CN109206650A - 药品包装用薄膜及其制备方法 - Google Patents

药品包装用薄膜及其制备方法 Download PDF

Info

Publication number
CN109206650A
CN109206650A CN201811020242.1A CN201811020242A CN109206650A CN 109206650 A CN109206650 A CN 109206650A CN 201811020242 A CN201811020242 A CN 201811020242A CN 109206650 A CN109206650 A CN 109206650A
Authority
CN
China
Prior art keywords
graphene
polymer
layer
solution
cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811020242.1A
Other languages
English (en)
Other versions
CN109206650B (zh
Inventor
张辉
柏金枝
闫斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Huili Industrial Co Ltd
Original Assignee
Sichuan Huili Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Huili Industrial Co Ltd filed Critical Sichuan Huili Industrial Co Ltd
Priority to CN201811020242.1A priority Critical patent/CN109206650B/zh
Priority to US16/240,373 priority patent/US10703080B2/en
Publication of CN109206650A publication Critical patent/CN109206650A/zh
Priority to US16/880,142 priority patent/US11318724B2/en
Application granted granted Critical
Publication of CN109206650B publication Critical patent/CN109206650B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B41/00Arrangements for controlling or monitoring lamination processes; Safety arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B43/00Operations specially adapted for layered products and not otherwise provided for, e.g. repairing; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/60Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen
    • C08F220/603Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen and containing oxygen in addition to the carbonamido oxygen and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/60Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen
    • C08F220/606Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen and containing other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/315Compounds containing carbon-to-nitrogen triple bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/38Thiocarbonic acids; Derivatives thereof, e.g. xanthates ; i.e. compounds containing -X-C(=X)- groups, X being oxygen or sulfur, at least one X being sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/08Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B2037/1253Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives curable adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/14Corona, ionisation, electrical discharge, plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了药品包装用薄膜及其制备方法,药品包装用薄膜包括聚合物薄膜层,所述聚合物薄膜层通过光固化粘合剂粘接有石墨烯复合层,所述石墨烯复合层包括多层石墨烯层,所述相邻两层石墨烯层之间通过光固化粘合剂粘接;所述光固化粘合剂包括超支化阳离子仿贻贝聚合物,所述超支化阳离子仿贻贝聚合物包括多邻酚羟基二苯甲酮烯酰胺单体、阳离子单体以及光响应单体。本发明使用较少的粘合剂即可完成强力的粘结,粘合剂层厚度减少,使得在总厚度不变、总质量不显著增加的前提下,石墨烯复合层的层数大幅提升,不仅满足药物包装材料的需求,而且使得的水蒸气透过量、氧气透过量明显降低,拉伸强度显著增加。

Description

药品包装用薄膜及其制备方法
技术领域
本发明涉及包装材料领域,具体涉及药品包装用薄膜及其制备方法。
背景技术
聚合物薄膜包装材料作为药品的主要包装材料,在日常生活中已变得越来越重要。然而,受塑料薄膜生产工艺及自身物理化学特性的影响,使得塑料对氧气、水蒸气、液体物质及其他低分子量物质的阻隔性能很难满足大多数药物包装的要求。氧气和水蒸气等小分子气体对包装材料的渗透会导致药品中的活性成分发生氧化变质,进而引起微生物的繁殖等现象,直接的后果就是药物的保质期大大缩短。所以,提高塑料薄膜包装材料对小分子气体如氧气、水蒸气的阻隔性和赋予其抗菌性能对其品质提升具有重要意义。
石墨烯是一种二维碳纳米材料,每个碳原子以sp2杂化形成共价键的方式与另外3个碳原子相连,继而排列成蜂窝状的六边形晶格。每个碳原子上剩余单电子2P轨道相互重合,形成离域共轭大π键。石墨烯六元环孔隙尺寸仅为0.15nm,比已知最小气体分子——氦气直径还要小,具备天然的气体阻隔性。同时,单层石墨烯对可见光的透过率高达97%,在合适的制备条件下很容易制备出高透光性的薄膜材料。并且,单层石墨烯的厚度仅为0.34nm,而宽度可达几微米至数十厘米。这些使石墨烯成为了理想的纳米阻隔材料。
目前,利用石墨烯制备聚合物薄膜的方法之一是通过粘合剂将石墨烯薄膜材料与聚合物薄膜粘合,但由于现有的粘合剂与石墨烯的接触面积小、反应位点少,使得薄膜的安全性、结合牢度差,同时粘合剂涂覆不均匀不仅造成石墨烯薄膜和聚合物薄膜的结合强度差,而且石墨烯薄膜各处厚度不同造成药品包装阻隔性能存在差异,很难满足药物包装的要求;不仅如此,现有的聚合物薄膜制备工艺污染大、后处理工艺复杂,生产成本高。
发明内容
本发明的目的在于提供药品包装用薄膜及其制备方法,以解决现有的药品包装阻隔性能差,以及其制备工艺污染大、工艺复杂所造成的生产成本高的问题。
本发明通过下述技术方案实现:
药品包装用薄膜,包括聚合物薄膜层,所述聚合物薄膜层通过光固化粘合剂粘接有石墨烯复合层,所述石墨烯复合层包括多层石墨烯层,所述相邻两层石墨烯层之间通过光固化粘合剂粘接;所述光固化粘合剂包括超支化阳离子仿贻贝聚合物,所述超支化阳离子仿贻贝聚合物包括多邻酚羟基二苯甲酮烯酰胺单体、阳离子单体以及光响应单体。
现有技术中,专利号CN103381934A公开了一种食品包装袋,该包装袋包括石墨烯抗菌层和塑料层,石墨烯抗菌层和塑料层的边缘通过柔性白乳胶复合在一起。但是,现有薄膜材料所使用的粘合剂与石墨烯进行化学反应的位点少造成聚合物薄膜层和石墨烯层的结合牢度差,使得粘合后的包装薄膜的石墨烯层容易从聚合物薄膜层上脱落。为了获得更好的粘结效果,虽然可以增加粘结剂的用量,但这将增加粘结剂层的厚度,在总厚度不变的情况下,石墨烯层的厚度降低,造成了石墨烯层阻隔性差,很难满足药物包装的要求。
为了解决上述问题,本发明提供了一种药品包装用薄膜,该药品包装用薄膜包括聚合物薄膜层,聚合物薄膜层可以采用聚丙烯(PP)、聚乙烯(PE)、聚对苯二甲酸乙二醇酯(PET)、聚氯乙烯(PVC)、聚对苯二甲酸丁二醇酯(PBT)等药物包装用聚合物薄膜。聚合物薄膜层通过光固化粘合剂粘接石墨烯复合层,石墨烯复合层包括多层石墨烯层,相邻的两层石墨烯层之间通过光固化粘合剂所形成的粘合剂层粘接,也即,在聚合物薄膜层上交替设置有粘合剂层和石墨烯层,优选地,石墨烯复合层中的石墨烯层数为1~30层。
该技术方案中所使用的光固化粘合剂包括超支化阳离子仿贻贝聚合物,所述超支化阳离子仿贻贝聚合物包括多邻酚羟基二苯甲酮烯酰胺单体和阳离子单体。优选地,多邻酚羟基二苯甲酮烯酰胺单体为2,3,4-三羟基苯甲酰基对苯甲酰-(2-氨基乙基)丙烯酰胺,2,3-二羟基苯甲酰基对苯甲酰-(2-氨基乙基)丙烯酰胺或2,3,4-三羟基苯甲酰基间苯甲酰-(2-氨基乙基)丙烯酰胺;阳离子单体为N-(2-氨基乙基)(甲基)丙烯酰胺盐酸盐,N-(3-氨基丙基)(甲基)丙烯酰胺盐酸盐,N-(4-氨基丁基)(甲基)丙烯酰胺盐酸盐,N-(6-氨基己基)(甲基)丙烯酰胺盐酸盐和2-氨基乙基)(甲基)丙烯酸酯盐酸盐中的任一种。
多邻酚羟基二苯甲酮烯酰胺单体中具备大量的自由儿茶酚基团,儿茶酚基团在阳离子端基的存在下可以通过协同作用提高儿茶酚基团对聚合物薄膜层的结合力。另外,大量自由儿茶酚基团和阳离子基团可以通过一系列不同的强度的分子间相互作用力如范德华力,氢键和阳离子-pi相互作用力等使得超支化阳离子仿贻贝聚合物对多种聚合物薄膜层均具有良好的粘附性能。因此,包含了多邻酚羟基二苯甲酮烯酰胺单体和阳离子单体的超支化阳离子仿贻贝聚合物所制得的粘合剂与聚合物薄膜层之间的结合牢度显著提高。
超支化阳离子仿贻贝聚合物还包括光响应单体。优选地,所述光响应单体可以为4-叠氮基-2,3,5,6-四氟苯甲酰-(2-氨基乙基)丙烯酰胺,4-叠氮基-2,3,5-三氟苯甲酰-(2-氨基乙基)丙烯酰胺,4-叠氮基-2,3-四氟苯甲酰-(2-氨基乙基)丙烯酰胺,4-叠氮基-苯甲酰-(2-氨基乙基)丙烯酰胺的任一种。
所述光响应单体与石墨烯分子存在分子间力以外,在光照作用下光响应单体产生苯环自由基,苯环自由基可以进攻石墨烯分子上的C—H键,发生化学反应形成共价键,极大地提升了聚合物与石墨烯分子之间的结合强度。
由此可见,超支化阳离子仿贻贝聚合物所制备的粘合剂显著地增加了粘合剂与聚合物薄膜层的结合强度,以及粘合剂与石墨烯层的结合强度。可以使用较少的粘合剂即可完成强力的粘结,粘合剂层厚度减少,使得在总厚度不变、总质量不显著增加的前提下,石墨烯复合层的层数大幅提升,不仅满足药物包装材料的需求,而且使得的水蒸气透过量、氧气透过量明显降低,拉伸强度显著增加。
作为本发明超支化阳离子仿贻贝聚合物的一种优选结构,所述超支化阳离子仿贻贝聚合物具有式Ⅰ所示的结构:
所述式Ⅰ中,x=1~10,y=20~80,z=30~80,w=5~20,u=20~80,K=1~5,n=10~50,m=5~30;
所述式Ⅰ中,R1选自式Ⅱ所示的基团,
所述式Ⅱ中,R3,R4,R5和R6独立地选自氢或者卤素;
所述式Ⅰ中,R2选自式Ⅲ所示的基团中的任一种,
如式Ⅱ所示,R1中的R3,R4,R5和R6基团可以部分或全部为卤素,优选地,卤素采用氟取代,在光照情况下,氟基与石墨烯之间的共价键可断裂或结合,进而使得聚合物与石墨烯之间的结合强度可根据光照强度变化,使得粘合剂的粘合强度能够根据具体需求进行调整,更适用于石墨烯薄膜包装材料。优选地,聚合物的聚合度为100~400。优选地,式Ⅰ中,K=1~3, n=20~30,m=10~20。
相比于传统的小分子粘合剂和常见的聚合物粘合剂,本发明所公开的超支化阳离子仿贻贝聚合物具有优异的仿贻贝非选择性粘附性能、良好的生物相容性和粘合强度可调性。
进一步地,所述式Ⅱ中,R3,R4,R5和R6独立地选自氢或者氟。
作为R1的一种优选结构,所述R1选自式Ⅳ所示的基团,
进一步地,所述石墨烯复合层的厚度为10~200nm。优选地,石墨烯复合层的厚度在 30~70nm时,药品包装用薄膜的透光性、透气性和质量较好。
本发明还提供上述药品包装用薄膜的制备方法,该制备方法包括以下步骤:
(A)采用可逆加成-断裂链转移聚合法制备超支化阳离子仿贻贝聚合物,再将所制备的超支化阳离子仿贻贝聚合物配置成粘合剂水溶液;
(B)制备还原氧化石墨烯溶液;
(C)将步骤(A)中制备的粘合剂水溶液喷涂在聚合物薄膜上形成粘合剂层,再在粘合剂层上喷涂步骤(B)中制备的还原氧化石墨烯溶液形成石墨烯层,之后光照固化;
(D)在步骤(C)中形成的石墨烯层上喷涂步骤(A)中制备的粘合剂水溶液形成粘合剂层,再在粘合剂层上喷涂步骤(B)中制备的还原氧化石墨烯溶液形成石墨烯层,之后光照固化;
(E)重复(D)步骤直到达到所需层数的石墨烯复合层。
步骤(A)中,利用可逆加成-断裂链转移聚合法(RAFT聚合法)制得超支化阳离子仿贻贝聚合物,该超支化阳离子仿贻贝聚合物包括多邻酚羟基二苯甲酮烯酰胺单体、阳离子单体和光响应单体,之后将所制得的超支化阳离子仿贻贝聚合物配成浓度为0.5~5.0mg/mL的粘合剂水溶液备用。
步骤(B)中,可使用市售的氧化石墨烯,也可以通过Hummers法制备氧化石墨烯溶液,之后利用还原剂将氧化石墨烯还原得到分散稳定的还原氧化石墨烯溶液。优选地,还原剂为抗坏血酸钠、氢碘酸、水合肼、硼氢化钠中的一种。
步骤(C)中,首先将粘合剂水溶液均匀地喷涂在聚合物薄膜上形成粘合剂层,再在粘合剂层上喷涂还原氧化石墨烯溶液以形成石墨烯层,优选地,还原氧化石墨烯溶液的浓度为 0.01~5mg/mL。之后进行光照,使粘合剂固化。在进行步骤(C)之前,可以使用清水清洗聚合物薄膜表面以除去表面的污染物,提高聚合物薄膜表面的粘附力。
现有技术中,在聚合物薄膜上喷涂粘合剂之前,通常需要对聚合物薄膜进行电晕处理。本申请中,多邻酚羟基二苯甲酮烯酰胺单体含有大量的儿茶酚基团,可以与聚合物薄膜表面形成各种类型的分子间作用力如氢键、范德华力、阳离子pi作用力等,从而很好地与聚合物薄膜表面结合,即使没有电晕步骤,粘合剂水溶液也能够很好地涂覆在聚合物薄膜层上,省去了电晕步骤,不仅降低了工艺成本、简化了工艺步骤,还缩短了工时,具有广泛的推广价值。
步骤(D)中,在形成的石墨烯层上继续交替喷涂粘合剂层和石墨烯层,每喷涂完一层粘合剂层和一层石墨烯层后,均在光照下使粘合剂层固化,最终达到所需层数的石墨烯复合层,优选地,石墨烯复合层的石墨烯层层数为1~30层。
上述工艺中,通过交替喷涂粘合剂层和石墨烯层形成石墨烯复合层,所制备的石墨烯复合层具有较高的阻隔性能;同时,在每次喷涂粘合剂层之后,均使用光照使粘合剂层固化,不仅提高了粘合强度,而且缩短了工艺时间;不仅如此,制备工艺在确保相同的涂覆效果的前提下,省去了现有技术中所采用的电晕步骤,不仅降低了工艺成本、简化了工艺步骤,还缩短了工时,具有广泛的推广价值。
进一步地,所述步骤(A)包括以下步骤:
(A1)将引发剂、RAFT试剂和第一反应混合物加入至装有DMF的容器中,形成第二反应混合物;
(A2)搅拌第二反应混合物至均匀,通氩气除去反应体系中的氧气;
(A3)加热、搅拌第二反应混合物进行反应;
(A4)达到所需分子量的产物后,将反应体系暴露在空气中,并在冷水浴中快速冷却以终止反应;
(A5)纯化以获得超支化阳离子仿贻贝聚合物;
(A6)将超支化阳离子仿贻贝聚合物配置成浓度为0.5~5mg/mL的粘合剂水溶液;
上述步骤中,所述第一反应混合物包括多邻酚羟基二苯甲酮烯酰胺单体、阳离子单体、光响应单体、聚乙二醇二烯酸酯和聚乙二醇烯酸酯。
首先,将引发剂、RAFT试剂、多邻酚羟基二苯甲酮烯酰胺单体、阳离子单体、光响应单体、聚乙二醇二烯酸酯和聚乙二醇烯酸酯加入到装有DMF(N,N-二甲基甲酰胺)的圆底烧瓶中并搅拌均匀,优选地,引发剂的浓度为0.012M,之后通入氩气以除去反应体系中的氧气,优选地,氩气的通入时间为20~25分钟出。之后将圆底烧瓶放入油浴中加热并搅拌,优选地,油浴温度为60~90℃,搅拌速度为600~800rpm。反应直至达到预期的转化率,并得到所需分子量的产物后,将反应体系暴露在空气中,并将圆底烧瓶放入冷水浴中使得反应体系快速降温。之后纯化产物后得到浅棕色的超支化阳离子仿贻贝聚合物,优选地,纯化所用的溶剂为二氯甲烷和乙醚。纯化后,将超支化阳离子仿贻贝聚合物配置成浓度为0.5~5mg/mL的粘合剂水溶液。
优选地,所述聚乙二醇二烯酸酯为聚乙二醇二丙烯酸酯或聚乙二醇二甲基丙烯酸酯,聚乙二醇二烯酸酯用于调节聚合物的酯化度;所述聚乙二醇烯酸酯为聚乙二醇甲醚丙烯酸酯或聚乙二醇甲醚甲基丙烯酸酯,聚乙二醇烯酸酯用于调节聚合物的溶解度,优选地,其中聚乙二醇的分子量为200~6000。
进一步地,所述多邻酚羟基二苯甲酮烯酰胺单体、阳离子单体、光响应单体、聚乙二醇烯酸酯和聚乙二醇二烯酸酯的摩尔百分比依次为:20%~40%,30%~40%,1%~5%,20%~40%, 5%~10%。
进一步地,步骤(A1)中,所述引发剂、RAFT试剂和第一反应混合物的摩尔比为1:2:100。
进一步地,所述引发剂为1,1′-偶氮双(环己烷甲腈、2,2'-偶氮二(2-甲基丙腈)或4,4'-偶氮双(4-氰基戊酸),所述RAFT试剂为2-(十二烷基三硫代碳酸酯基)-2-甲基丙酸、4-氰基-4-(苯基硫代甲酰硫基)戊酸和2-氰基-2-丙基-4-氰基苯二硫代碳酸酯中的任一种。
本发明对现有的还原氧化石墨烯溶液制备方法进行改进。
药品包装用薄膜的制备工艺的步骤(B)具体包括以下步骤:
(B1)将石墨粉加入浓硫酸中,在冰水浴中搅拌均匀后加入高锰酸钾,控制水浴温度为 10-15℃,反应2小时;
(B2)将反应液移入35℃水浴中恒温反应30min,继续搅拌,并向反应液中加入蒸馏水,之后控制温度在80℃,反应15分钟;
(B3)向反应液中加入一定量15%的双氧水直至气泡产生,趁热过滤并用盐酸和去离子水洗涤滤饼直至滤液呈中性,制得氧化石墨烯水溶液;
(B4)使用氧化石墨烯水溶液前,将氧化石墨烯水溶液用去离子水稀释并超声1小时,获得浓度为0.1-5.0mg/mL的氧化石墨烯溶液;
(B5)将制备的氧化石墨烯溶液与还原剂按照质量比1:3混合,常温反应2分钟,之后稀释至不同浓度的还原氧化石墨烯溶液。
上述技术方案对现有的制备氧化石墨烯的Hummers法进行改进,一方面,反应总时间不足3小时,大幅缩短了Hummers法的反应总时长,且无需静置、烘干等步骤,有效地提高了生产效率;另一方面,整个反应过程采用水作为溶剂,制备条件环保,且后处理工艺更加简单,降低了生产成本。
本发明与现有技术相比,具有如下的优点和有益效果:
1、本发明使用超支化阳离子仿贻贝聚合物制备的光固化粘合剂显著地增加了粘合剂与聚合物薄膜层的结合强度,以及粘合剂与石墨烯层的结合强度;可以使用较少的粘合剂即可完成强力的粘结,粘合剂层厚度减少,使得在总厚度不变、总质量不显著增加的前提下,石墨烯复合层的层数大幅提升,不仅满足药物包装材料的需求,而且使得的水蒸气透过量、氧气透过量明显降低,拉伸强度增加;
2、本发明通过交替喷涂粘合剂层和石墨烯层形成石墨烯复合层,所制备的石墨烯复合层具有较高的阻隔性能;同时,在每次喷涂粘合剂层之后,均使用光照使粘合剂层固化,不仅提高了粘合强度,而且缩短了工艺时间;不仅如此,制备工艺在确保相同的涂覆效果的前提下,省去了现有技术中所采用的电晕步骤,不仅降低了工艺成本、简化了工艺步骤,还缩短了工时,具有广泛的推广价值;
3、本发明对现有的制备氧化石墨烯的Hummers法进行改进,一方面,反应总时间不足 3小时,大幅缩短了Hummers法的反应总时长,且无需静置、烘干等步骤,有效地提高了生产效率;另一方面,整个反应过程采用水作为溶剂,制备条件环保,且后处理工艺更加简单,降低了生产成本。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
本发明所有原料,对其来源没有特别限制,在市场上购买的或按照本领域技术人员熟知的常规方法即可制备,例如光响应单体可通过酯化反应合成,多邻酚羟基二苯甲酮烯酰胺单体可以按照[J]Polymer Bulletin,2012,68,441-452,Tetrahedron Letters,2008,49,1336-1339中公开的方式合成。
本发明所有原料,对其纯度没有特别限制,本发明优选采用分析纯或粘合剂制备领域常规的纯度要求。
本发明对所述取代基的表达方式没有特别限制,均采用本领域技术人员熟知的表达方式,本领域技术人员基于常识,可根据其表达方式正确理解其含义。
本发明所有原料,其牌号和简称均属于本领域常规牌号和简称,每个牌号和简称在其相关用途的领域内均是清楚明确的,本领域技术人员根据牌号、简称以及相应的用途,能够从市售中购买得到或者通过常规方法制备得到。
实施例1:
制备超支化阳离子仿贻贝聚合物P1:
将2,3,4-三羟基苯甲酰基间苯甲酰-(2-氨基乙基)丙烯酰胺,N-(2-氨基乙基)(甲基)丙烯酰胺盐酸盐,4-叠氮基-2,3,5,6-四氟苯甲酰乙基胺(甲基)丙烯酰胺,聚乙二醇甲醚丙烯酸酯 (PEGMEA),聚乙二醇二丙烯酸酯(PEGDEA,乙二醇聚合度为22)和RAFT试剂加入引发剂4,4'-偶氮双(4-氰基戊酸)浓度为0.012M的N,N-二甲基甲酰胺溶液中。其中,PEGMEA中乙二醇聚合度为15,PEGDEA中乙二醇聚合度为22,4,4'-偶氮双(4-氰基戊酸),RAFT试剂和所有参与聚合的单体所构成的第一反应混合物的摩尔比为1:2:100。2,3,4-三羟基苯甲酰基间苯甲酰-(2-氨基乙基)丙烯酰胺:N-(2-氨基乙基)(甲基)丙烯酰胺盐酸盐:4-叠氮基-2,3,5,6- 四氟苯甲酰乙基胺(甲基)丙烯酰胺:PEGDMEA:PEGEA的摩尔百分比为40%:30%:5%: 15%:10%。将所得的第二反应混合物搅拌均匀后,通氩气20~25min除去其中的氧气。将混合体系置于70℃,700rmp的条件下搅拌反应直至达到预期转化率,得到所需分子量的产物。反应结束时,将反应体系暴露在空气中,并在冷水中快速冷却终止反应。用二氯甲烷和乙醚进一步纯化产物后,得到浅棕色粘合剂超支化阳离子仿贻贝聚合物P1。之后将超支化阳离子仿贻贝聚合物P1溶解在乙醇和水(体积比1:1)中,获得浓度为15wt%的粘合剂水溶液S1。
超支化阳离子仿贻贝聚合物P1的结构为:
该结构的图谱检测结果如下:
1H NMR(400MHz,DMSO-D6)δ(ppm):7.90-8.2(-NHCOC6H4CO-)6.6-7.2 (C6H2(OH)3),5.35(-C6H3(OH)2),4.32(CH2OOC-),3.50-3.8(-CH2CH2O-,-OCNHCH2CH2-), 3.22(CH3O-),3.03(-OCNHCH2CH2NH3Cl),2.16(-CH2CHCO-),1.25-1.96(-CH2CHCO-);
19F NMR(188MHz,DMSO-D6)δ(ppm):-134.69~-134.88(2F),-147.58~-147.71(2F)。
实施例2:
制备超支化阳离子仿贻贝聚合物P2:
将2,3,4-三羟基苯甲酰基对苯甲酰胺乙基(甲基)丙烯酰胺盐酸盐,N-(3-氨基丙基)(甲基)丙烯酰胺盐酸盐,4-叠氮基-2,3,5,6-四氟苯甲酰乙基胺(甲基)丙烯酰胺,聚乙二醇甲醚丙烯酸酯(PEGMEA),聚乙二醇二丙烯酸酯(PEGDEA)和RAFT试剂加入引发剂2,2'-偶氮二(2-甲基丙腈)浓度为0.012M的N,N-二甲基甲酰胺溶液中。其中,PEGMEA中乙二醇聚合度为45,PEGDEA中乙二醇聚合度为10,2,2'-偶氮二(2-甲基丙腈),RAFT试剂和所有参与聚合的单体所构成的第一反应混合物的摩尔比为1:2:100。2,3,4-三羟基苯甲酰基苯甲酰胺乙基 (甲基)丙烯酰胺盐酸盐:N-(3-氨基丙基)(甲基)丙烯酰胺盐酸盐:4-叠氮基-2,3,5,6-四氟苯甲酰乙基胺(甲基)丙烯酰胺:PEGDEA:PEGMEA的摩尔百分比为20%:33%:2%:35%: 10%。将所得第二反应混合物搅拌均匀后,通氩气20~25min除去其中的氧气。将混合体系置于70℃,700rmp的条件下搅拌反应直至达到预期转化率,得到所需分子量的产物。反应结束时,将反应体系暴露在空气中,并在冷水中快速冷却终止反应。用二氯甲烷和乙醚进一步纯化产物后,得到浅棕色粘合剂超支化阳离子仿贻贝聚合物P2。之后将超支化阳离子仿贻贝聚合物P2溶解在乙醇和水(体积比1:1)中,获得浓度为15wt%的粘合剂水溶液S2。
超支化阳离子仿贻贝聚合物P2的结构为:
该结构的图谱检测结果如下:
1H NMR(400MHz,DMSO-D6)δ(ppm):
7.90-8.2(-NHCOC6H4CO-)6.6-7.2(C6H2(OH)3),5.35(C6H2(OH)3),4.32(CH2OOC-),3.50-3.8(-CH2CH2O-,-OCNHCH2CH2-),3.22(CH3O-),3.03(-OCNHCH2CH2NH3Cl),2.16 (-CH2CHCO-),1.25-1.96(-CH2CHCO-);
19F NMR(188MHz,DMSO-D6)δ(ppm):-134.69~-134.88(2F),-147.58~-147.71(2F)。
实施例3:
制备超支化阳离子仿贻贝聚合物P3:
将2,3-二羟基苯甲酰基苯甲酸酯类胺乙基(甲基)丙烯酰胺盐酸盐,N-(4-氨基丁基)(甲基)丙烯酰胺盐酸盐,4-叠氮基-苯甲酰乙基胺(甲基)丙烯酰胺,聚乙二醇甲醚丙烯酸酯 (PEGMEA),聚乙二醇二丙烯酸酯(PEGDEA)和RAFT试剂2-(十二烷基三硫代碳酸酯基)-2- 甲基丙酸加入引发剂2,2'-偶氮二(2-甲基丙腈)浓度为0.012M的N,N-二甲基甲酰胺溶液中。其中,PEGMEA中乙二醇聚合度为5,PEGDEA中乙二醇聚合度为8,2,2'-偶氮二(2-甲基丙腈), RAFT试剂和所有参与聚合的单体所构成的第一反应混合物的摩尔比为1:2:100。2,3-二羟基苯甲酰基苯甲酸酯类胺乙基(甲基)丙烯酰胺盐酸盐:N-(4-氨基丁基)(甲基)丙烯酰胺盐酸盐:4-叠氮基-苯甲酰乙基胺(甲基)丙烯酰胺:PEGDEA:PEGMEA的摩尔百分比为25%: 35%:5%:30%:5%。将所得混合溶液搅拌均匀后,通氩气20~25min除去其中的氧气。将混合体系置于70℃,700rmp的条件下搅拌反应直至达到预期转化率,得到所需分子量的产物。反应结束时,将反应体系暴露在空气中,并在冷水中快速冷却终止反应。用二氯甲烷和乙醚进一步纯化产物后,得到浅棕色粘合剂超支化阳离子仿贻贝聚合物P3。之后将超支化阳离子仿贻贝聚合物P3溶解在乙醇和水(体积比1:1)中,获得浓度为15wt%的粘合剂水溶液S3。
超支化阳离子仿贻贝聚合物P3的结构为:
该结构的图谱检测结果如下:
1H NMR(400MHz,DMSO-D6)δ(ppm):7.90-8.2(-NHCOC6H4CO-)6.6-7.5(N3C6H4CO-, -C6H3(OH)2),5.35(-C6H3(OH)3),4.32(CH2OOC-),3.50-3.8(-CH2CH2O-,-OCNHCH2CH2-),3.22(CH3O-),3.03(-OCNHCH2CH2NH3Cl),2.16(-CH2CHCO-),1.25-1.96(-CH2CHCO-)。
实施例4:
制备药品包装用薄膜M1,M2和M3:
首先,通过现有的Hummers法制备得到浓度为15mg/mL的氧化石墨烯溶液,将制备的氧化石墨烯溶液与98wt%的水合肼溶液以1:3的质量比混合,常温反应2分钟后稀释至不同浓度的还原氧化石墨烯溶液;
随后,对三块PET薄膜进行清洗,并超声处理以除去PET薄膜表面的污染物;
将实施例1~实施例3中所制备的粘合剂水溶液S1~S3分别喷涂在三块PET薄膜上以形成粘结剂层,之后将还原氧化石墨烯溶液喷涂到粘合剂层上形成石墨烯层,并在光照条件下固化粘合剂层,光照条件为:在1000W中压汞灯下距离25cm处曝光10s;
之后交替喷涂粘合剂水溶液和还原氧化石墨烯溶液,每喷涂完一次还原氧化石墨烯溶液,即在1000W中压汞灯下距离25cm处曝光10s以固化粘结剂层;最终形成石墨烯层数为30 层的药品包装用薄膜M1,M2和M3。
实施例5:
对比例1采用PVC固体药用硬片,对比例2采用PVDC固体药用硬片。
按照国家标准检测相同厚度、质量的药品包装用薄膜M1、M2、M3、对比例1和对比例2的物理参数,得到的物理参数如表1所示:
表1各药品包装用薄膜的物理参数
项目 单位 M1 M2 M3 对比例1 对比例2
水蒸气透过量 g/m<sup>2</sup>.atm.day 0.32 0.38 0.39 1.01 0.42
氧气透过量 cc/m<sup>2</sup>.atm.day 0.21 0.33 0.35 12.27 0.523
拉伸强度(纵/横) MPa 65.3/64.7 63.9/62.7 64.1/63.4 66.2/65.3 56.7/55.7
热合强度 N/15mm 10.9 11.1 10.8 11.5 10.8
重金属 &lt;0.0001 &lt;0.0001 &lt;0.0001 &lt;0.0001 &lt;0.0001
易氧化物 ml &lt;1.5 &lt;1.5 &lt;1.5 &lt;1.5 &lt;2
不挥发物 mg &lt;25 &lt;30 &lt;30 &lt;30 &lt;30
细菌总数 个/cm<sup>2</sup> &lt;1000 &lt;1000 &lt;1000 &lt;1000 &lt;1000
霉菌总数 个/cm<sup>2</sup> &lt;100 &lt;100 &lt;100 &lt;100 &lt;100
大肠杆菌 个/cm<sup>2</sup> 0 0 0 0 0
从表1可以看出,在相同的质量和厚度下,相较于对比例1和对比例2,实施例1~3所制备的药品包装用薄膜M1,M2和M3的水蒸气透过量和氧气透过量明显下降,有效地阻止氧气和水蒸气等小分子气体渗透进包装材料,避免药品中的活性成分发生氧化变质,遏制微生物繁殖等现象,从而延长了药物的保质期。
实施例6
在实施例4的基础上,对还原氧化石墨烯溶液的制备方法进行改进。
将1克石墨粉加入23ml浓硫酸,置于冰水浴中,充分搅拌均匀,再加入2.5g的高猛酸钾,控制水浴温度10~15℃反应2小时,之后将反应液移入35℃水浴中恒温反应30min,期间继续搅拌,然后向反应液中加入80ml蒸馏水,并控制温度在80℃反应15min,再向反应液中加入一定量15%的双氧水直至气泡产生,趁热过滤并用盐酸和去离子水洗涤滤饼直至滤液呈中性,制得氧化石墨烯水分散液备用;使用氧化石墨烯水溶液前,将氧化石墨烯溶液用去离子水稀释超声1小时,获得浓度为0.1-5mg/mL的氧化石墨烯溶液。
之后将制备的浓度为15mg/mL氧化石墨烯溶液与98wt%的水合肼溶液以1:3的质量比混合,常温反应2分钟,然后将其稀释不同的倍数获得不同浓度的还原氧化石墨烯溶液。
该技术方案中,反应总时间不足3小时,大幅缩短了Hummers法的反应总时长,且无需静置、烘干等步骤,有效地提高了生产效率;另一方面,整个反应过程采用水作为溶剂,制备条件环保,且后处理工艺更加简单,降低了生产成本。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.药品包装用薄膜,包括聚合物薄膜层,其特征在于,所述聚合物薄膜层通过光固化粘合剂粘接有石墨烯复合层,所述石墨烯复合层包括多层石墨烯层,所述相邻两层石墨烯层之间通过光固化粘合剂粘接;
所述光固化粘合剂包括超支化阳离子仿贻贝聚合物,所述超支化阳离子仿贻贝聚合物包括多邻酚羟基二苯甲酮烯酰胺单体、阳离子单体以及光响应单体。
2.根据权利要求1所述的药品包装用薄膜,其特征在于,所述超支化阳离子仿贻贝聚合物具有式Ⅰ所示的结构:
所述式Ⅰ中,x=1~10,y=20~80,z=30~80,w=5~20,u=20~80,K=1~5,n=10~50,m=5~30;
所述式Ⅰ中,R1选自式Ⅱ所示的基团,
所述式Ⅱ中,R3,R4,R5和R6独立地选自氢或者卤素;
所述式Ⅰ中,R2选自式Ⅲ所示的基团中的任一种,
3.根据权利要求2所述的药品包装用薄膜,其特征在于,所述式Ⅱ中,R3,R4,R5和R6独立地选自氢或者氟;R1选自式Ⅳ所示的基团,
4.根据权利要求1所述的药品包装用薄膜,其特征在于,所述石墨烯复合层的厚度为10~200nm。
5.权利要求1~4中任一项所述的药品包装用薄膜的制备方法,其特征在于,包括以下步骤:
(A)采用可逆加成-断裂链转移聚合法制备超支化阳离子仿贻贝聚合物,再将所制备的超支化阳离子仿贻贝聚合物配置成粘合剂水溶液;
(B)制备还原氧化石墨烯溶液;
(C)将步骤(A)中制备的粘合剂水溶液喷涂在聚合物薄膜上形成粘合剂层,再在粘合剂层上喷涂步骤(B)中制备的还原氧化石墨烯溶液形成石墨烯层,之后光照固化;
(D)在步骤(C)中形成的石墨烯层上喷涂步骤(A)中制备的粘合剂水溶液形成粘合剂层,再在粘合剂层上喷涂步骤(B)中制备的还原氧化石墨烯溶液形成石墨烯层,之后光照固化;
(E)重复(D)步骤直到达到所需层数的石墨烯复合层。
6.根据权利要求所述的药品包装用薄膜的制备方法,其特征在于,所述步骤(A)包括以下步骤:
(A1)将引发剂、RAFT试剂和第一反应混合物加入至装有DMF的容器中,形成第二反应混合物;
(A2)搅拌第二反应混合物至均匀,通氩气除去反应体系中的氧气;
(A3)加热、搅拌第二反应混合物进行反应;
(A4)达到所需分子量的产物后,将反应体系暴露在空气中,并在冷水浴中快速冷却以终止反应;
(A5)纯化以获得超支化阳离子仿贻贝聚合物;
(A6)将超支化阳离子仿贻贝聚合物配置成浓度为0.5~5mg/mL的粘合剂水溶液;
上述步骤中,所述第一反应混合物包括多邻酚羟基二苯甲酮烯酰胺单体、阳离子单体、光响应单体、聚乙二醇二烯酸酯和聚乙二醇烯酸酯。
7.根据权利要求6所述的药品包装用薄膜的制备方法,其特征在于,所述多邻酚羟基二苯甲酮烯酰胺单体、阳离子单体、光响应单体、聚乙二醇烯酸酯和聚乙二醇二烯酸酯的摩尔百分比依次为:20%~40%,30%~40%,1%~5%,20%~40%,5%~10%。
8.根据权利要求6所述的药品包装用薄膜的制备方法,其特征在于,步骤(A1)中,所述引发剂、RAFT试剂和第一反应混合物的摩尔比为1:2:100。
9.根据权利要求6所述的药品包装用薄膜的制备方法,其特征在于,所述引发剂为1,1′-偶氮双(环己烷甲腈、2,2'-偶氮二(2-甲基丙腈)或4,4'-偶氮双(4-氰基戊酸),所述RAFT试剂为2-(十二烷基三硫代碳酸酯基)-2-甲基丙酸、4-氰基-4-(苯基硫代甲酰硫基)戊酸和2-氰基-2-丙基-4-氰基苯二硫代碳酸酯中的任一种。
10.根据权利要求5所述的药品包装用薄膜的制备方法,其特征在于,所述步骤(B)包括以下步骤:
(B1)将石墨粉加入浓硫酸中,在冰水浴中搅拌均匀后加入高锰酸钾,控制水浴温度为10-15℃,反应2小时;
(B2)将反应液移入35℃水浴中恒温反应30min,继续搅拌,并向反应液中加入蒸馏水,之后控制温度在80℃,反应15分钟;
(B3)向反应液中加入一定量15%的双氧水直至气泡产生,趁热过滤并用盐酸和去离子水洗涤滤饼直至滤液呈中性,制得氧化石墨烯水溶液;
(B4)使用氧化石墨烯水溶液前,将氧化石墨烯水溶液用去离子水稀释并超声1小时,获得浓度为0.1-5.0mg/mL的氧化石墨烯溶液;
(B5)将制备的氧化石墨烯溶液与还原剂按照质量比1:3混合,常温反应2分钟,之后稀释至不同浓度的还原氧化石墨烯溶液。
CN201811020242.1A 2018-09-03 2018-09-03 药品包装用薄膜及其制备方法 Active CN109206650B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201811020242.1A CN109206650B (zh) 2018-09-03 2018-09-03 药品包装用薄膜及其制备方法
US16/240,373 US10703080B2 (en) 2018-09-03 2019-01-04 Film for medicine packaging and method of preparing the same
US16/880,142 US11318724B2 (en) 2018-09-03 2020-05-21 Film for medicine packaging and method of preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811020242.1A CN109206650B (zh) 2018-09-03 2018-09-03 药品包装用薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN109206650A true CN109206650A (zh) 2019-01-15
CN109206650B CN109206650B (zh) 2021-02-19

Family

ID=64987331

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811020242.1A Active CN109206650B (zh) 2018-09-03 2018-09-03 药品包装用薄膜及其制备方法

Country Status (2)

Country Link
US (2) US10703080B2 (zh)
CN (1) CN109206650B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112537101A (zh) * 2019-09-20 2021-03-23 韩国铝业株式会社 包含石墨烯的药剂包装用薄片
CN114874732A (zh) * 2022-05-30 2022-08-09 中国南方电网有限责任公司超高压输电公司检修试验中心 表面改性胶粘组合物、表面改性金属材料及干式套管

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114644771A (zh) * 2022-04-15 2022-06-21 山东金阳光医药包装有限公司 一种具有抗污抗菌功能的聚氯乙烯药包片材及制备方法
CN114644797A (zh) * 2022-04-15 2022-06-21 山东金阳光医药包装有限公司 一种新型聚氯乙烯药包片材及制备方法
CN117160544A (zh) * 2023-09-04 2023-12-05 山东金阳光医药包装有限公司 一种基于二氧化钛的三维有序大孔复合光催化剂及其在药包材中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102741165A (zh) * 2010-01-18 2012-10-17 曼彻斯特大学 石墨烯聚合物复合材料
CN103381934A (zh) * 2013-07-31 2013-11-06 昆山好利达包装有限公司 一种食品包装袋
CN103692743A (zh) * 2013-12-19 2014-04-02 重庆绿色智能技术研究院 一种石墨烯复合薄膜材料及其制备方法
WO2017004174A1 (en) * 2015-06-30 2017-01-05 Purdue Research Foundation Adhesives and methods of making the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102741165A (zh) * 2010-01-18 2012-10-17 曼彻斯特大学 石墨烯聚合物复合材料
CN103381934A (zh) * 2013-07-31 2013-11-06 昆山好利达包装有限公司 一种食品包装袋
CN103692743A (zh) * 2013-12-19 2014-04-02 重庆绿色智能技术研究院 一种石墨烯复合薄膜材料及其制备方法
WO2017004174A1 (en) * 2015-06-30 2017-01-05 Purdue Research Foundation Adhesives and methods of making the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112537101A (zh) * 2019-09-20 2021-03-23 韩国铝业株式会社 包含石墨烯的药剂包装用薄片
CN114874732A (zh) * 2022-05-30 2022-08-09 中国南方电网有限责任公司超高压输电公司检修试验中心 表面改性胶粘组合物、表面改性金属材料及干式套管
CN114874732B (zh) * 2022-05-30 2024-01-16 中国南方电网有限责任公司超高压输电公司检修试验中心 表面改性胶粘组合物、表面改性金属材料及干式套管

Also Published As

Publication number Publication date
US11318724B2 (en) 2022-05-03
US20200070485A1 (en) 2020-03-05
CN109206650B (zh) 2021-02-19
US10703080B2 (en) 2020-07-07
US20200282714A1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
CN109206650A (zh) 药品包装用薄膜及其制备方法
Liu et al. Supramolecular hybrid hydrogels from noncovalently functionalized graphene with block copolymers
Yang et al. Well-dispersed chitosan/graphene oxide nanocomposites
RU2006138234A (ru) Новый водорастворимый фуллерен, способ его получения и генератор активного кислорода, содержащий фуллерен
Beil et al. Synthesis of nanosized “cored” star polymers
WO2022121370A1 (zh) 一种自增强淀粉基多功能材料的加工方法
CN1952027A (zh) 不溶于水的改性聚乙烯醇涂布液及其制作工艺
WO2016041310A1 (zh) 一种防水隔氧密封膜及其制备和应用
TW469168B (en) Charged mosaic membrane, its production, method for using the membrane, and device provided with the membrane
CN101696272A (zh) 一种可降解的具有多重敏感性能的材料、制法和应用
Zou et al. CO 2-and thermo-responsive vesicles: from expansion–contraction transformation to vesicles-micelles transition
CN104892843A (zh) 一种含poss基具有自修复功能的梳型聚合物及其制备方法
Cao et al. Fabrication of self-healing nanocomposite hydrogels with the cellulose nanocrystals-based Janus hybrid nanomaterials
Shen et al. Cross‐linking induced thermoresponsive hydrogel with light emitting and self‐healing property
CN111499807A (zh) 一种生物可降解pla压花膜及其制备方法
CN109096450A (zh) 一种超支化阳离子仿贻贝聚合物及其制备方法
CN109096517A (zh) 一种药物包装膜及其制备方法
Li et al. Silica-based Janus nanosheets for self-healing nanocomposite hydrogels
CN104004137B (zh) 聚丙烯薄膜用溶剂型光固化改性氯化聚丙烯涂层聚合物及其制备方法和应用
CN109225783A (zh) 一种包装复合膜的生产工艺
Sawada et al. Gelation of fluoroalkylated 2-acrylamido-2-methylpropanesulfonic acid oligomers as potential for prevention of HIV-1 transmission
CN103483216A (zh) 一种可聚合单体及其制备方法和应用
CN100357374C (zh) 一种不溶于水的改性聚乙烯醇涂布液及其制作工艺
CN101817931A (zh) 一种利用苯酚衍生物在聚合物表面改性方法
Shiu et al. Poly (L-glutamic acid)-decorated hybrid colloidal particles from complex particle-templated silica mineralization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Zhang Hui

Inventor after: Bai Jinzhi

Inventor after: Yan Bin

Inventor before: Zhang Hui

Inventor before: Bai Jinzhi

Inventor before: Yan Bin

CB03 Change of inventor or designer information