CN109243969A - 管式pecvd氮化硅渐变膜工艺 - Google Patents

管式pecvd氮化硅渐变膜工艺 Download PDF

Info

Publication number
CN109243969A
CN109243969A CN201811008455.2A CN201811008455A CN109243969A CN 109243969 A CN109243969 A CN 109243969A CN 201811008455 A CN201811008455 A CN 201811008455A CN 109243969 A CN109243969 A CN 109243969A
Authority
CN
China
Prior art keywords
ammonia
silane
silicon nitride
technique
silicon wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201811008455.2A
Other languages
English (en)
Inventor
蔡新兴
朱露
张凯胜
姚伟忠
孙铁囤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou EGing Photovoltaic Technology Co Ltd
Original Assignee
Changzhou EGing Photovoltaic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou EGing Photovoltaic Technology Co Ltd filed Critical Changzhou EGing Photovoltaic Technology Co Ltd
Priority to CN201811008455.2A priority Critical patent/CN109243969A/zh
Publication of CN109243969A publication Critical patent/CN109243969A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Photovoltaic Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明涉及太阳能电池生产技术领域,尤其涉及一种管式PECVD氮化硅渐变膜工艺,通过控制氨气硅烷分别以固定斜率增加和减少来达到氨气硅烷比不断增加,使得沉积的氮化硅膜为折射率由高到低不断变化,沉积的氮化硅膜为连续渐变膜,可以达到接近硅片基底的沉积的氮化硅折射率较高,实现更优秀的钝化效果同时消除了由于原先膜层之间折射率差距较大造成的光学损失。

Description

管式PECVD氮化硅渐变膜工艺
技术领域
本发明涉及太阳能电池生产技术领域,尤其涉及一种管式PECVD氮化硅渐变膜工艺。
背景技术
在光伏领域,当太阳光照射到太阳能电池表面时会有部分光被反射,造成较大光损失,所以需要在电池片表面沉积一层或多层膜来达到减反射的目的,通常使用PECVD沉积氮化硅薄膜,它含有SI、N、H三种元素,既可以起到减反的作用,也可以达到表面钝化的作用。目前主流的管式PECVD用来沉积氮化硅多层膜,通过改变硅烷氨气比来沉积不同膜层特性的氮化硅膜层,通过时间控制不同膜层的厚度,一般控制底层为折射率n1较高达到更好的钝化目的,外层折射率n3使得整体反射率更低,中间层n2为缓冲层。目前这种膜层搭配虽然由n2作为缓冲层,但是膜层之间的折射率差还是偏大,不利于光学匹配。
发明内容
本发明要解决的技术问题是:为了解决多层膜的膜层之间折射率差异导致光学匹配性差造成光学损失的技术问题,本发明提供一种管式PECVD氮化硅渐变膜工艺,旨在解决由于氮化硅膜层之间折射率差距较大造成的光学损失问题,可以实现在增加底层氮化硅折射率的同时达到更优异的钝化效果,降低外层氮化硅折射率使整体电池片正面反射率降低。
本发明解决其技术问题所采用的技术方案是:一种管式PECVD氮化硅渐变膜工艺,1)在硅片正面形成绒面;
2)在硅片正面进行P扩散;
3)去除硅片正面在扩散中形成的磷硅玻璃层和硅片四周的P扩散层;
4)在硅片背面沉积ALO3;
5)将硅片退火;
6)在硅片背面沉积氮化硅膜;
7)在硅片正面沉积渐变减反射膜;
8)在硅片背面激光开孔;
9)在硅片背面形成背电极和铝背场;
10)在硅片正面形成正电极;
11)将硅片进行烧结;
其特征在于:所述步骤7)中沉积连续渐变减反射膜采用的为初始固定氨气硅烷比为3~5:1,镀膜结束时的氨气硅烷比为9~12:1,镀膜时间为700-900s,整个镀膜过程中氨气以固定斜率i增加,氨气量与镀膜时间成正比,硅烷以固定斜率h减少,硅烷量与镀膜时间成反比。
进一步,具体地,设置镀膜时间700s,工艺初始氨气为5000sccm,工艺结束氨气为7000sccm,可以得出氨气每秒增加2.86sccm;工艺初始硅烷为1200sccm,工艺结束硅烷为620sccm,可以得出硅烷每秒减少0.83sccm;整体初始氨气硅烷比为5000:1200,工艺结束时氨气硅烷比为7000:620,整体工艺过程中氨气硅烷比例在不断增加。
本发明的有益效果是,本发明的管式PECVD氮化硅渐变膜工艺,通过控制氨气硅烷分别以固定斜率增加和减少(均匀的增加和减少)来达到氨气硅烷比不断增加,使得沉积的氮化硅膜为折射率由高到低不断变化,沉积的氮化硅膜为连续渐变膜,可以达到接近硅片基底的沉积的氮化硅折射率较高,实现更优秀的钝化效果同时消除了由于原先膜层之间折射率差距较大造成的光学损失。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是现有技术中多层膜结构(n1,n2,n3表示各层的折射率不同,d1,d2,d3表示各层的厚度)。
图2中为本发明实施例一氨气流量和硅烷流量变化图。
图中:1、氨气流量初始变化线条,2、硅烷流量初始变化线条。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
如图1所示,是本发明最优实施例,一种管式PECVD氮化硅渐变膜工艺,包括如下步骤:
1)在硅片正面形成绒面;
2)在硅片正面进行P扩散;
3)去除硅片正面在扩散中形成的磷硅玻璃层和硅片四周的P扩散层;
4)在硅片背面沉积ALO3;
5)将硅片退火;
6)在硅片背面沉积氮化硅膜;
7)在硅片正面沉积渐变减反射膜;
8)在硅片背面激光开孔;
9)在硅片背面形成背电极和铝背场;
10)在硅片正面形成正电极;
11)将硅片进行烧结;
所述步骤7)中沉积连续渐变减反射膜采用的为初始固定氨气硅烷比为3~5:1,镀膜结束时的氨气硅烷比为9~12:1,镀膜时间为700-900s,整个镀膜过程中氨气以固定斜率i增加,固定斜率i为结束和初始氨气差值再除以镀膜时间,氨气量与镀膜时间成正比,硅烷以固定斜率h减少,硅烷量与镀膜时间成反比,固定斜率h为结束和初始硅烷差值再除以镀膜时间。
具体实施例1为:设置镀膜时间700s,工艺初始氨气为4800sccm,工艺结束氨气为6500sccm,可以算出氨气每秒增加2.43sccm;工艺初始硅烷为1200sccm,工艺结束硅烷为700sccm,可以算出硅烷每秒减少0.71sccm;整体初始氨气硅烷比为4800:1200,工艺结束氨气硅烷比为6500:700,整体工艺过程中氨气硅烷比例在不断增加。初始n值为2.4,结束n值为2.05。
具体实施例2为:设置镀膜时间720s,工艺工艺初始氨气为4800sccm,工艺结束氨气为7000sccm,可以算出氨气每秒增加3.14sccm;工艺初始硅烷为1200sccm,工艺结束硅烷为620sccm,可以算出硅烷每秒减少0.83sccm;整体初始氨气硅烷比为4800:1200,工艺结束氨气硅烷比为7000:620,整体工艺过程中氨气硅烷比例在不断增加。初始n值为2.4,结束n值为2.02。
如图1所示,是传统的多层减反射膜,也就是每一层折射率都是严格区分的,传统的多层减反射膜作为对比组,n1=2.4,n2=2.1,n3=2.02。
EFF Uoc Isc Rs Rsh FF
对比组 21.40% 663.0 9.877 2.21 194 79.73%
实验组一 21.50% 664.7 9.901 2.24 192 79.69%
实验组二 21.54% 664.8 9.909 2.24 188 79.77%
从实验组一与对比组可见,光电效率提高0.1%,主要为Uoc提高1.7mV,Isc提高24mA;
从实验组二与对比组可见,光电转换效率提高0.14%,主要为Uoc提高1.8mV,Isc提高32mA。
传统的多层减反射膜,每一层折射率都是严格区分的,而本发明的管式PECVD氮化硅渐变膜工艺,通过控制氨气硅烷分别以固定斜率增加和减少来达到氨气硅烷比不断增加,使得沉积的氮化硅膜为折射率由高到低不断变化,也就是基本为一层结构但是折射率始终是平稳过渡的,没有特别的区分,折射率转换成线条图,是连续的直线,而不是曲线,可以达到接近硅片基底的沉积的氮化硅折射率较高,实现更优秀的钝化效果,同时消除了由于原先膜层之间折射率差距较大造成的光学损失。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (3)

1.一种管式PECVD氮化硅渐变膜工艺,包括如下步骤:
1)在硅片正面形成绒面;
2)在硅片正面进行P扩散;
3)去除硅片正面在扩散中形成的磷硅玻璃层和硅片四周的P扩散层;
4)在硅片背面沉积ALO3;
5)将硅片退火;
6)在硅片背面沉积氮化硅膜;
7)在硅片正面沉积渐变减反射膜;
8)在硅片背面激光开孔;
9)在硅片背面形成背电极和铝背场;
10)在硅片正面形成正电极;
11)将硅片进行烧结;
其特征在于:所述步骤7)中沉积连续渐变减反射膜采用的为初始固定氨气硅烷比为3~5:1,镀膜结束时的氨气硅烷比为9~12:1,镀膜时间为700-900s,整个镀膜过程中氨气以固定斜率i增加,氨气量与镀膜时间成正比,硅烷以固定斜率h减少,硅烷量与镀膜时间成反比。
2.如权利要求1所述的管式PECVD氮化硅渐变膜工艺,其特征在于:设置镀膜时间700s,工艺初始氨气为4800sccm,工艺结束氨气为6500sccm,可以算出氨气每秒增加2.43sccm;工艺初始硅烷为1200sccm,工艺结束硅烷为700sccm,可以算出硅烷每秒减少0.71sccm;整体初始氨气硅烷比为4800:1200,工艺结束氨气硅烷比为6500:700,整体工艺过程中氨气硅烷比例在不断增加。
3.如权利要求1所述的管式PECVD氮化硅渐变膜工艺,其特征在于:设置镀膜时间720s,工艺工艺初始氨气为4800sccm,工艺结束氨气为7000sccm,可以算出氨气每秒增加3.14sccm;工艺初始硅烷为1200sccm,工艺结束硅烷为620sccm,可以算出硅烷每秒减少0.83sccm;整体初始氨气硅烷比为4800:1200,工艺结束氨气硅烷比为7000:620,整体工艺过程中氨气硅烷比例在不断增加。
CN201811008455.2A 2018-08-31 2018-08-31 管式pecvd氮化硅渐变膜工艺 Withdrawn CN109243969A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811008455.2A CN109243969A (zh) 2018-08-31 2018-08-31 管式pecvd氮化硅渐变膜工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811008455.2A CN109243969A (zh) 2018-08-31 2018-08-31 管式pecvd氮化硅渐变膜工艺

Publications (1)

Publication Number Publication Date
CN109243969A true CN109243969A (zh) 2019-01-18

Family

ID=65068124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811008455.2A Withdrawn CN109243969A (zh) 2018-08-31 2018-08-31 管式pecvd氮化硅渐变膜工艺

Country Status (1)

Country Link
CN (1) CN109243969A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397274A (ja) * 1989-09-11 1991-04-23 Sharp Corp 太陽電池の製造方法
CN102244109A (zh) * 2011-06-30 2011-11-16 西安黄河光伏科技股份有限公司 一种晶硅太阳电池减反射膜及其制备方法
CN102534547A (zh) * 2011-12-16 2012-07-04 合肥晶澳太阳能科技有限公司 一种晶体硅太阳电池的渐变减反射氮化硅薄膜的制备工艺
CN103022254A (zh) * 2012-12-21 2013-04-03 浙江正泰太阳能科技有限公司 一种渐变折射率减反膜太阳能电池及其制备方法
CN107154437A (zh) * 2017-06-30 2017-09-12 国家电投集团西安太阳能电力有限公司 太阳能电池减反射膜的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397274A (ja) * 1989-09-11 1991-04-23 Sharp Corp 太陽電池の製造方法
CN102244109A (zh) * 2011-06-30 2011-11-16 西安黄河光伏科技股份有限公司 一种晶硅太阳电池减反射膜及其制备方法
CN102534547A (zh) * 2011-12-16 2012-07-04 合肥晶澳太阳能科技有限公司 一种晶体硅太阳电池的渐变减反射氮化硅薄膜的制备工艺
CN103022254A (zh) * 2012-12-21 2013-04-03 浙江正泰太阳能科技有限公司 一种渐变折射率减反膜太阳能电池及其制备方法
CN107154437A (zh) * 2017-06-30 2017-09-12 国家电投集团西安太阳能电力有限公司 太阳能电池减反射膜的制备方法

Similar Documents

Publication Publication Date Title
CN101866956B (zh) 一种减反射膜及其制备方法
CN110391304A (zh) 一种太阳能电池多层减反射渐变膜及其制备工艺
WO2005081324A1 (ja) 光電変換装置用基板、光電変換装置、積層型光電変換装置
CN107154437A (zh) 太阳能电池减反射膜的制备方法
CN105845775A (zh) Perc晶体硅太阳能电池的背面多层镀膜方法
WO2019148536A1 (zh) 一种提升perc电池转换效率的正面膜层结构以及制备方法
CN208923157U (zh) 太阳能电池减反射膜、电池片及电池组件
CN102723370A (zh) 一种用于太阳能电池的宽光谱多层减反钝化膜
CN103943717A (zh) 一种采用管式pecvd制备太阳能电池叠层减反射膜的方法
CN107338424A (zh) 一种pecvd镀膜的气体控制方法以及设备
WO2023125776A1 (zh) 太阳能电池正面钝化膜层
CN107492576A (zh) 一种减反射膜以及多晶硅太阳电池
CN103238218B (zh) 多结光电器件及其生产工艺
CN111106186A (zh) 用于全黑晶硅光伏组件的太阳能电池及其制备方法
CN102005485A (zh) 一种太阳能电池的多层减反膜以及其制作方法
CN101577294A (zh) 一种晶硅太阳能电池双层减反射膜及其制备方法
CN104916710A (zh) 一种高pid抗性的高效多晶多层钝化减反射膜结构
CN103579379B (zh) 晶硅太阳能电池及其制作方法
CN207233746U (zh) 一种太阳能电池减反射薄膜
CN107068774A (zh) 太阳能电池减反钝化膜及其制备方法及太阳能电池片
CN103066132B (zh) 一种用于太阳能电池的双层氮化硅减反射膜及其制备方法
CN109243969A (zh) 管式pecvd氮化硅渐变膜工艺
CN106653872B (zh) 一种抗pid效应的太阳能电池
CN103413868A (zh) 一种晶硅太阳能电池多层膜制备工艺
CN102130212A (zh) 一种太阳能电池制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20190118

WW01 Invention patent application withdrawn after publication