CN109244395B - 一种原位氮掺杂包碳磷酸铁锂正极材料的制备方法 - Google Patents

一种原位氮掺杂包碳磷酸铁锂正极材料的制备方法 Download PDF

Info

Publication number
CN109244395B
CN109244395B CN201810990796.8A CN201810990796A CN109244395B CN 109244395 B CN109244395 B CN 109244395B CN 201810990796 A CN201810990796 A CN 201810990796A CN 109244395 B CN109244395 B CN 109244395B
Authority
CN
China
Prior art keywords
fepc
iron phosphate
source
lithium iron
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810990796.8A
Other languages
English (en)
Other versions
CN109244395A (zh
Inventor
陈霞
刘兴亮
程蒙
汪伟伟
万宁
陈�峰
彭家兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Gotion High Tech Power Energy Co Ltd
Original Assignee
Hefei Guoxuan High Tech Power Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Guoxuan High Tech Power Energy Co Ltd filed Critical Hefei Guoxuan High Tech Power Energy Co Ltd
Priority to CN201810990796.8A priority Critical patent/CN109244395B/zh
Publication of CN109244395A publication Critical patent/CN109244395A/zh
Application granted granted Critical
Publication of CN109244395B publication Critical patent/CN109244395B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种原位氮掺杂包碳磷酸铁锂正极材料的制备方法。即以石墨相氮化碳(g‑C3N4)和铁酞菁(FePc)的轴向配合物为主要氮源和碳源,同时提供部分铁源,原位氮掺杂包碳用以提高材料包覆的均匀性和充放电倍率性能。所述方法主要包含以下步骤:首先通过热解尿素的方式得到g‑C3N4,再通过羧基吡啶(Py)将g‑C3N4与FePc以轴向配位的方式相结合得到配合物g‑C3N4‑Py‑FePc;以乙醇为分散剂,将草酸亚铁、锂源、磷源以及配合物进行球磨分散,再真空干燥处理;所得干燥料经烧结粉碎后制得原位氮掺杂包碳磷酸铁锂正极材料。

Description

一种原位氮掺杂包碳磷酸铁锂正极材料的制备方法
技术领域
本发明涉及一种锂离子电池正极材料,具体涉及一种原位氮掺杂包碳磷酸铁锂正极材料及其制备方法。
背景技术
随着汽车工业的不断发展,由燃油排放导致的污染问题日益严重,锂电池作为一种新能源电池,受到广大研究者广泛关注。在众多锂电池正极材料中,磷酸铁锂(LiFePO4)凭借其优异的循环寿命及安全性,在动力汽车正极材料中占据重要作用。但是LiFePO4材料在实际使用过程中存在的电导率及离子迁移率低的问题限制了其进一步推广运用。近年来,为了提高LiFePO4材料的电学性能,碳包覆法被认为是一种能够对LiFePO4材料的性能产生巨大影响的改性技术。
传统的磷酸铁锂碳包覆方法主要是在合成材料的前驱体中加入无机碳材料或有机碳源,进而混料烧结得到碳包覆材料。为了获得颗粒分布均匀、包覆均匀及性能优越的的碳包覆正极材料,添加的无机或有机碳量往往比较多,过多的包覆量又会造成团聚、不易分散和性能不佳等缺点。如何优化碳包覆工艺,更加有效的提高磷酸铁锂正极材料的倍率性能及碳包覆的均匀性尤为关键。
目前还没有过通过原位掺杂氮于碳材中进而用于包覆磷酸铁锂正极材料的相关研究报道。合成的g-C3N4与铁酞菁的轴向配合物在提供碳源的同时,可以原位掺杂氮源于碳材中以及部分合成LiFePO4所需的Fe源,可以最大化合理利用原材料并赋予其优异的电化学性能。其中,由于氮电负性较高,存在于类石墨结构的体系中,经过后续烧结工序均匀有效的掺入碳材中,再随碳材包覆在生成的LiFePO4表面,掺入的氮,容易在材料表面形成负电中心,便于吸附正电离子,这些正电离子和氮元素形成一种特殊的过渡态,提供了便利的电子转移通道,进一步提高正极材料的导电性能及离子迁移性。
发明内容
本发明的目的是提供一种具有高循环性能和良好倍率性能的原位氮掺杂包碳磷酸铁锂正极材料的制备方法,即以同时含有碳源、氮源以及部分铁源的g-C3N4-Py-FePc为掺杂体,随前驱体材料一起混入,制备磷酸铁锂正极材料。所述原位氮掺杂包碳磷酸铁锂正极材料的制备方法,包括如下过程:
(1)将严实密封尿素的于450-550℃下烧结4-6h,自然冷却至室温,并配成固含量为40-50%的分散液,再进行超声剥离处理,经旋蒸、冷冻干燥后,得到50-80nm厚度的层状石墨相氮化碳粉末(g-C3N4);
(2)按照质量比120∶92.4∶1称取步骤(1)的g-C3N4、以及羧基吡啶(Py)和铁酞菁(FePc),加入到四氢呋喃溶剂中,在避光黑暗条件下,于50-70℃恒温反应6-9h,经离心冷冻干燥后得到g-C3N4与铁酞菁的轴向配合物g-C3N4-Py-FePc;
(3)按照化学计量比Li∶Fe∶P∶g-C3N4-Py-FePc=1∶x∶1∶(1-x),称取锂源、草酸亚铁、磷源以及g-C3N4-Py-FePc,于乙醇或去离子水中进行球磨分散处理3-6h,经真空干燥2-5h后得到干燥料;
(4)将步骤(3)所得干燥料于保护气氛中550-610℃预烧2-6h,再升温至690-750℃烧结6-12h,自然冷却后,得到原位氮掺杂包碳磷酸铁锂正极材料。
优选地,所述步骤(3)中,x的取值范围为0.80-0.92。
优选地,所述步骤(3)中,锂源为碳酸锂或氢氧化锂,磷源为磷酸二氢铵或磷酸氢二铵。
优选地,所述步骤(4)中,保护气氛为高纯氮气、高纯氦气、高纯氩气的一种或两种混合。
本发明的有益效果是:
本发明首先利用Py将g-C3N4和FePc以轴向配位的方式相结合,得到g-C3N4-Py-FePc配合物,以该配合物作为主要氮源和碳源,同时在反应过程中向体系提供部分铁源,在最大化合理利用原材料的同时,通过原位氮掺杂包碳的方法制备的磷酸铁锂正极材料,可以提高材料包覆的均匀性和充放电倍率性能。
附图说明
图1为本发明实施例1所述目标产物的XRD图谱;
图2为本发明实施例1所得磷酸铁锂正极材料制成的电池在不同倍率下的充放电曲线图。
具体实施方式
为更好理解本发明,下面结合实施例及附图对本发明作进一步描述,以下实施例仅是对本发明进行说明而非对其加以限定。
实施例1:
(1)将尿素置于坩埚中,并用3层锡箔纸包严实呈密封状态,于500℃下在管式炉中烧结5h,自然冷却至室温,并配成固含量为45%的分散液,再进行超声剥离处理,经旋蒸、冷冻干燥后,得到50nm厚度的层状g-C3N4
(2)按照质量比120∶92.4∶1称取步骤(1)的g-C3N4、Py以及FePc,加入到四氢呋喃溶剂中,在避光黑暗条件下,于60℃恒温反应8h,经离心冷冻干燥后得到g-C3N4与铁酞菁的轴向配合物g-C3N4-Py-FePc;
(3)按照化学计量比Li∶Fe∶P∶g-C3N4-Py-FePc=1∶0.86∶1∶0.14,称取锂源、草酸亚铁、磷源以及g-C3N4-Py-FePc,于乙醇或去离子水中进行球磨分散处理4h,经真空干燥4h后得到干燥料;
(4)将步骤(3)所得干燥料于保护气氛中600℃预烧4h,再升温至720℃烧结10h,自然冷却后,得到原位氮掺杂包碳磷酸铁锂正极材料。
图1为本实施例中制备磷酸铁锂的X-射线衍射(XRD)图谱,从XRD图谱中可以看出,经原位氮掺杂包碳的磷酸铁锂正极材料XRD衍射峰尖锐,说明材料的结晶性良好,未检测出杂质峰,与磷酸铁锂标准卡片的橄榄石结构一致,属于pnma空间群,其中碳是以无定型形式存在。图2为本实施例中制备的磷酸铁锂正极材料在不同倍率下的充放电扣电性能对比曲线。在0.2C倍率下,实验所得正极材料的首效高达98.5%,1C倍率下对应放电克容量为150.6mAh/g,2C、3C倍率下对应放电克容量分别为140.6mAh/g及138.8mAh/g。
实施例2:
(1)将尿素置于坩埚中,并用2层锡箔纸包严实呈密封状态,于450℃下在管式炉中烧结4h,自然冷却至室温,并配成固含量为40%的分散液,再进行超声剥离处理,经旋蒸、冷冻干燥后,得到60nm厚度的层状g-C3N4
(2)按照质量比120∶92.4∶1称取步骤(1)的g-C3N4、Py以及FePc,加入到四氢呋喃溶剂中,在避光黑暗条件下,于50℃恒温反应6h,经离心冷冻干燥后得到g-C3N4与铁酞菁的轴向配合物g-C3N4-Py-FePc;
(3)按照化学计量比Li∶Fe∶P∶g-C3N4-Py-FePc=1∶0.92∶1∶0.08,称取锂源、草酸亚铁、磷源以及g-C3N4-Py-FePc,于乙醇或去离子水中进行球磨分散处理3h,经真空干燥2h后得到干燥料;
(4)将步骤(3)所得干燥料于保护气氛中550℃预烧2h,再升温至690℃烧结6h,自然冷却后,得到原位氮掺杂包碳磷酸铁锂正极材料。
本实施例中所制备的磷酸铁锂正极材料在不同倍率下的充放电扣电性能对比分析表明:在0.2C倍率下,实验所得正极材料的首效高达97.7%,1C倍率下对应放电克容量为148.7mAh/g,2C、3C倍率下对应放电克容量分别为139.1mAh/g及129.9mAh/g。
实施例3:
(1)将尿素置于坩埚中,并用5层锡箔纸包严实呈密封状态,于550℃下在管式炉中烧结6h,自然冷却至室温,并配成固含量为50%的分散液,再进行超声剥离处理,经旋蒸、冷冻干燥后,得到80nm厚度的层状石墨相氮化碳粉末(g-C3N4);
(2)按照质量比120∶92.4∶1称取步骤(1)的g-C3N4、Py以及FePc,加入到四氢呋喃溶剂中,在避光黑暗条件下,于70℃恒温反应9h,经离心冷冻干燥后得到g-C3N4与铁酞菁的轴向配合物g-C3N4-Py-FePc;
(3)按照化学计量比Li∶Fe∶P∶g-C3N4-Py-FePc=1∶0.8∶1∶0.2,称取锂源、草酸亚铁、磷源以及g-C3N4-Py-FePc,于乙醇或去离子水中进行球磨分散处理6h,经真空干燥5h后得到干燥料;
(4)将步骤(3)所得干燥料于保护气氛中610℃预烧6h,再升温至750℃烧结12h,自然冷却后,得到原位氮掺杂包碳磷酸铁锂正极材料。
本实施例中制备的磷酸铁锂正极材料在不同倍率下的充放电扣电性能对比分析表明:在0.2C倍率下,实验所得正极材料的首效高达97.8%,1C倍率下对应放电克容量为148.9mAh/g,2C、3C倍率下对应放电克容量分别为139.2mAh/g及131.2mAh/g。
尽管为说明目的公开了本发明的具体实施例和附图,其目的在于帮助理解本发明的内容并据以实施,但是本领域的技术人员可以理解:在不脱离本发明及所附的权利要求的精神和范围内,各种替换、变化和修改都是可能的。本发明不应局限于本说明书最佳实施例和附图所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。

Claims (4)

1.一种原位氮掺杂包碳磷酸铁锂正极材料的制备方法,其特征在于,具体包括如下步骤:
(1)将严实密封的尿素于450-550℃下烧结4-6h,自然冷却至室温,并配成固含量为40-50%的分散液,再进行超声剥离处理,经旋蒸、冷冻干燥后,得到50-80nm厚度的层状石墨相氮化碳粉末g-C3N4
(2)按照质量比120∶92.4∶1称取步骤(1)的g-C3N4,以及羧基吡啶Py和铁酞菁FePc,加入到四氢呋喃溶剂中,在避光黑暗条件下,于50-70℃恒温反应6-9h,经离心冷冻干燥后得到g-C3N4与铁酞菁的轴向配合物g-C3N4-Py-FePc;
(3)按照化学计量比Li∶Fe∶P∶g-C3N4-Py-FePc=1∶x∶1∶(1-x),称取锂源、草酸亚铁、磷源以及g-C3N4-Py-FePc,于乙醇或去离子水中进行球磨分散处理3-6h,经真空干燥2-5h后得到干燥料;
(4)将步骤(3)所得干燥料于保护气氛中550~610℃预烧2-6h,再升温至690-750℃烧结6-12h,自然冷却后,得到原位氮掺杂包碳磷酸铁锂正极材料。
2.根据权利要求1所述原位氮掺杂包碳磷酸铁锂正极材料的制备方法,其特征在于,所述步骤(3)中,x的取值范围为0.80-0.92。
3.根据权利要求1所述原位氮掺杂包碳磷酸铁锂正极材料的制备方法,其特征在于,所述步骤(3)中,锂源为碳酸锂或氢氧化锂,磷源为磷酸二氢铵或磷酸氢二铵。
4.根据权利要求1所述原位氮掺杂包碳磷酸铁锂正极材料的制备方法,其特征在于,所述步骤(4)中,保护气氛为高纯氮气、高纯氦气、高纯氩气的一种或两种混合。
CN201810990796.8A 2018-08-28 2018-08-28 一种原位氮掺杂包碳磷酸铁锂正极材料的制备方法 Active CN109244395B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810990796.8A CN109244395B (zh) 2018-08-28 2018-08-28 一种原位氮掺杂包碳磷酸铁锂正极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810990796.8A CN109244395B (zh) 2018-08-28 2018-08-28 一种原位氮掺杂包碳磷酸铁锂正极材料的制备方法

Publications (2)

Publication Number Publication Date
CN109244395A CN109244395A (zh) 2019-01-18
CN109244395B true CN109244395B (zh) 2021-06-11

Family

ID=65068755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810990796.8A Active CN109244395B (zh) 2018-08-28 2018-08-28 一种原位氮掺杂包碳磷酸铁锂正极材料的制备方法

Country Status (1)

Country Link
CN (1) CN109244395B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190269A (zh) * 2019-06-27 2019-08-30 广东工业大学 一种碳基复合材料和锂离子电池
CN110429277B (zh) * 2019-06-28 2021-01-29 合肥国轩高科动力能源有限公司 一种高压实高倍率性能的磷酸铁锂正极材料的制备方法
CN114188512B (zh) * 2020-09-14 2024-02-27 湖南中科星城石墨有限公司 一种硅碳复合材料及其制备方法和应用
CN114029093B (zh) * 2021-12-06 2023-11-10 合肥工业大学 一种石墨氮化碳轴向配位的酞菁铁复合材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943856A (zh) * 2014-05-05 2014-07-23 西北大学 一种酞菁-磷酸铁锂复合正极材料的制备方法
CN105206809A (zh) * 2015-09-11 2015-12-30 合肥国轩高科动力能源有限公司 一种c3n4-碳包覆磷酸铁锂复合正极材料及其制备方法
CN106252635A (zh) * 2016-09-30 2016-12-21 合肥国轩高科动力能源有限公司 一种石墨烯包覆的磷酸铁锂正极材料及制备方法
CN106532013A (zh) * 2016-12-26 2017-03-22 贝特瑞(天津)纳米材料制造有限公司 一种动力电池用磷酸铁锂/碳复合材料、其制备方法及用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101863094B1 (ko) * 2011-09-16 2018-07-05 삼성에스디아이 주식회사 복합양극활물질, 및 이를 채용한 양극과 리튬전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943856A (zh) * 2014-05-05 2014-07-23 西北大学 一种酞菁-磷酸铁锂复合正极材料的制备方法
CN105206809A (zh) * 2015-09-11 2015-12-30 合肥国轩高科动力能源有限公司 一种c3n4-碳包覆磷酸铁锂复合正极材料及其制备方法
CN106252635A (zh) * 2016-09-30 2016-12-21 合肥国轩高科动力能源有限公司 一种石墨烯包覆的磷酸铁锂正极材料及制备方法
CN106532013A (zh) * 2016-12-26 2017-03-22 贝特瑞(天津)纳米材料制造有限公司 一种动力电池用磷酸铁锂/碳复合材料、其制备方法及用途

Also Published As

Publication number Publication date
CN109244395A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
CN111072038B (zh) 一种用于锂离子电池负极的改性一氧化硅材料及其制备方法
CN111342030B (zh) 一种多元复合高首效锂电池负极材料及其制备方法
CN109244395B (zh) 一种原位氮掺杂包碳磷酸铁锂正极材料的制备方法
CN101237039B (zh) 化学气相沉积辅助固相法合成LiFePO4/C材料的方法
CN111211300A (zh) 金属镍/氮掺杂碳纳米管及其锂硫电池复合正极材料
CN108461707B (zh) 一种锂离子电池电极材料的制备方法
CN108155353B (zh) 一种石墨化碳包覆电极材料及其制备方法和作为储能器件电极材料的应用
CN112421048A (zh) 一种低成本制备石墨包覆纳米硅锂电池负极材料的方法
WO2011009231A1 (zh) 一种碳包覆锂离子电池正极材料的制备方法
CN113651304B (zh) 有机碳包覆磷酸铁锂正极材料及其制备方法
CN110931781A (zh) 生物质碳/聚氟磷酸铁钠复合材料的制备方法及其应用
Zhang et al. Synthesis and electrochemical studies of carbon-modified LiNiPO4 as the cathode material of Li-ion batteries
KR100940979B1 (ko) LiFeP04의 제조방법
CN107482182A (zh) 碳包覆离子掺杂磷酸锰锂电极材料及其制备方法
CN111710848A (zh) 硅氧复合负极材料及其制备方法和锂离子电池
KR20230137807A (ko) 인산제1철로 탄소 코팅 인산철리튬 재료를 제조하는 방법
CN107658461B (zh) 一种以有机铁化合物为原料制备氟化铁/碳复合材料的方法
CN107623118B (zh) 一种首次库伦效率提高的磷掺杂多孔碳负极材料的制备方法
CN113690420B (zh) 一种氮硫掺杂硅碳复合材料及其制备方法和应用
CN111244465A (zh) 一种氮掺杂金属碳化物材料的制备
CN112018383A (zh) 一种硼磷共掺杂MXene材料及其制备方法
CN115863632A (zh) 一种磷酸铁锂碳气凝胶复合材料的制备方法
CN115275168A (zh) 一种高倍率的锂离子电池负极材料及其制备方法
CN110911643B (zh) 一种基于硅藻土基的锂离子电池负极材料及其制备方法
CN113299872A (zh) 一种锂离子电池磷酸铁锂正极的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant