そして、所定時間が経過すると、空間B内は水蒸気で飽和した状態となる。
FIG. 8 is an explanatory view showing a third embodiment of the present invention. In this embodiment, the porous body 1 impregnated with liquid water is held at a position away from the oxygen sensor 2 at the tip of the porous body holder 3.
In this case, the liquid water impregnated in the porous body 1 also evaporates to the wide space B side surrounded by the oxygen sensor 2, the porous body holder 3, and the porous body 1. The proportion of water vapor is gradually increased. And when predetermined time passes, the space B will be in the state saturated with water vapor | steam.

ここでは、空気中の酸素が、多孔体ホルダー3の先端部に保持された多孔体1と、筒状部3b内の空間B中の空気とを通過するときの拡散抵抗Rを用いて、多孔体1の酸素拡散係数D2を求める。この拡散抵抗Rは、液水を含浸させた多孔体1の厚さをL2とし、この多孔体1の酸素拡散係数をD2とし、筒状部3b内に空気が占める部分の長さをL1とし、この水蒸気の割合が変化していく空気中の酸素拡散抵抗をD1とすると、上記(8)式で表すことができ、上記(10)式が成立する。   Here, the oxygen in the air is porous using the diffusion resistance R when passing through the porous body 1 held at the tip of the porous body holder 3 and the air in the space B in the cylindrical portion 3b. The oxygen diffusion coefficient D2 of the body 1 is obtained. The diffusion resistance R is such that the thickness of the porous body 1 impregnated with liquid water is L2, the oxygen diffusion coefficient of the porous body 1 is D2, and the length of the portion occupied by air in the cylindrical portion 3b is L1. If the oxygen diffusion resistance in the air in which the ratio of the water vapor changes is D1, it can be expressed by the above equation (8), and the above equation (10) is established.

なお、本実施形態においても、多孔体1の厚さL2を1mmとし、多孔体ホルダー3の筒状部3bの長さLを50mmとすれば、L1=49mmである。また、液水を含浸させた多孔体1の酸素拡散係数D2は、上述のように求めたものを用いればよい。よって、これらの値を上記(10)式に代入すると、水蒸気の割合が変化していく空気中における酸素拡散係数D1を算出することができる。(ただし、筒状部3bの長さLは、50mm以下の範囲で可変に設定して良い。)
このように、本実施形態においては、測定対象となる多孔体1内に液水を含浸させておき、この多孔体1を多孔体ホルダー3の先端部にて酸素センサー2から離れた位置に保持することにより、本装置を有効に利用して、飽和水蒸気中の酸素拡散係数を求めることができる。
Also in the present embodiment, if the thickness L2 of the porous body 1 is 1 mm and the length L of the cylindrical portion 3b of the porous body holder 3 is 50 mm, L1 = 49 mm. Moreover, what was calculated | required as mentioned above should just be used for the oxygen diffusion coefficient D2 of the porous body 1 impregnated with liquid water. Therefore, by substituting these values into the above equation (10), it is possible to calculate the oxygen diffusion coefficient D1 in the air where the water vapor ratio changes. (However, the length L of the cylindrical portion 3b may be variably set within a range of 50 mm or less.)
Thus, in this embodiment, the porous body 1 to be measured is impregnated with liquid water, and the porous body 1 is held at a position away from the oxygen sensor 2 at the tip of the porous body holder 3. By doing so, the oxygen diffusion coefficient in the saturated water vapor can be obtained by effectively utilizing this apparatus.

図9は、本発明の第4の実施形態を示す説明図である。この実施形態は、測定対象となる第1の多孔体1内に液水を含浸させておき、この第1の多孔体1を多孔体ホルダー3の筒状部3bの基部側にて酸素センサー2の近傍に保持するとともに、乾燥させた第2の多孔体22を、第1の多孔体1に接触しないように多孔体ホルダー3の先端部側に保持するようにしたものである。なお、これら二つの多孔体(1,22)は、同じ材質のものを用いる。   FIG. 9 is an explanatory view showing a fourth embodiment of the present invention. In this embodiment, the first porous body 1 to be measured is impregnated with liquid water, and the oxygen sensor 2 is placed on the base side of the cylindrical portion 3 b of the porous body holder 3. And the dried second porous body 22 is held on the tip side of the porous body holder 3 so as not to come into contact with the first porous body 1. These two porous bodies (1, 22) are made of the same material.

この場合は、第1の多孔体1に含浸させた液水は、水蒸気となって第2の多孔体22を通過して外部に移動していく。
ここでは、空気中の酸素が、多孔体ホルダー3の筒状部3bに保持された二つの多孔体(1,22)を通過するときの拡散抵抗Rを用いて、これらの多孔体(1,22)の酸素拡散係数を同時に求める。この拡散抵抗Rは、第1の多孔体1の厚さをL1とし、その酸素拡散係数をD1とし、第2の多孔体22の厚さをL2とし、その酸素拡散係数をD2とすると、上記(8)式で表すことができ、上記(10)式が成立する。
In this case, the liquid water impregnated in the first porous body 1 moves to the outside through the second porous body 22 as water vapor.
Here, using the diffusion resistance R when oxygen in the air passes through the two porous bodies (1, 22) held by the cylindrical portion 3b of the porous body holder 3, these porous bodies (1, The oxygen diffusion coefficient of 22) is obtained simultaneously. The diffusion resistance R is defined as follows, assuming that the thickness of the first porous body 1 is L1, the oxygen diffusion coefficient is D1, the thickness of the second porous body 22 is L2, and the oxygen diffusion coefficient is D2. It can be expressed by equation (8), and the above equation (10) is established.

まず、初期状態において、第1の多孔体1が液水を含浸させた湿状態で、また第2の多孔体22が乾燥状態の場合には、上記(10)式は以下の(11)式のように表すことができる。
Vo2/ΔC=(L1/D1wet+L2/D2dry) ・・・(11)
なお、(11)式において、D1wetとは、第1の多孔体1に液水を含浸させたときの酸素拡散係数を示し、D2dryとは、第2の多孔体22が乾燥した状態の酸素拡散係数を示している。
First, in the initial state, when the first porous body 1 is in a wet state impregnated with liquid water, and the second porous body 22 is in a dry state, the above expression (10) is expressed by the following expression (11): It can be expressed as
Vo 2 / ΔC = (L1 / D1wet + L2 / D2dry) (11)
In the equation (11), D1wet represents an oxygen diffusion coefficient when the first porous body 1 is impregnated with liquid water, and D2dry represents oxygen diffusion in a state where the second porous body 22 is dried. The coefficient is shown.

そして、所定時間が経過し、二つの多孔体(1,22)のいずれも乾燥状態となった場合には、上記(10)式は以下の(12)式のように表すことができる。
Vo2/ΔC=(L1/D1dry+L2/D2dry) ・・・(12)
なお、(11)式において、D1dryとは、第1の多孔体1が乾燥した状態の酸素拡散係数を示している。
And when predetermined time passes and both of two porous bodies (1, 22) will be in a dry state, said (10) Formula can be expressed like the following (12) Formula.
Vo 2 / ΔC = (L1 / D1dry + L2 / D2dry) (12)
In the equation (11), D1dry indicates an oxygen diffusion coefficient in a state where the first porous body 1 is dried.

ここで、二つの多孔体(1,22)は、同じ材質であるので、D1dry=D2dryの関係が成立し、上記(12)式は、以下の(13)式のように変形できる。
Vo2/ΔC=(L1+L2)D1dry ・・・(13)
なお、二つの多孔体(1,22)の厚さL1,L2は、予め計測されている。また、上述したように、酸素センサー2の出力を用いて酸素濃度差ΔCを求めることができる。よって、上記(11)式および(13)式から、二つの変数D1wetおよびD2dryを求めることができる。
Here, since the two porous bodies (1, 22) are made of the same material, the relationship D1dry = D2dry is established, and the above equation (12) can be transformed into the following equation (13).
Vo 2 / ΔC = (L1 + L2) D1dry (13)
The thicknesses L1 and L2 of the two porous bodies (1, 22) are measured in advance. Further, as described above, the oxygen concentration difference ΔC can be obtained using the output of the oxygen sensor 2. Therefore, the two variables D1wet and D2dry can be obtained from the above equations (11) and (13).

このように、本実施形態においては、液水を含浸させた湿状態の多孔体1を多孔体ホルダー3の基部側にて酸素センサー2の近傍に保持するとともに、乾燥状態の多孔体22を多孔体ホルダー3の先端部側に保持することにより、湿状態と乾燥状態の多孔体の酸素拡散係数を同時に測定することができる。
図10は、本発明の第5の実施形態を示す説明図である。この実施形態は、酸素センサー2と多孔体ホルダー3とからなる測定装置10を、電子天秤15の秤量皿15aに吊り下げて、この測定装置10のみを密閉容器14に収容したものである。
Thus, in the present embodiment, the wet porous body 1 impregnated with liquid water is held near the oxygen sensor 2 on the base side of the porous body holder 3 and the dry porous body 22 is porous. By holding the body holder 3 on the distal end side, the oxygen diffusion coefficient of the wet and dry porous bodies can be measured simultaneously.
FIG. 10 is an explanatory diagram showing a fifth embodiment of the present invention. In this embodiment, a measuring device 10 comprising an oxygen sensor 2 and a porous holder 3 is suspended from a weighing pan 15a of an electronic balance 15, and only this measuring device 10 is accommodated in a sealed container 14.

なお、ここで用いられる高精度の電子天秤15は、例えば5〜50℃の温度範囲で使用することが規定されているが、燃料電池は、50℃以上の高温環境下で使用されることもあるので、このような高温下における多孔体のガス拡散条件を想定して、その拡散特性を測定する必要がある。
本実施形態では、測定装置10を収容する密閉容器14と、電子天秤15とを分離したので、電子天秤15は、密閉容器14内の温度変化の影響を受けることがない。これにより、この密閉容器14内の温度を、例えば50℃以上の高温に設定したときでも、電子天秤15は温度変化の影響を受けることがなく、上述したと同様に、多孔体1の酸素透過係数の経時変化を計測することができる。
In addition, although it is prescribed | regulated that the high precision electronic balance 15 used here is used in the temperature range of 5-50 degreeC, for example, a fuel cell may be used in a 50 degreeC or more high temperature environment. Therefore, it is necessary to measure the diffusion characteristics assuming the gas diffusion conditions of the porous body at such a high temperature.
In the present embodiment, since the sealed container 14 that houses the measuring apparatus 10 and the electronic balance 15 are separated, the electronic balance 15 is not affected by the temperature change in the sealed container 14. Thereby, even when the temperature in the sealed container 14 is set to a high temperature of, for example, 50 ° C. or higher, the electronic balance 15 is not affected by the temperature change, and the oxygen permeation of the porous body 1 is the same as described above. The change with time of the coefficient can be measured.

このように、本実施形態によれば、酸素センサー2と多孔体ホルダー3とからなる測定装置10を、電子天秤15の秤量皿15aに吊り下げて、この測定装置10のみを密閉容器14に収容したことにより、高温環境下における多孔体1の酸素拡散条件を想定して、その拡散特性を測定することができる。   As described above, according to this embodiment, the measuring device 10 including the oxygen sensor 2 and the porous body holder 3 is suspended from the weighing pan 15a of the electronic balance 15, and only this measuring device 10 is accommodated in the sealed container 14. As a result, it is possible to measure the diffusion characteristics assuming the oxygen diffusion conditions of the porous body 1 in a high temperature environment.

本発明の基本的な構成を示す断面図である。It is sectional drawing which shows the basic composition of this invention. 多孔体ホルダーに多孔体を保持した状態を示す要部拡大図である。It is a principal part enlarged view which shows the state which hold | maintained the porous body in the porous body holder. 本発明の第2の実施形態を示す説明図である。It is explanatory drawing which shows the 2nd Embodiment of this invention. 測定対象となる多孔体内に液水を含浸させる処理の説明図である。It is explanatory drawing of the process which impregnates liquid water in the porous body used as a measuring object. 多孔体に含浸させた液水が徐々に蒸発していく様子を示す説明図である。It is explanatory drawing which shows a mode that the liquid water impregnated to the porous body gradually evaporates. 多孔体の含水率に対する水蒸気と酸素の移動速度を示すグラフである。It is a graph which shows the transfer rate of water vapor | steam and oxygen with respect to the moisture content of a porous body. 多孔体の含水率に対する酸素拡散係数を示すグラフである。It is a graph which shows the oxygen diffusion coefficient with respect to the moisture content of a porous body. 本発明の第3の実施形態を示す説明図である。It is explanatory drawing which shows the 3rd Embodiment of this invention. 本発明の第4の実施形態を示す説明図である。It is explanatory drawing which shows the 4th Embodiment of this invention. 本発明の第5の実施形態を示す説明図である。It is explanatory drawing which shows the 5th Embodiment of this invention.

符号の説明Explanation of symbols

1…多孔体、2…酸素センサー、3…多孔体ホルダー、3b…筒状部、4…演算手段、5…陰極、6…陽極、7…箱体、8…電解液、9…隔膜、10…測定装置、14…密閉容器、15…電子天秤、16…送信器、17…受信器、22…多孔体   DESCRIPTION OF SYMBOLS 1 ... Porous body, 2 ... Oxygen sensor, 3 ... Porous body holder, 3b ... Cylindrical part, 4 ... Calculation means, 5 ... Cathode, 6 ... Anode, 7 ... Box, 8 ... Electrolyte, 9 ... Separator, 10 ... Measuring device, 14 ... Airtight container, 15 ... Electronic balance, 16 ... Transmitter, 17 ... Receiver, 22 ... Porous body

Claims (11)

測定対象となる多孔体の一端面を所定の酸素濃度の気体に接するようにし、該多孔体の他端面をガルバニ電池式の酸素センサーの陰極側に対向させておき、
前記酸素センサーの出力を用いて前記多孔体の酸素拡散係数を算出することを特徴とする多孔体の酸素拡散係数測定方法。
One end surface of the porous body to be measured is in contact with a gas having a predetermined oxygen concentration, and the other end surface of the porous body is opposed to the cathode side of the galvanic cell type oxygen sensor,
A method for measuring an oxygen diffusion coefficient of a porous body, wherein an oxygen diffusion coefficient of the porous body is calculated using an output of the oxygen sensor.
前記多孔体の酸素拡散係数Dは、前記多孔体の一端面側の気体が該多孔体を透過して前記酸素センサーに到達するまでの距離をLとし、前記酸素センサーの出力に基づいて求められる該酸素センサーに到達した酸素の量をVo2とし、同じく前記酸素センサーの出力に基づいて求められる前記多孔体の両端面側における酸素濃度差をΔCとしたときに、
D=Vo2×L/ΔC
により算出することを特徴とする請求項1に記載の多孔体の酸素拡散係数測定方法。
The oxygen diffusion coefficient D of the porous body is obtained based on the output of the oxygen sensor, where L is the distance from the gas on one end surface side of the porous body to the oxygen sensor through the porous body. When the amount of oxygen reaching the oxygen sensor is Vo 2, and the oxygen concentration difference at both end faces of the porous body, which is also obtained based on the output of the oxygen sensor, is ΔC,
D = Vo 2 × L / ΔC
The oxygen diffusion coefficient measuring method for a porous body according to claim 1, wherein the oxygen diffusion coefficient is calculated by:
前記酸素センサーの出力および前記多孔体内に含まれる液水の質量の経時変化に基づいて、前記多孔体の含水量に対する酸素拡散係数を算出することを特徴とする請求項1又は請求項2に記載の多孔体の酸素拡散係数測定方法。   The oxygen diffusion coefficient with respect to the water content of the porous body is calculated based on the change over time of the output of the oxygen sensor and the mass of liquid water contained in the porous body. Of measuring oxygen diffusion coefficient of porous material. ガルバニ電池式の酸素センサーと、
前記酸素センサーに取り付けられており、測定対象となる多孔体の一端面が所定の酸素濃度の気体に接し、その他端面が前記酸素センサーの陰極側に対向するように該多孔体を保持する多孔体ホルダーと、
前記酸素センサーの出力を用いて前記多孔体の酸素拡散係数を算出する演算手段と、
を含んで構成されることを特徴とする多孔体の酸素拡散係数測定装置。
A galvanic cell type oxygen sensor,
A porous body which is attached to the oxygen sensor and holds the porous body so that one end face of the porous body to be measured is in contact with a gas having a predetermined oxygen concentration and the other end face faces the cathode side of the oxygen sensor With a holder,
A calculation means for calculating an oxygen diffusion coefficient of the porous body using an output of the oxygen sensor;
A device for measuring the oxygen diffusion coefficient of a porous body, comprising:
前記演算手段は、前記多孔体ホルダーの長さと、前記多孔体の厚さと、前記酸素センサーの出力に基づいて求められる該酸素センサーに到達した酸素の量と、同じく前記酸素センサーの出力に基づいて求められる前記多孔体の両端面側における酸素濃度差とを用いて前記多孔体の酸素拡散係数を算出することを特徴とする請求項4に記載の多孔体の酸素拡散係数測定装置。   The computing means is based on the length of the porous body holder, the thickness of the porous body, the amount of oxygen reaching the oxygen sensor determined based on the output of the oxygen sensor, and also based on the output of the oxygen sensor. The oxygen diffusion coefficient measurement apparatus for a porous body according to claim 4, wherein the oxygen diffusion coefficient of the porous body is calculated using the difference in oxygen concentration between the two end faces of the porous body. 前記酸素センサーおよび前記多孔体ホルダーからなる測定装置を収容する密閉容器と、
前記密閉容器に収容された前記測定装置の質量を計測する電子天秤と、
を更に備えたことを特徴とする請求項4又は請求項5に記載の多孔体の酸素拡散係数測定装置。
A sealed container for accommodating a measuring device comprising the oxygen sensor and the porous body holder;
An electronic balance for measuring the mass of the measuring device housed in the sealed container;
The oxygen diffusion coefficient measuring device for a porous body according to claim 4 or 5, further comprising:
前記多孔体ホルダーは、前記酸素センサーの近傍に、液水を含浸させた状態の多孔体を保持するようにしたことを特徴とする請求項4〜請求項6のいずれか一つに記載の多孔体の酸素拡散係数測定装置。   The porous body according to any one of claims 4 to 6, wherein the porous body holder is configured to hold a porous body impregnated with liquid water in the vicinity of the oxygen sensor. Body oxygen diffusion coefficient measuring device. 前記多孔体ホルダーは、その先端部にて前記酸素センサーから離れた位置に、液水を含浸させた状態の多孔体を保持するようにしたことを特徴とする請求項4〜請求項6のいずれか一つに記載の多孔体の酸素拡散係数測定装置。   The porous body holder is configured to hold a porous body impregnated with liquid water at a position away from the oxygen sensor at a tip portion of the porous body holder. The oxygen diffusion coefficient measuring device for a porous body according to any one of the above. 前記多孔体ホルダーは、前記酸素センサーの近傍に、液水を含浸させた状態の第1の多孔体を保持するとともに、その先端部側に乾燥状態の第2の多孔体を保持するようにしたことを特徴とする請求項4〜請求項6のいずれか一つに記載の多孔体の酸素拡散係数測定装置。   The porous body holder is configured to hold the first porous body impregnated with liquid water in the vicinity of the oxygen sensor, and hold the dried second porous body on the tip side. The oxygen diffusion coefficient measuring apparatus for a porous body according to any one of claims 4 to 6, wherein the oxygen diffusion coefficient measuring apparatus is a porous body. 前記演算手段は、前記酸素センサーの出力および前記電子天秤で計測した前記測定装置の質量の経時変化に基づいて、前記多孔体の含水量に対する酸素拡散係数を算出することを特徴とする請求項6〜請求項9のいずれか一つに記載の酸素拡散係数測定装置。   The said calculating means calculates the oxygen diffusion coefficient with respect to the water content of the said porous body based on the time-dependent change of the mass of the said measuring apparatus measured with the output of the said oxygen sensor and the said electronic balance. The oxygen diffusion coefficient measuring apparatus according to any one of claims 9 to 9. 前記密閉容器は、その内部の温度および湿度を調整する機能を備えており、前記多孔体ホルダーに保持された前記多孔体内の液水の蒸発速度を制御することを特徴とする請求項6〜請求項10のいずれか一つに記載の多孔体の酸素拡散係数測定装置。   The sealed container has a function of adjusting the temperature and humidity therein, and controls the evaporation rate of liquid water held in the porous body holder. Item 11. The oxygen diffusion coefficient measurement apparatus for a porous body according to any one of Items 10 to 10.
JP2006023382A 2006-01-31 2006-01-31 Method and apparatus for measuring oxygen diffusion coefficient of porous material Active JP4915903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006023382A JP4915903B2 (en) 2006-01-31 2006-01-31 Method and apparatus for measuring oxygen diffusion coefficient of porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006023382A JP4915903B2 (en) 2006-01-31 2006-01-31 Method and apparatus for measuring oxygen diffusion coefficient of porous material

Publications (2)

Publication Number Publication Date
JP2007205797A true JP2007205797A (en) 2007-08-16
JP4915903B2 JP4915903B2 (en) 2012-04-11

Family

ID=38485404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006023382A Active JP4915903B2 (en) 2006-01-31 2006-01-31 Method and apparatus for measuring oxygen diffusion coefficient of porous material

Country Status (1)

Country Link
JP (1) JP4915903B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102809526A (en) * 2012-08-27 2012-12-05 中国石油大学(华东) Method for measuring diffusion coefficient of carbon dioxide in saturated oil core
JP2013033016A (en) * 2011-06-29 2013-02-14 Nippon Soken Inc Device and method for measuring oxygen diffusion coefficient
CN104330345A (en) * 2014-11-24 2015-02-04 云南云天化股份有限公司 Method and device for detecting gas permeability of PVA membrane
WO2017181444A1 (en) * 2016-04-21 2017-10-26 深圳市樊溪电子有限公司 Method and device for measuring diffusion coefficient of carbon dioxide in crude oil
CN108362614A (en) * 2018-01-19 2018-08-03 中国石油大学(华东) The device and method of diffusion coefficient during measurement shale oil CO_2 stimulation
CN108387485A (en) * 2018-03-29 2018-08-10 安徽理工大学 Solute molecule diffusion coefficients experimental provision based on layering porous media
JP2018133228A (en) * 2017-02-16 2018-08-23 トヨタ自動車株式会社 Oxygen diffusion coefficient measurement device
CN114414457A (en) * 2022-01-17 2022-04-29 四川轻化工大学 Soil body gas diffusion coefficient measuring device used in environmental rock field
CN114993875A (en) * 2022-06-01 2022-09-02 浙江大学 Device and method for testing balance water content of porous material of building envelope
KR20220127467A (en) * 2021-03-11 2022-09-20 경상국립대학교산학협력단 Measurement method for anisotropic permeability and apparatus for anisotropic permeability thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436793A (en) * 1977-08-26 1979-03-17 Japan Storage Battery Co Ltd Measurement of porosity of porous body
JPS61205843A (en) * 1985-03-09 1986-09-12 Idemitsu Kosan Co Ltd Method and apparatus for measuring fine pore size of porous body
JPH102879A (en) * 1996-06-13 1998-01-06 Noritake Co Ltd Flow rate limiting body for limited current type oxygen sensor and manufacture thereof
JP2000214069A (en) * 1999-01-25 2000-08-04 Sony Corp Evaluation apparatus for gas permeation
JP2001330580A (en) * 2000-05-19 2001-11-30 Unisia Jecs Corp Heater diagnostic device of oxygen concentration detection device
JP2004177163A (en) * 2002-11-25 2004-06-24 Japan Storage Battery Co Ltd Galvanic cell type dissolved oxygen sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436793A (en) * 1977-08-26 1979-03-17 Japan Storage Battery Co Ltd Measurement of porosity of porous body
JPS61205843A (en) * 1985-03-09 1986-09-12 Idemitsu Kosan Co Ltd Method and apparatus for measuring fine pore size of porous body
JPH102879A (en) * 1996-06-13 1998-01-06 Noritake Co Ltd Flow rate limiting body for limited current type oxygen sensor and manufacture thereof
JP2000214069A (en) * 1999-01-25 2000-08-04 Sony Corp Evaluation apparatus for gas permeation
JP2001330580A (en) * 2000-05-19 2001-11-30 Unisia Jecs Corp Heater diagnostic device of oxygen concentration detection device
JP2004177163A (en) * 2002-11-25 2004-06-24 Japan Storage Battery Co Ltd Galvanic cell type dissolved oxygen sensor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033016A (en) * 2011-06-29 2013-02-14 Nippon Soken Inc Device and method for measuring oxygen diffusion coefficient
CN102809526A (en) * 2012-08-27 2012-12-05 中国石油大学(华东) Method for measuring diffusion coefficient of carbon dioxide in saturated oil core
CN104330345A (en) * 2014-11-24 2015-02-04 云南云天化股份有限公司 Method and device for detecting gas permeability of PVA membrane
WO2017181444A1 (en) * 2016-04-21 2017-10-26 深圳市樊溪电子有限公司 Method and device for measuring diffusion coefficient of carbon dioxide in crude oil
JP2018133228A (en) * 2017-02-16 2018-08-23 トヨタ自動車株式会社 Oxygen diffusion coefficient measurement device
CN108362614A (en) * 2018-01-19 2018-08-03 中国石油大学(华东) The device and method of diffusion coefficient during measurement shale oil CO_2 stimulation
CN108362614B (en) * 2018-01-19 2020-03-27 中国石油大学(华东) Device and method for measuring diffusion coefficient in huff and puff process of shale oil carbon dioxide
CN108387485A (en) * 2018-03-29 2018-08-10 安徽理工大学 Solute molecule diffusion coefficients experimental provision based on layering porous media
CN108387485B (en) * 2018-03-29 2023-09-22 安徽理工大学 Experimental device for determining diffusion coefficient of solute molecules based on layered porous medium
KR20220127467A (en) * 2021-03-11 2022-09-20 경상국립대학교산학협력단 Measurement method for anisotropic permeability and apparatus for anisotropic permeability thereof
KR102479085B1 (en) 2021-03-11 2022-12-16 경상국립대학교산학협력단 Measurement method for anisotropic permeability and apparatus for anisotropic permeability thereof
CN114414457A (en) * 2022-01-17 2022-04-29 四川轻化工大学 Soil body gas diffusion coefficient measuring device used in environmental rock field
CN114993875A (en) * 2022-06-01 2022-09-02 浙江大学 Device and method for testing balance water content of porous material of building envelope
CN114993875B (en) * 2022-06-01 2023-06-16 浙江大学 Device and method for testing balance water content of porous material of building envelope

Also Published As

Publication number Publication date
JP4915903B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4915903B2 (en) Method and apparatus for measuring oxygen diffusion coefficient of porous material
EP3234572B1 (en) Gas sensor with solid electrolyte having water vapor diffusion barrier coating
USRE45100E1 (en) Gas sensor based on protonic conductive membranes
Mu et al. A robust flexible electrochemical gas sensor using room temperature ionic liquid
US9395324B2 (en) Thin film micromachined gas sensor
US3223597A (en) Method and means for oxygen analysis of gases
Yan et al. A solid polymer electrolyte-bases electrochemical carbon monoxide sensor
KR20160147881A (en) Electrochemical cell
US20020033334A1 (en) Electrochemical gas sensor
RU90907U1 (en) HYDROGEN SOLID ELECTROLYTIC SENSOR FOR LIQUID AND GAS MEDIA
JPS5943348A (en) Air/fuel ratio sensor
Gatty et al. A wafer-level liquid cavity integrated amperometric gas sensor with ppb-level nitric oxide gas sensitivity
JP4205725B2 (en) Gas sensor
US20070227908A1 (en) Electrochemical cell sensor
JPH0131586B2 (en)
CN108139373A (en) Electrochemical sensor
JP2006292714A (en) Apparatus for measuring oxygen diffusion factor of porous object
Utaka et al. Measurement of effective oxygen diffusivity in microporous media containing moisture
Jordan et al. Humidity and temperature effects on the response to ethylene of an amperometric sensor utilizing a gold‐nafion electrode
JP2007278826A (en) Apparatus for measuring oxygen diffusion coefficient of porous body
JP2003075394A (en) Detector for oxidizing-gas
JP6212768B2 (en) Electrochemical gas sensor
JP3650919B2 (en) Electrochemical sensor
RU2665792C1 (en) Sensitive element for determining concentration of gas medium component
JP3962583B2 (en) Electrochemical gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111014

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350