CN109265944A - 一种高强度抗菌碳纳米管/银/聚乳酸复合材料的制备方法 - Google Patents

一种高强度抗菌碳纳米管/银/聚乳酸复合材料的制备方法 Download PDF

Info

Publication number
CN109265944A
CN109265944A CN201811029137.4A CN201811029137A CN109265944A CN 109265944 A CN109265944 A CN 109265944A CN 201811029137 A CN201811029137 A CN 201811029137A CN 109265944 A CN109265944 A CN 109265944A
Authority
CN
China
Prior art keywords
carbon nanotube
silver
nano tube
composite material
carbon nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811029137.4A
Other languages
English (en)
Other versions
CN109265944B (zh
Inventor
甘露
徐立杰
耿奥博
梅长彤
钟强
李玫润
宋驰
吴颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN201811029137.4A priority Critical patent/CN109265944B/zh
Publication of CN109265944A publication Critical patent/CN109265944A/zh
Application granted granted Critical
Publication of CN109265944B publication Critical patent/CN109265944B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Materials For Medical Uses (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种高强度抗菌碳纳米管/银/聚乳酸复合材料的制备方法,以质量百分比计,包括聚乳酸80‑98%,碳纳米管1‑10%以及硝酸银1‑10%,将碳纳米管预酸化,加入二氯甲烷中,制备酸化碳纳米管分散液,将聚乳酸溶解在所述酸化碳纳米管分散液中,将硝酸银溶解在四氢呋喃中,将硝酸银四氢呋喃溶液加入酸化碳纳米管和聚乳酸溶液中,其中二氯甲烷和四氢呋喃体积比为4/1‑10/1,以二氯甲烷和四氢呋喃总体积计,所述酸化碳纳米管浓度为0.5‑4.5mg/mL,硝酸银浓度为0.4‑2mg/mL,搅拌均匀后,倒入模具内,烘干即得所述复合材料。本发明制备的复合材料具有耐热性好、拉伸强度以及良好的抗菌性,可用作各种抗菌包装材料使用。

Description

一种高强度抗菌碳纳米管/银/聚乳酸复合材料的制备方法
技术领域
本发明涉及一种高强度抗菌碳纳米管/银/聚乳酸复合材料的制备方法,属于高分子材料技术领域。
背景技术
聚乳酸作为生物可降解聚合物中典型代表,属于聚α羟基酸衍生物,以有机酸乳酸为原料生产的新型聚酯材料,无毒无刺激性,具有较好的可降解性、力学性能、生物相容性、并且可通过与其它单体共聚调节各项性能。聚乳酸作为一种环境友好型材料,最突出的特点是降解性。聚乳酸降解以酯键断裂为基础,在自然环境下,聚乳酸首先发生水解,分子骨架破裂,形成相对分子量较低的组分后,进一步降解成小分子产物,实现最终的生物降解
聚乳酸作为包装材料,是至今国外市场上开发最为成功的应用领域,众多相关厂商申请了大量专利;但是由于聚乳酸存在刚性差、强度弱、抗冲击性差、降解速率与力学强度保持时间不匹配等许多缺点,限制了其应用。同时,由于聚乳酸本身没有抗菌性,导致其在抗菌包装材料领域的应用有限。
碳纳米管(Carbon nanotubes 简称CNTs)是一种具有独特的中空管状一维纳米结构的碳纳米材料,比表面积大,热稳定性高,导电导热性能优异,是所有已知最结实、刚度最高的材料之一,而且具有韧性高、延伸率大,耐磨性好等优点。是理想的纳米纤维增强材料。
银的抗菌性被人们所利用已有很长的历史,如用银丝织成纱布包裹受创皮肤,用银器存放食物防止腐败等。近年来,由于抗生素的滥用导致大量细菌发生变异并产生耐药性,如大肠杆菌对卡那霉素和链霉素的耐药性,伤寒杆菌对氯霉菌的耐药性等。因此,银在复合材料中的使用以提高抗菌性又引起人们的关注。目前在衣物、食品包装和医用导管以及伤口敷料等抗菌领域已有广泛应用。
发明内容
本发明所要解决的技术问题是,提供一种高强度抗菌碳纳米管/银/聚乳酸复合材料的制备方法
为解决上述技术问题,本发明采用的技术方案为:
一种高强度抗菌碳纳米管/银/聚乳酸复合材料的制备方法,以质量百分比计,包括聚乳酸80-98%,碳纳米管1-10%以及硝酸银1-10%,将碳纳米管预酸化,加入二氯甲烷中,制备酸化碳纳米管分散液,将聚乳酸溶解在所述酸化碳纳米管分散液中,将硝酸银溶解在四氢呋喃中,将硝酸银四氢呋喃溶液加入酸化碳纳米管和聚乳酸溶液中,其中二氯甲烷和四氢呋喃体积比为4/1-10/1,以二氯甲烷和四氢呋喃总体积计,所述酸化碳纳米管浓度为0.5-4.5mg/mL,硝酸银浓度为0.4-2mg/mL,搅拌均匀后,倒入模具内,烘干即得所述复合材料。
包括聚乳酸90-95%,碳纳米管2.5-5%以及硝酸银2.5-5%。
所述碳纳米管预酸化采用浓硝酸进行酸化,碳纳米管加入量为20mg/mL。
所述聚乳酸粘均分子量为0.5~70万,玻璃化转变温度为60~65℃,熔点为175~185℃。
所述碳纳米管为多壁碳纳米管,管长为5-15 μm,外径为10-100 nm,纯度>97%。
烘干温度为40℃,烘干时间为12小时。
本发明所达到的有益效果:本发明通过选用不同溶剂对聚乳酸、碳纳米管以及硝酸银进行溶解以及混合,制得分散均匀且性质稳定的碳纳米管/银/聚乳酸复合材料,本发明制得的复合材料具有耐热性好、拉伸强度以及良好的抗菌性,可用作各种抗菌包装材料使用。
具体实施方式
下面对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实验原料:聚乳酸:美国Natureworks公司4032D,粘均分子量为5~50万,熔点为175~185℃,光学纯度>98%;碳纳米管:深圳纳米港公司L-MWNT-1020,管长为5-15μm,外径为10-20 nm,纯度>97%,L-MWNT-2040,管长为5-15 μm,外径为20-40 nm,纯度>97%,L-MWNT-4060,管长为5-15 μm,外径为40-60 nm,纯度>97%;硝酸银:南京化学试剂股份有限公司,分析纯,纯度>99%。
热力学测试:复合材料的热力学性能通过德国耐驰热重分析仪(NETZSCH TG 209F3 analyzer)测试。将不超过10 mg样品放入测试仪中,在空气环境下,温度从室温升至600℃,升温速率是10 ℃/min。
拉伸强度测试:复合材料的机械性能通过万能力学测试机(INSTRON5966)测试。将PLA复合材料样品切成20 mm×5 mm的试样,放入夹具中,以5 mm/min的速度缓慢拉伸,直至试样拉断,得到拉力-拉伸曲线。
抗菌测试:选用大肠杆菌和金黄色葡萄球菌作为复合材料抗菌性能测试的目标菌种。将目标细菌与R2A琼脂培养基混合培养,随后将培养好的细菌涂抹在高压灭菌的培养皿上,将复合材料样品切成直径为1 cm的圆片,放入培养皿中。分别在24 h和48 h观察抗菌圆环的大小,确定复合材料的抗菌效果。
实施例1:
将L-MWNT-1020碳纳米管进行预酸化处理,酸化过程如下:将1克碳纳米管置于50 毫升浓硝酸(65%)中,以400转/分钟转速磁力搅拌3 小时后水洗三次,烘干后备用,其他实施例采用同样的酸化方法,将0.01g 酸化后的碳纳米管加入12 mL二氯甲烷中,超声2小时后,加入1 g聚乳酸,机械搅拌至聚乳酸全部溶解;同时,将0.015g 硝酸银加入3 mL四氢呋喃中,搅拌直至全部溶解。随后将硝酸银的四氢呋喃溶液加入含有聚乳酸和酸化碳纳米管的二氯甲烷溶液中。搅拌均匀后倒入20*20*0.2 cm3模具,烘干,温度为40℃,时间为12小时,烘干后得到碳纳米管/银/聚乳酸复合材料,其他实施例采用同样的烘干方法。
实施例2:
将L-MWNT-1020碳纳米管进行酸化,随后将0.04g 酸化后的碳纳米管加入20 mL二氯甲烷中,超声2小时后,加入1 g聚乳酸,机械搅拌至聚乳酸全部溶解;同时,0.015g 硝酸银加入3 mL四氢呋喃中,搅拌直至全部溶解。随后将硝酸银的四氢呋喃溶液加入含有聚乳酸和碳纳米管的二氯甲烷溶液中。搅拌均匀后倒入模具,烘干后得到碳纳米管/银/聚乳酸复合材料。
实施例3:
将L-MWNT-1020碳纳米管进行酸化。随后将0.04g 酸化后的碳纳米管加入20 mL二氯甲烷中,超声2小时后,加入1 g聚乳酸,机械搅拌至聚乳酸全部溶解;同时,0.03 g 硝酸银加入5 mL四氢呋喃中,搅拌直至全部溶解。随后将硝酸银的四氢呋喃溶液加入含有聚乳酸和碳纳米管的二氯甲烷溶液中。搅拌均匀后倒入模具,烘干后得到碳纳米管/银/聚乳酸复合材料。
实施例4:
将L-MWNT-2040碳纳米管进行酸化。随后将0.04g 酸化后的碳纳米管加入25 mL二氯甲烷中,超声2小时后,加入1 g聚乳酸,机械搅拌至聚乳酸全部溶解;同时,0.06 g 硝酸银加入6 mL四氢呋喃中,搅拌直至全部溶解。随后将硝酸银的四氢呋喃溶液加入含有聚乳酸和碳纳米管的二氯甲烷溶液中。搅拌均匀后倒入模具,烘干后得到碳纳米管/银/聚乳酸复合材料。
实施例5:
将L-MWNT-4060碳纳米管进行酸化。随后将0.1 g 酸化后的碳纳米管加入50 mL二氯甲烷中,超声2小时后,加入1 g聚乳酸,机械搅拌至聚乳酸全部溶解;同时,0.1 g 硝酸银加入10 mL四氢呋喃中,搅拌直至全部溶解。随后将硝酸银的四氢呋喃溶液加入含有聚乳酸和碳纳米管的二氯甲烷溶液中。搅拌均匀后倒入模具,烘干后得到碳纳米管/银/聚乳酸复合材料。
实施例6:
将L-MWNT-4060碳纳米管进行酸化。随后将0.25 g 酸化后的碳纳米管加入50 mL二氯甲烷中,超声2小时后,加入1.5 g聚乳酸,机械搅拌至聚乳酸全部溶解;同时,0.1 g 硝酸银加入10 mL四氢呋喃中,搅拌直至全部溶解。随后将硝酸银的四氢呋喃溶液加入含有聚乳酸和碳纳米管的二氯甲烷溶液中。搅拌均匀后倒入模具,烘干后得到碳纳米管/银/聚乳酸复合材料。
根据以上实施方式得到的聚乳酸复合材料的各项性能如表1。为做对比,纯聚乳酸的相关性质也列于表1
表1 实施例1-5所得聚乳酸复合材料的各项性能
从表1可以看出,本发明所制备碳纳米管/银/聚乳酸复合材料的热力学性能和机械性能均比纯聚乳酸有显著的提高,并且对大肠杆菌和金黄色葡萄球菌均有良好的抗菌性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (6)

1.一种高强度抗菌碳纳米管/银/聚乳酸复合材料的制备方法,其特征是,以质量百分比计,包括聚乳酸80-98%,碳纳米管1-10%以及硝酸银1-10%,将碳纳米管预酸化,加入二氯甲烷中,制备酸化碳纳米管分散液,将聚乳酸溶解在所述酸化碳纳米管分散液中,将硝酸银溶解在四氢呋喃中,将硝酸银四氢呋喃溶液加入酸化碳纳米管和聚乳酸溶液中,其中二氯甲烷和四氢呋喃体积比为4/1-10/1,以二氯甲烷和四氢呋喃总体积计,所述酸化碳纳米管浓度为0.5-4.5mg/mL,硝酸银浓度为0.4-2mg/mL,搅拌均匀后,倒入模具内,烘干即得所述复合材料。
2.根据权利要求1所述的一种高强度抗菌碳纳米管/银/聚乳酸复合材料的制备方法,其特征是,包括聚乳酸90-95%,碳纳米管2.5-5%以及硝酸银2.5-5%。
3.根据权利要求1所述的一种高强度抗菌碳纳米管/银/聚乳酸复合材料的制备方法,其特征是,所述碳纳米管预酸化采用浓硝酸进行酸化,碳纳米管加入量为20mg/mL。
4.根据权利要求1所述的一种高强度抗菌碳纳米管/银/聚乳酸复合材料的制备方法,其特征是,所述聚乳酸粘均分子量为0.5~70万,玻璃化转变温度为60~65℃,熔点为175~185℃。
5.根据权利要求1所述的一种高强度抗菌碳纳米管/银/聚乳酸复合材料的制备方法,其特征是,所述碳纳米管为多壁碳纳米管,管长为5-15 μm,外径为10-100 nm,纯度>97%。
6.根据权利要求1所述的一种高强度抗菌碳纳米管/银/聚乳酸复合材料的制备方法,其特征是,烘干温度为40℃,烘干时间为12小时。
CN201811029137.4A 2018-09-05 2018-09-05 一种高强度抗菌碳纳米管/银/聚乳酸复合材料的制备方法 Expired - Fee Related CN109265944B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811029137.4A CN109265944B (zh) 2018-09-05 2018-09-05 一种高强度抗菌碳纳米管/银/聚乳酸复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811029137.4A CN109265944B (zh) 2018-09-05 2018-09-05 一种高强度抗菌碳纳米管/银/聚乳酸复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN109265944A true CN109265944A (zh) 2019-01-25
CN109265944B CN109265944B (zh) 2021-04-06

Family

ID=65188345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811029137.4A Expired - Fee Related CN109265944B (zh) 2018-09-05 2018-09-05 一种高强度抗菌碳纳米管/银/聚乳酸复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN109265944B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104335A (ja) * 2004-10-05 2006-04-20 Idemitsu Kosan Co Ltd 芳香族ポリカーボネート樹脂組成物、該樹脂組成物の製造方法及び該樹脂組成物の成形体
JP2008044986A (ja) * 2006-08-11 2008-02-28 Toyohashi Univ Of Technology 導電性ポリ乳酸組成物
CN101235193A (zh) * 2008-01-15 2008-08-06 北京科技大学 可降解生物相容性高分子/碳纳米管复合材料的制备方法
KR20090098350A (ko) * 2008-03-14 2009-09-17 금오공과대학교 산학협력단 MWNT-g-PLA를 포함하는 고분자PLA/MWNT-g-PLA 및 그 제조방법
CN102239888A (zh) * 2011-05-08 2011-11-16 太原理工大学 一种载银碳纳米管抗菌剂的制备方法
CN103665799A (zh) * 2012-09-12 2014-03-26 上海杰事杰新材料(集团)股份有限公司 一种聚乳酸/聚乙二醇/碳纳米管复合材料及其制备方法
CN104710733A (zh) * 2015-04-07 2015-06-17 嘉兴学院 一种耐热抗菌聚乳酸材料及其制备方法
CN105038160A (zh) * 2015-08-11 2015-11-11 四川大学 一种隔离结构碳纳米管/聚乳酸电磁屏蔽复合材料的制备方法
KR20160105171A (ko) * 2015-02-27 2016-09-06 서울대학교산학협력단 투명하고 신축성 있는 동작 센서 및 이의 제조 방법
CN106280326A (zh) * 2015-06-03 2017-01-04 中国石油化工股份有限公司 一种聚乳酸复合材料及其制备方法及应用
CN106317386A (zh) * 2016-08-29 2017-01-11 佛山市高明区尚润盈科技有限公司 一种抗菌聚乳酸材料的制备方法
CN107029708A (zh) * 2017-03-30 2017-08-11 辽宁大学 一种碳纳米管负载银纳米粒子复合材料及其制备方法和应用
JP2018069693A (ja) * 2016-11-04 2018-05-10 公立大学法人秋田県立大学 圧延加工による導電性高分子複合材料の製造方法およびその成形方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104335A (ja) * 2004-10-05 2006-04-20 Idemitsu Kosan Co Ltd 芳香族ポリカーボネート樹脂組成物、該樹脂組成物の製造方法及び該樹脂組成物の成形体
JP2008044986A (ja) * 2006-08-11 2008-02-28 Toyohashi Univ Of Technology 導電性ポリ乳酸組成物
CN101235193A (zh) * 2008-01-15 2008-08-06 北京科技大学 可降解生物相容性高分子/碳纳米管复合材料的制备方法
KR20090098350A (ko) * 2008-03-14 2009-09-17 금오공과대학교 산학협력단 MWNT-g-PLA를 포함하는 고분자PLA/MWNT-g-PLA 및 그 제조방법
CN102239888A (zh) * 2011-05-08 2011-11-16 太原理工大学 一种载银碳纳米管抗菌剂的制备方法
CN103665799A (zh) * 2012-09-12 2014-03-26 上海杰事杰新材料(集团)股份有限公司 一种聚乳酸/聚乙二醇/碳纳米管复合材料及其制备方法
KR20160105171A (ko) * 2015-02-27 2016-09-06 서울대학교산학협력단 투명하고 신축성 있는 동작 센서 및 이의 제조 방법
CN104710733A (zh) * 2015-04-07 2015-06-17 嘉兴学院 一种耐热抗菌聚乳酸材料及其制备方法
CN106280326A (zh) * 2015-06-03 2017-01-04 中国石油化工股份有限公司 一种聚乳酸复合材料及其制备方法及应用
CN105038160A (zh) * 2015-08-11 2015-11-11 四川大学 一种隔离结构碳纳米管/聚乳酸电磁屏蔽复合材料的制备方法
CN106317386A (zh) * 2016-08-29 2017-01-11 佛山市高明区尚润盈科技有限公司 一种抗菌聚乳酸材料的制备方法
JP2018069693A (ja) * 2016-11-04 2018-05-10 公立大学法人秋田県立大学 圧延加工による導電性高分子複合材料の製造方法およびその成形方法
CN107029708A (zh) * 2017-03-30 2017-08-11 辽宁大学 一种碳纳米管负载银纳米粒子复合材料及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CAROLINA GONÇALVES ET AL: ""Poly(lactic acid) Composites Containing Carbon-Based Nanomaterials: A Review "", 《POLYMERS》 *
CHI-HUI TSOU ET AL: ""Antibacterial Property and Cytotoxicity of a Poly(lactic acid)/Nanosilver-Doped Multiwall Carbon Nanotube Nanocomposite"", 《POLYMERS》 *
E. FORTUNATI ET AL: "Carbon nanotubes and silver nanoparticles for multifunctional conductive biopolymer composites", 《CARBON》 *
MOHSEN ADELI ET AL: ""CARBON NANOTUBE- GRAFT -BLOCK COPOLYMERS CONTAINING SILVER NANOPARTICLES"", 《INTERNATIONAL JOURNAL OF NANOSCIENCE》 *
SACHIN KUMAR ET AL: ""Multifunctional biodegradable polymer nanocomposite incorporating graphene-silver hybrid for biomedical applications"", 《MATERIALS AND DESIGN》 *

Also Published As

Publication number Publication date
CN109265944B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
Chen et al. Electrospun thymol-loaded porous cellulose acetate fibers with potential biomedical applications
Treesuppharat et al. Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery systems
Ma et al. Structure and properties of chitin whisker reinforced chitosan membranes
Kim et al. Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres
Sofla et al. Preparation and characterization of polyvinyl alcohol/chitosan blends plasticized and compatibilized by glycerol/polyethylene glycol
Thakur Nanocellulose polymer nanocomposites: fundamentals and applications
Meng et al. Fabrication and characterization of three-dimensional nanofiber membrance of PCL–MWCNTs by electrospinning
Wang et al. Continuous production of antibacterial carboxymethyl chitosan-zinc supramolecular hydrogel fiber using a double-syringe injection device
Huo et al. Preparation of a novel chitosan-microcapsules/starch blend film and the study of its drug-release mechanism
CN109208178A (zh) 一种柔性导电抗菌聚乳酸复合纳米纤维膜的制备方法
Liu et al. Preparation, properties and cytotoxicity evaluation of a biodegradable polyester elastomer composite
Yang et al. A facile electrospinning method to fabricate polylactide/graphene/MWCNTs nanofiber membrane for tissues scaffold
Xu et al. Manufacture and properties of cellulose/O-hydroxyethyl chitosan blend fibers
Liu et al. Antibacterial cellulose acetate films incorporated with N‐halamine‐modified nano‐crystalline cellulose particles
Zhao et al. Study on polysaccharide polyelectrolyte complex and fabrication of alginate/chitosan derivative composite fibers
Yuan et al. Silver nanoparticles immobilized on cellulose nanofibrils for starch-based nanocomposites with high antibacterial, biocompatible, and mechanical properties
Hu et al. A novel method to prepare homogeneous biocompatible graphene‐based PDMS composites with enhanced mechanical, thermal and antibacterial properties
Zhang et al. Multifunctional hybrid composite films based on biodegradable cellulose nanofibers, aloe juice, and carboxymethyl cellulose
Ma et al. Processing, structure, and properties of multiwalled carbon nanotube/poly (hydroxybutyrate‐co‐valerate) biopolymer nanocomposites
Mirmohammadi et al. Hybrid organic-inorganic nanocomposites based on poly (ϵ-caprolactone)/polyhedral oligomeric silsesquioxane: Synthesis and in vitro evaluations
Liu et al. Recent advances in bio‐sourced polymeric carbohydrate/nanotube composites
Das et al. Synergetic reinforcing effect of graphene oxide and nanosilver on carboxymethyl cellulose/sodium alginate nanocomposite films: Assessment of physicochemical and antibacterial properties
Pan et al. Antibacterial poly (ε-caprolactone) fibrous membranes filled with reduced graphene oxide-silver
Chen et al. Preparation and antibacterial properties of chitosan/polyvinyl alcohol nanofibrous mats using different organic acids as solvents
Acik et al. Layer-by-layer assembled, amphiphilic and antibacterial hybrid electrospun mat made from polypropylene and chitosan fibers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210406