CN109214469A - 一种基于非负张量分解的多源信号分离方法 - Google Patents

一种基于非负张量分解的多源信号分离方法 Download PDF

Info

Publication number
CN109214469A
CN109214469A CN201811246892.8A CN201811246892A CN109214469A CN 109214469 A CN109214469 A CN 109214469A CN 201811246892 A CN201811246892 A CN 201811246892A CN 109214469 A CN109214469 A CN 109214469A
Authority
CN
China
Prior art keywords
time
frequency
source signal
signal
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811246892.8A
Other languages
English (en)
Other versions
CN109214469B (zh
Inventor
刘弹
李光
梁霖
刘飞
王宝
栗茂林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201811246892.8A priority Critical patent/CN109214469B/zh
Publication of CN109214469A publication Critical patent/CN109214469A/zh
Application granted granted Critical
Publication of CN109214469B publication Critical patent/CN109214469B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • G06F18/2133Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on naturality criteria, e.g. with non-negative factorisation or negative correlation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • G06F18/2134Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on separation criteria, e.g. independent component analysis
    • G06F18/21347Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on separation criteria, e.g. independent component analysis using domain transformations

Abstract

一种基于非负张量分解的多源信号分离方法,针对多源振动信号数据,基于平均信息熵方法确定最优的窗长,进而在最优窗长的基础上采取短时傅里叶变换构建出三维时频张量分布,并利用迭代步数、收敛误差和核一致性指标选择最优源信号个数,根据最优源信号个数进行非负张量分解,利用分解得到的矩阵重构出源信号的时频矩阵分布,进而通过短时傅里叶逆变换获得源信号。本发明能够准确地从混合信号中提取出源信号。

Description

一种基于非负张量分解的多源信号分离方法
技术领域
本发明属于设备检测与故障诊断技术领域,具体涉及一种基于非负张量分解的多源信号分离方法。
背景技术
随着机械设备复杂程度的不断提高,采集的振动信号往往是多种振动激励源分量的混合,并且在噪声的干扰下,很难辨识故障部件的特征分量,从而影响故障的识别。因此,如何从振动信号中分离出主要特征分量,是故障诊断中急需解决的问题之一。作为现代信号处理领域的一个新方向,信号的源分离技术在源信号个数、位置及传输通道未知的情况下,从获得的混合信号中分离出源信号,其中独立分量分析(Independent ComponentAnalysis)作为常用的源分离技术,主要是利用信号的高阶统计特性进行分析,最终分解出的各个信号是相互独立的,但独立分量分析技术需要信号具有非高斯分布、无噪声等先验知识,因此应用范围有限。理论研究表明,非负张量分解技术作为一种高维信号处理方法,目前广泛应用在生物医学、音频分离、图像和文本处理等领域,在进行信号分解时,无需先验知识,因此,在合适的时频变换和张量分解技术下,可有效分离出源信号。
现有的非负张量主要是二维时频数据并联合通道的方式构建,而时频变换中的窗长则根据经验选择,无法适应不同振动信号特征,并且在非负张量分解过程中的源信号个数也依靠经验给出,导致不能充分表征源信号的振动特征,降低了源信号的分解效果。
发明内容
为了克服上述现有技术的缺点,本发明的目的是提供了一种基于非负张量分解的多源信号分离方法,通过最优窗长和最优源信号个数的自适应选择,在非负张量分解下,能够准确分离出源信号。
为了达到上述目的,本发明采取的技术方案为:
一种基于非负张量分解的多源信号分离方法,包括以下步骤:
步骤一:提取多源振动信号Am×n,其中m为每个源信号数据点个数,n为信号个数;
步骤二:对于多源振动信号Am×n,选择不同窗长下的汉宁窗对Am×n进行短时傅里叶变换构建时频数据,得到不同窗长下的时频数据Bm×m×n,根据时频数据Bm×m×n求解时域方向和频域方向的平均信息熵,绘制不同窗长下的平均信息熵图形,选择时域方向和频域方向的平均信息熵的交点所对应的窗长作为最优窗长;
步骤三:根据最优窗长,对多源振动信号Am×n进行短时傅里叶变换得到时频张量数据Xt×f×n,其中t、f、n分别代表时间、频率和信号个数;
步骤四:对时频张量数据Xt×f×n进行非负张量分解,根据分解过程中的收敛误差、迭代步数和核一致性,采用基于收敛误差及迭代步数的评价方法和基于核一致性的源信号个数的优化估计方法,其中基于收敛误差及迭代步数的评价方法是通过非负张量分解过程中算法的迭代步数和相邻层之间的相对误差来衡量的,而基于核一致性的源信号个数的优化估计方法通过将非负张量分解和同等规格的非负Tucker分解的内核数据结构间的相互关系进行评估,核一致性指标用公式表示为:
上式中:F—非负Tucker分解的核中所有元素的平方和;gdefG—非负张量分解的核元素;tdefT—非负Tucker分解的核元素,最终根据得到的收敛误差及迭代步数和核一致性的变化规律曲线,找到最优源信号个数r;
步骤五:根据最优源信号个数r,对时频张量数据Xt×f×n进行非负张量分解得到X1∈Rt×r,X2∈Rf×r,X3∈Rn×r,由公式:
Xj=X1(:,i)×X2(:,i)' (2)
其中i=1:1:r,j=1:1:r,Xj代表第j个源信号的重构时频矩阵特征分量,得到了r个源信号的重构时频矩阵特征分量;
步骤六:选择步骤三中得到的时频张量数据Xt×f×n中任一个信号的时频数据Xt ×f×k,进行源信号的时频矩阵重构,即用公式:
Yj=Xj·Xt×f×k (3)
其中k=1:1:n,j=1:1:r,Yj代表第j个源信号的时频矩阵,得到r个重构源信号时频矩阵,然后利用短时傅里叶逆变换公式:
其中f代表频率,t代表时间,得到r个源信号,成功地从多源振动信号中提取出源信号。
本发明的有益效果在于:
本发明将非负张量分解应用到信号的源分离上,在构造非负时频张量过程中,采用平均信息熵的交点获得短时傅里叶变换的最优窗长,可以更准确地表示时域和频域两个方向上的信号特征。而在非负张量分解过程中,采用基于收敛误差及迭代步数的评价方法和基于核一致性的源信号个数的优化估计方法,能够得到准确的源信号的个数。相比与其他的源信号分离技术,本发明能够成功地从原始的多源振动信号中提取出源信号。
附图说明
图1为本发明方法的流程图。
图2为实施例混合信号时域图。
图3为实施例混合信号频域图。
图4为实施例基于平均信息熵的最优窗长的选择流程图。
图5为实施例基于平均信息熵的窗长的选择示意图。
图6为实施例最优源信号个数的选择流程图。
图7为实施例最优源信号个数选择示意图。
图8为实施例分解得到的源信号的时域和频域图,图(a)为调幅源信号的时域和频域图;图(b)为调频调幅源信号的时域和频域图,图(c)为调幅调频源信号的时域和频域图,图(d)为周期性冲击源信号的时域和频域图。
具体实施方式
下面结合附图和实施例对本发明作详细描述。
参照图1,一种基于非负张量分解的多源信号分离方法,包括以下步骤:
步骤一:生成四种典型的模拟信号,即调频调幅信号、调幅信号、调幅调频信号和周期冲击信号,其中,调频调幅信号模拟齿轮的啮合振动,取载波频率和调制频率分别为750Hz和25Hz,调幅信号取载波频率和调制频率分别为400Hz和10Hz,调幅调频信号的载波频率和调制频率分别为210Hz和60Hz,周期冲击信号取振荡频率为3000Hz,取每个信号的2000个数据点,通过混合得到多源振动信号A2000×4,其波形和频谱参照图2和图3所示;
步骤二:对步骤一得到的多源振动信号A2000×4进行短时傅里叶变换时,选择不同窗长下的汉宁窗对多源振动信号A2000×4进行短时傅里叶变换构建时频数据,设定汉宁窗的窗长范围为1-300,得到不同窗长下对应的时频数据B2000×2000×4,参照图4所示,根据不同窗长下的时频数据B2000×2000×4求解多源振动信号的平均信息熵,绘制不同窗长下时域和频域的平均信息熵图形,参照图5,选择平均信息熵的交点所对应的窗长作为最优窗长,本实施例选择的最优窗长为31;
步骤三:基于最优窗长,对多源振动信号A2000×4进行短时傅里叶变换得到多源振动信号的时频张量数据X2000×2000×4,其中2000、2000、4分别代表时间、频率和信号个数;
步骤四:对时频张量数据X2000×2000×4进行非负张量分解,根据分解过程中的收敛误差、迭代步数和核一致性,采用基于收敛误差及迭代步数的评价方法和基于核一致性的源信号个数的优化估计方法,其中基于收敛误差及迭代步数的评价方法是通过非负张量分解过程中算法的迭代步数和相邻层之间的相对误差来衡量的,而基于核一致性的源信号个数的优化估计方法通过将非负张量分解和同等规格的非负Tucker分解的内核数据结构间的相互关系进行评估,核一致性指标用公式表示为
其中:F—非负Tucker分解的核中所有元素的平方和;gdefG—非负张量分解的核元素;tdefT—非负Tucker分解的核元素,最终根据得到的收敛误差、迭代步数和核一致性三种指标的变化规律曲线,找到最优源信号个数r;参照图6和图7,图6为源信号个数估计流程图,图7为多源信号在非负张量分解过程中的收敛误差、迭代次数和核一致性指标的变化规律,从图中可以看出,源信号个数从4到5时,核一致性指标值下降到0,而收敛误差和迭代次数基本不再发生变化,此时对应的最优源信号个数为4,这与本实施例中所使用的模拟信号的个数一致;
步骤五:根据最优源信号个数对时频张量数据X2000×2000×4进行非负张量分解得到X1∈R2000×4,X2∈R2000×4,X3∈R4×4,由公式:
Xj=X1(:,i)×X2(:,i)' (2)
其中i=1:1:4,j=1:1:4,Xj代表第j个源信号的重构时频矩阵特征分量,这样就得到4个源信号的重构时频矩阵特征分量;
步骤六:选择步骤三中得到的时频张量数据Xt×f×n中任一个信号的时频数据Xt ×f×k,进行源信号的时频矩阵重构,即用公式:
Yj=Xj·Xt×f×k (3)
其中k=1:1:4,j=1:1:4,本次选择多源振动信号中第一个信号组成的时频张量数据X2000×2000×1中的时频矩阵进行源信号的时频矩阵重构,Yj代表第j个源信号的时频矩阵,进而通过短时傅里叶逆变换获得源信号:
图8所示为分离得到的4个源信号的时域和频谱,其中图(a)所示为分离出的载波频率为400Hz的调幅信号,而图(b)所示为载波频率为750Hz的调幅调频源信号。图(c)为载波频率为210Hz的调幅调频信号,图(d)为周期性冲击成分,由此可见,非负张量分解能够从混合信号中准确地提取出源信号。

Claims (1)

1.一种基于非负张量分解的多源信号分离方法,其特征在于,包括以下步骤:
步骤一:提取多源振动信号Am×n,其中m为每个源信号数据点个数,n为信号个数;
步骤二:对于多源振动信号Am×n,选择不同窗长下的汉宁窗对An进行短时傅里叶变换构建时频数据,得到不同窗长下的时频数据Bm×m×n,根据时频数据Bm×m×n求解时域方向和频域方向的平均信息熵,绘制不同窗长下的平均信息熵图形,选择时域方向和频域方向的平均信息熵的交点所对应的窗长作为最优窗长;
步骤三:根据最优窗长,对多源振动信号Am×n进行短时傅里叶变换得到时频张量数据Xt ×f×n,其中t、f、n分别代表时间、频率和信号个数;
步骤四:对时频张量数据Xt×f×n进行非负张量分解,根据分解过程中的收敛误差、迭代步数和核一致性,采用基于收敛误差及迭代步数的评价方法和基于核一致性的源信号个数的优化估计方法,其中基于收敛误差及迭代步数的评价方法是通过非负张量分解过程中算法的迭代步数和相邻层之间的相对误差来衡量的,而基于核一致性的源信号个数的优化估计方法通过将非负张量分解和同等规格的非负Tucker分解的内核数据结构间的相互关系进行评估,核一致性指标用公式表示为:
上式中:F—非负Tucker分解的核中所有元素的平方和;gdefG—非负张量分解的核元素;tdefT—非负Tucker分解的核元素,最终根据得到的收敛误差及迭代步数和核一致性的变化规律曲线,找到最优源信号个数r;
步骤五:根据最优源信号个数r,对时频张量数据Xt×f×n进行非负张量分解得到X1∈Rt ×r,X2∈Rf×r,X3∈Rn×r,由公式:
Xj=X1(:,i)×X2(:,i)' (2)
其中i=1:1:r,j=1:1:r,Xj代表第j个源信号的重构时频矩阵特征分量,得到了r个源信号的重构时频矩阵特征分量;
步骤六:选择步骤三中得到的时频张量数据Xt×f×n中任一个信号的时频数据Xt×f×k,进行源信号的时频矩阵重构,即用公式:
Yj=Xj·Xt×f×k (3)
其中k=1:1:n,j=1:1:r,Yj代表第j个源信号的时频矩阵,得到r个重构源信号时频矩阵,然后利用短时傅里叶逆变换公式:
其中f代表频率,t代表时间,得到r个源信号,成功地从多源振动信号中提取出源信号。
CN201811246892.8A 2018-10-24 2018-10-24 一种基于非负张量分解的多源信号分离方法 Active CN109214469B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811246892.8A CN109214469B (zh) 2018-10-24 2018-10-24 一种基于非负张量分解的多源信号分离方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811246892.8A CN109214469B (zh) 2018-10-24 2018-10-24 一种基于非负张量分解的多源信号分离方法

Publications (2)

Publication Number Publication Date
CN109214469A true CN109214469A (zh) 2019-01-15
CN109214469B CN109214469B (zh) 2020-06-26

Family

ID=64996227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811246892.8A Active CN109214469B (zh) 2018-10-24 2018-10-24 一种基于非负张量分解的多源信号分离方法

Country Status (1)

Country Link
CN (1) CN109214469B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112100858A (zh) * 2020-09-18 2020-12-18 中国人民解放军海军工程大学 一种多源激振系统下单点频率的振动变形分析方法
CN113702044A (zh) * 2021-08-13 2021-11-26 华中科技大学 一种轴承故障检测方法及系统
CN113804981A (zh) * 2021-09-15 2021-12-17 电子科技大学 一种时频联合最优化多源多信道信号分离方法
CN114182794A (zh) * 2021-12-08 2022-03-15 中山东菱威力电器有限公司 一种基于自动冲水便器的红外感应控制方法及装置
CN114235413A (zh) * 2021-12-28 2022-03-25 频率探索智能科技江苏有限公司 多路信号三阶张量模型构建方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103051367A (zh) * 2012-11-27 2013-04-17 西安电子科技大学 一种基于聚类的同步正交跳频信号盲源分离方法
CN103728135A (zh) * 2013-12-16 2014-04-16 西安交通大学 一种非负矩阵分解的轴承故障特征提取和诊断方法
US20140169677A1 (en) * 2012-12-19 2014-06-19 Hong Kong Applied Science and Technology Research Institute Company Limited Perceptual bias level estimation for hand-drawn sketches in sketch-photo matching
CN104505100A (zh) * 2015-01-06 2015-04-08 中国人民解放军理工大学 一种基于鲁棒非负矩阵分解和数据融合的无监督语音增强方法
CN104751169A (zh) * 2015-01-10 2015-07-01 哈尔滨工业大学(威海) 高铁钢轨伤损分类方法
CN106769010A (zh) * 2016-12-13 2017-05-31 南昌航空大学 一种欠定盲分离中的机械振源数估计方法
CN107992802A (zh) * 2017-11-10 2018-05-04 桂林电子科技大学 一种基于nmf的微震弱信号识别方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103051367A (zh) * 2012-11-27 2013-04-17 西安电子科技大学 一种基于聚类的同步正交跳频信号盲源分离方法
US20140169677A1 (en) * 2012-12-19 2014-06-19 Hong Kong Applied Science and Technology Research Institute Company Limited Perceptual bias level estimation for hand-drawn sketches in sketch-photo matching
CN103728135A (zh) * 2013-12-16 2014-04-16 西安交通大学 一种非负矩阵分解的轴承故障特征提取和诊断方法
CN104505100A (zh) * 2015-01-06 2015-04-08 中国人民解放军理工大学 一种基于鲁棒非负矩阵分解和数据融合的无监督语音增强方法
CN104751169A (zh) * 2015-01-10 2015-07-01 哈尔滨工业大学(威海) 高铁钢轨伤损分类方法
CN106769010A (zh) * 2016-12-13 2017-05-31 南昌航空大学 一种欠定盲分离中的机械振源数估计方法
CN107992802A (zh) * 2017-11-10 2018-05-04 桂林电子科技大学 一种基于nmf的微震弱信号识别方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUANMING CHEN 等: "Feature extraction for fault diagnosis utilizing supervised nonnegative matrix factorization combined statistical model", 《2016 9TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS》 *
梁霖 等: "基于非负矩阵分解的单通道故障特征分离方法", 《振动、测试与诊断》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112100858A (zh) * 2020-09-18 2020-12-18 中国人民解放军海军工程大学 一种多源激振系统下单点频率的振动变形分析方法
CN112100858B (zh) * 2020-09-18 2021-12-17 中国人民解放军海军工程大学 一种多源激振系统下单点频率的振动变形分析方法
CN113702044A (zh) * 2021-08-13 2021-11-26 华中科技大学 一种轴承故障检测方法及系统
CN113702044B (zh) * 2021-08-13 2022-04-19 华中科技大学 一种轴承故障检测方法及系统
CN113804981A (zh) * 2021-09-15 2021-12-17 电子科技大学 一种时频联合最优化多源多信道信号分离方法
CN113804981B (zh) * 2021-09-15 2022-06-24 电子科技大学 一种时频联合最优化多源多信道信号分离方法
CN114182794A (zh) * 2021-12-08 2022-03-15 中山东菱威力电器有限公司 一种基于自动冲水便器的红外感应控制方法及装置
CN114182794B (zh) * 2021-12-08 2024-04-02 中山东菱威力电器有限公司 一种基于自动冲水便器的红外感应控制方法及装置
CN114235413A (zh) * 2021-12-28 2022-03-25 频率探索智能科技江苏有限公司 多路信号三阶张量模型构建方法
CN114235413B (zh) * 2021-12-28 2023-06-30 频率探索智能科技江苏有限公司 多路信号三阶张量模型构建方法

Also Published As

Publication number Publication date
CN109214469B (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
CN109214469A (zh) 一种基于非负张量分解的多源信号分离方法
CN107576943B (zh) 基于瑞利熵的自适应时频同步压缩方法
Chen et al. Intrinsic chirp component decomposition by using Fourier series representation
Huang et al. A review on Hilbert‐Huang transform: Method and its applications to geophysical studies
CN109307862A (zh) 一种目标辐射源个体识别方法
CN104390781A (zh) 一种基于lmd和bp神经网络的齿轮故障诊断方法
Scafetta High resolution coherence analysis between planetary and climate oscillations
CN106534014A (zh) 一种多分量lfm信号的精确检测与分离方法
CN111224672B (zh) 一种基于多通道延时的多谐波信号欠采样方法
Dimitriadis et al. Stochastic similarities between the microscale of turbulence and hydro-meteorological processes
Shevgunov et al. Estimation of a Spectral Correlation Function Using a Time-Smoothing Cyclic Periodogram and FFT Interpolation—2N-FFT Algorithm
CN105891600A (zh) 四相相移键控信号频谱估计方法
Lin et al. Data analysis using a combination of independent component analysis and empirical mode decomposition
Basarab et al. Analytic estimation of subsample spatial shift using the phases of multidimensional analytic signals
Cicone et al. Jot: a variational signal decomposition into jump, oscillation and trend
CN106301755B (zh) 一种基于小波分析的能量泄漏信号的降噪方法及系统
Xiong et al. A coherent compensation method for multiband fusion imaging
Cheng et al. Application of the improved generalized demodulation time–frequency analysis method to multi-component signal decomposition
CN108169561B (zh) 基于反馈结构的多谐波信号欠采样方法及系统
CN105044698B (zh) 一种适用于短时观测的空间目标的微多普勒分析方法
CN110944336A (zh) 一种基于有限新息率的时频谱感知方法
CN103954932B (zh) 一种基于信号循环平稳特性的盲抽取方法
CN103577877B (zh) 一种基于时频分析和bp神经网络的船舶运动预报方法
Yang A Pn spreading model constrained with observed amplitudes in Asia
Zhang et al. Compressive orthogonal frequency division multiplexing waveform based ground penetrating radar

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant