CN109206138B - 一种高球形度的碳化硅颗粒的制备方法 - Google Patents

一种高球形度的碳化硅颗粒的制备方法 Download PDF

Info

Publication number
CN109206138B
CN109206138B CN201811255499.5A CN201811255499A CN109206138B CN 109206138 B CN109206138 B CN 109206138B CN 201811255499 A CN201811255499 A CN 201811255499A CN 109206138 B CN109206138 B CN 109206138B
Authority
CN
China
Prior art keywords
silicon carbide
carbide particles
sintering
powder
high sphericity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811255499.5A
Other languages
English (en)
Other versions
CN109206138A (zh
Inventor
陈常连
梁欣
周诗聪
季家友
黄志良
徐慢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Dijie Membrane Technology Co ltd
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN201811255499.5A priority Critical patent/CN109206138B/zh
Publication of CN109206138A publication Critical patent/CN109206138A/zh
Application granted granted Critical
Publication of CN109206138B publication Critical patent/CN109206138B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种高球形度的碳化硅颗粒的制备方法。本发明的一种高球形度的碳化硅颗粒的制备方法,包括如下步骤:1)将碳化硅粉末和氮化硅粉末按质量比1:0.6~1.5混合;2)将步骤1)将所述混合粉末清洗后干燥;3)将步骤2)处理所得混合粉末装入石墨匣钵,盖上石墨基片,进行真空烧结,得碳化硅颗粒。本发明的方法采用的原料简单易得,有利于降低成本,涉及的处理步骤简便,操作性强,处理的碳化硅颗粒球形度高、尺寸均一、表面光滑且无杂质,且在得到的碳化硅颗粒的同时也在石墨基板上沉积了碳化硅薄膜,有利于节能降耗。

Description

一种高球形度的碳化硅颗粒的制备方法
技术领域
本发明涉及新材料技术领域,尤其涉及一种高球形度的碳化硅颗粒的制备方法。
背景技术
1891年,美国人艾奇逊在电熔金刚石实验时首次发现了碳化硅(SiC),碳化硅是由硅与碳元素以共价键结合的非金属碳化物,硬度仅次于金刚石和碳化硼,具有优良的导热性能,是一种半导体,高温时能抗氧化。由于SiC陶瓷具有优良的力学性能、抗氧化性、耐磨损性、热稳定性、抗热震性和耐化学腐蚀性,而且热膨胀系数小、热导率大,因此,多孔SiC陶瓷广泛应用于机械、化工、航空航天、污水处理等领域。碳化硅粉末的形貌、粒径大小、粒径分布、相组成、杂质含量等特征对碳化硅基陶瓷材料的成型、烧结、致密化、显微结构和性能具有重要的影响。
由于用来制备SiC陶瓷膜的原料粉主要通过粉碎制得,颗粒棱角分明、球形度低、表面不圆滑。用这种粉末制备的SiC多孔陶瓷在处理污水时,过滤压增大,污水中的组分容易在孔口沉积,造成滤孔堵塞,导致过滤通量的下降,甚至过滤组件快速失效。为了获得更好的过滤性能,需要对原料SiC粉料进行整形,使其球形度提高,表面圆滑。
发明内容
本发明的目的在于,针对现有技术的上述不足,提出一种制备球形度高、表面圆滑且无杂质的碳化硅颗粒的制备方法。
本发明的一种高球形度的碳化硅颗粒的制备方法,包括如下步骤:1)将碳化硅粉末和氮化硅粉末按质量比1:0.6~1.5混合;2)将步骤1)将所述混合粉末清洗后干燥;3)将步骤2)处理所得混合粉末装入石墨匣钵,盖上石墨基片,进行真空烧结,得碳化硅颗粒。
优选的,所述氮化硅、碳化硅粉末的粒径均为0.45~0.55μm。
优选的,所述碳化硅粉末、氮化硅粉末的质量比范围为1:0.6~1.5。
优选的,步骤2)中采用在混合粉末中加入无水乙醇进行清洗。
优选的,在烘箱内进行干燥,干燥的温度为90~100℃。
优选的,步骤3)中烧结的条件为氩气氛围,在常压下烧结。
优选的,所述烧结温度为1000~2200℃,烧结时间为2~6h。烧结温度制度见表1。用此温度制度的原因如下:1.室温到1000℃这个过程是炉子自身的设定。2.由于氮化硅的分解温度在1500℃左右,为了匣钵内气体的稳定及与石墨发生反应的充分,故在1500℃开始降低升温速率。3.因为在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β-SiC缓慢转变成α-SiC的各种多型体。为了相转变的稳定,在1600℃这里再一次降低了升温速率。
表1 SiC烧结温度制度
Figure GDA0002997223230000021
优选的,所述烧结温度为1600℃~2050℃,烧结时间为1.8~5h。
优选的,所述碳化硅颗粒的粒径为1.2μm~2μm。
本发明的方法采用的原料简单易得,有利于降低成本,涉及的处理步骤简便,操作性强,得到的碳化硅颗粒球形度高、尺寸均一、表面光滑且无杂质;这是因为SiC和Si3N4在与石墨反应转化的主要机理为Si3N4分解为硅与石墨发生的液-固反应;石墨和Si3N4间直接进行的固-固反应;SiC分解的硅蒸汽与石墨发生的气-固反应以及SiC在高温下的再结晶过程,在Si3N4转化为SiC的过程中,SiC的添加减慢了Si3N4分解的速度,使得所制备的等轴状SiC颗粒粒径变小,颗粒球形度增高。且在得到碳化硅颗粒的同时也在石墨基板上沉积了碳化硅薄膜,有利于节能降耗,这是因为Si3N4分解的一部分硅蒸气向上传输沉积在匣钵上的石墨基片上,且发生反应生成碳化硅晶核,从而形成碳化硅薄膜,SiC具有优异的抗氧化性能、高温力学性能、耐磨损、耐腐蚀性能以及良好的导热性能,故薄膜增强了石墨基片的抗氧化性,大大提高了石墨基片的使用寿命。
附图说明
图1为实施例1所得碳化硅颗粒的SEM图;
图2为实施例2所得碳化硅颗粒的SEM图;
图3为实施例3所得碳化硅颗粒的SEM图;
图4为实施例4所得碳化硅颗粒的SEM图;
图5为实施例1所得碳化硅颗粒的EDS图;
图6为实施例2所得碳化硅颗粒的EDS图;
图7为实施例3所得碳化硅颗粒的EDS图;
图8为实施例4所得碳化硅颗粒的EDS图;
图9为碳化硅原料的SEM图;
图10为氮化硅原料的SEM图;
图11为对比例3所得碳化硅的SEM图;
图12为对比例4所得碳化硅的SEM图。
具体实施方式
以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例1
取1.21g氮化硅和0.81g碳化硅,加入无水乙醇清洗,研磨至粉末干燥、均匀,将处理后的粉末放入石墨匣钵中,盖上石墨基板,在表2所示的温度制度下烧结,保护气体为氩气。经过热处理过后,用Image Pro Plus6.0测得颗粒圆度为1.22,粒径约为1.5μm,经EDS分析出颗粒表面无杂质,仅含碳、硅和微量氧元素,且C:Si:O=37.0:62.2:0.78,其中微量O来自原料中。
表2烧结温度制度
Figure GDA0002997223230000041
实施例2
取0.80g氮化硅和1.21g碳化硅,加入无水乙醇清洗,研磨至粉末干燥、均匀,将处理后的粉末放入石墨匣钵中,盖上石墨基板,在表3所示温度制度下烧结,保护气体为氩气。经过热处理过后,用Image Pro Plus6.0测得颗粒圆度为1.14,粒径约为1.8μm,经EDS分析出颗粒表面无杂质,仅含碳、硅和微量氧元素,且C:Si:O=40.2:58.3:1.4,其中微量O来自原料中。
表3烧结温度制度
Figure GDA0002997223230000042
实施例3
取1.20g氮化硅和0.80g碳化硅,加入无水乙醇清洗,研磨至粉末干燥、均匀,将处理后的粉末放入石墨匣钵中,盖上石墨基板,在表4所示温度制度下烧结,保护气体为氩气。经过热处理过后,用Image Pro Plus6.0测得颗粒圆度为1.34,粒径约为1.7μm,经EDS分析出颗粒表面无杂质,仅含碳、硅和微量氧元素,且C:Si:O=50.2:49:0.74,其中微量O来自原料中。
表4烧结温度制度
Figure GDA0002997223230000051
实施例4
取0.80g氮化硅和1.21g碳化硅,加入无水乙醇清洗,研磨至粉末干燥、均匀,将处理后的粉末放入石墨匣钵中,盖上石墨基板,在表5所示温度制度下烧结,保护气体为氩气。经过热处理过后,用Image Pro Plus6.0测得颗粒圆度为1.16,粒径约为1.8μm,经EDS分析出颗粒表面无杂质,仅含碳、硅和微量氧元素,且C:Si:O=40.2:58.3:1.4,其中微量O来自原料中。
表5烧结温度制度
Figure GDA0002997223230000052
对比例1
原料碳化硅粉末棱角分明、球形度低、表面不圆滑,用Image Pro Plus6.0测得颗粒圆度为3.48。
对比例2
使用的氮化硅原料颗粒也是棱角分明、球形度低、表面不圆滑,用Image ProPlus6.0测得颗粒圆度为3.88。
对比例3
取1.4086g氮化硅和0.6028g碳化硅,加入无水乙醇清洗,研磨至粉末干燥、均匀,将处理后的粉末放入石墨匣钵中,盖上石墨基板,在2000℃SiC烧结炉中热处理1h,保护气体为氩气。经过热处理过后,得到的碳化硅样品尺寸不均一且形貌多样,有颗粒状、柱状。
对比例4
取1.6506g氮化硅和0.4063g碳化硅,加入无水乙醇清洗,研磨至粉末干燥、均匀,将处理后的粉末放入石墨匣钵中,盖上石墨基板,在2000℃SiC烧结炉中热处理1h,保护气体为氩气。经过热处理过后,得到的碳化硅颗粒尺寸不均一且形貌多样,有颗粒状、柱状。
表6热处理前后SiC圆度对比
Figure GDA0002997223230000061
表7为实施例1所得碳化硅元素分析表
Figure GDA0002997223230000062
表8为实施例2所得碳化硅元素分析表
Figure GDA0002997223230000063
表9为实施例3所得碳化硅元素分析表
Figure GDA0002997223230000071
表10为实施例4所得碳化硅元素分析表
Figure GDA0002997223230000072
表6为热处理前后碳化硅圆度的对比,圆度值越接近于1,颗粒球形度越高,圆度值越大于1,颗粒形状越偏离球形。从表中可以看出,本发明的制备方法制备的碳化硅颗粒的圆度值相对于原料碳化硅降低了60%左右,且实施例2和4的原料中碳化硅质量分数为60%,圆度值更接近于1,实例1和3的原料中碳化硅质量分数为40%,圆度值要稍大一些。
图1-4为按照本发明的方法所制备出实施例1-4的碳化硅颗粒的SEM图,与对比例中原料的SEM图(图9-10)对比,可以看出有棱角、球形度低的碳化硅原料经本发明的方法处理后颗粒表面变得光滑、圆整,球形度大大提高。
图5-8为按照本发明方法所制备出的碳化硅颗粒的EDS图,表2-5为本发明的方法所制备出实施例1-4的碳化硅粉末元素分析表,结果表明,此方法制备出的碳化硅颗粒仅含C、Si元素和微量O元素,并无其他杂质。
图11-12为对比例所制备出的碳化硅颗粒的EDS图,制备出的碳化硅颗粒,其颗粒形貌不均一,有棒状、针状和颗粒状,尺寸分布也不均匀。
以上未涉及之处,适用于现有技术。
虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围,本发明所属技术领域的技术人员可以对所描述的具体实施例来做出各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的方向或者超越所附权利要求书所定义的范围。本领域的技术人员应该理解,凡是依据本发明的技术实质对以上实施方式所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围。

Claims (6)

1.一种高球形度的碳化硅颗粒的制备方法,其特征在于:包括如下步骤:1)将碳化硅粉末和氮化硅粉末按质量比1:0.6~1.5混合,得到混合粉末;2)将步骤1)的混合粉末清洗后干燥;3)将步骤2)处理所得混合粉末装入石墨匣钵,盖上石墨基片,进行真空烧结,得碳化硅颗粒,且烧结制度分为五个阶段:
第一阶段是将烧结温度从室温逐渐升至1000℃,升温速率为16℃/min;
第二阶段是将烧结温度从1000℃逐渐升至1500℃,升温速率为10℃/min;
第三阶段是将烧结温度从1500℃逐渐升至1600℃,升温速率为7℃/min;
第四阶段是将烧结温度从1600℃逐渐升至2000℃,升温速率为4℃/min;
第五阶段是在2000℃的温度下保温。
2.根据权利要求1所述的一种高球形度的碳化硅颗粒的制备方法,其特征在于:所述氮化硅粉末、碳化硅粉末的粒径均为0.45~0.55μm。
3.根据权利要求1所述的一种高球形度的碳化硅颗粒的制备方法,其特征在于:步骤2)中采用在混合粉末中加入无水乙醇进行清洗。
4.根据权利要求1所述的一种高球形度的碳化硅颗粒的制备方法,其特征在于:步骤3)中烧结的条件为氩气氛围,在常压下烧结。
5.根据权利要求1所述的一种高球形度的碳化硅颗粒的制备方法,其特征在于:所述烧结温度为1600℃~2050℃,烧结时间为1.8~5h。
6.根据权利要求1至5任一项所述的一种高球形度的碳化硅颗粒的制备方法,其特征在于:所述碳化硅颗粒的粒径为1.2μm~2μm。
CN201811255499.5A 2018-10-26 2018-10-26 一种高球形度的碳化硅颗粒的制备方法 Active CN109206138B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811255499.5A CN109206138B (zh) 2018-10-26 2018-10-26 一种高球形度的碳化硅颗粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811255499.5A CN109206138B (zh) 2018-10-26 2018-10-26 一种高球形度的碳化硅颗粒的制备方法

Publications (2)

Publication Number Publication Date
CN109206138A CN109206138A (zh) 2019-01-15
CN109206138B true CN109206138B (zh) 2021-05-14

Family

ID=64997474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811255499.5A Active CN109206138B (zh) 2018-10-26 2018-10-26 一种高球形度的碳化硅颗粒的制备方法

Country Status (1)

Country Link
CN (1) CN109206138B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112876254B (zh) * 2021-03-10 2022-04-01 清华大学 一种多孔碳化硅陶瓷膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1053271A (zh) * 1990-12-29 1991-07-24 清华大学 高性能α相碳化硅晶须的制造方法
JP3223167B2 (ja) * 1993-11-12 2001-10-29 株式会社オーイケ コンクリート埋設物、コンクリート製品の製造方法およびコンクリート製品
CN102421706A (zh) * 2009-04-30 2012-04-18 司奥普施有限责任公司 高纯度含硅产物及制造方法
CN103582621A (zh) * 2011-05-27 2014-02-12 东洋炭素株式会社 碳化硅-碳复合材料的制造方法
CN107188596A (zh) * 2017-05-28 2017-09-22 烟台大学 多孔梯度氮化硅‑碳化硅复相陶瓷及其制备方法和用途
CN107244919A (zh) * 2017-07-04 2017-10-13 湖北迪洁膜科技有限责任公司 一种陶瓷膜用高球形度碳化硅粉体的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221198A (ja) * 1989-02-20 1990-09-04 Honda Motor Co Ltd 炭化ケイ素ウィスカーの製造方法
JPH0745341B2 (ja) * 1990-01-25 1995-05-17 日本碍子株式会社 窒化珪素結合炭化珪素質耐火物の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1053271A (zh) * 1990-12-29 1991-07-24 清华大学 高性能α相碳化硅晶须的制造方法
JP3223167B2 (ja) * 1993-11-12 2001-10-29 株式会社オーイケ コンクリート埋設物、コンクリート製品の製造方法およびコンクリート製品
CN102421706A (zh) * 2009-04-30 2012-04-18 司奥普施有限责任公司 高纯度含硅产物及制造方法
CN103582621A (zh) * 2011-05-27 2014-02-12 东洋炭素株式会社 碳化硅-碳复合材料的制造方法
CN107188596A (zh) * 2017-05-28 2017-09-22 烟台大学 多孔梯度氮化硅‑碳化硅复相陶瓷及其制备方法和用途
CN107244919A (zh) * 2017-07-04 2017-10-13 湖北迪洁膜科技有限责任公司 一种陶瓷膜用高球形度碳化硅粉体的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Formation and morphology of 2H-SiC whiskers by the decomposition of silicon nitride;Li Jianbao 等;《Journal of the American Ceramic Society》;19901231;第73卷(第4期);第919-922页 *
Preparation and Properties of Silicon Carbide Ceramic Film;Huang Xiaoyu 等;《DEStech Transactions on Engineering and Technology Research》;20180228;第288-291页 *
Silicon Nitride Rapid Decomposition for Ceramic Nanopowder Manufacturing;D. Kata 等;《Glass Physics and Chemistry》;20051231;第31卷(第3期);第364-369页 *
氮气催化燃烧合成纳米碳化硅粉体;韩召 等;《材料热处理学报》;20120531;第33卷(第5期);第39-43页 *

Also Published As

Publication number Publication date
CN109206138A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
CN104072140B (zh) 致密复合材料、其制造方法、接合体及半导体制造装置用部件
US3853566A (en) Hot pressed silicon carbide
JPS6228109B2 (zh)
NO845015L (no) Sintret, keramisk komposittlegeme og fremgangsmaate for fremstilling av dette
JPH0769731A (ja) 高強度、高嵩密度導電セラミックス
JP2001080964A (ja) 多結晶SiC成形体、その製法及びそれからなる応用品
CN109206138B (zh) 一种高球形度的碳化硅颗粒的制备方法
Toksoy et al. Densification and characterization of rapid carbothermal synthesized boron carbide
CN110446693B (zh) SiC烧结体、加热器以及SiC烧结体的制造方法
Kennedy et al. Effect of SiC particle size on flexural strength of porous self-bonded SiC ceramics
Zhao et al. Preparation of Ti3AlC2 bulk ceramic via aqueous gelcasting followed by Al-rich pressureless sintering
KR101859818B1 (ko) 플라즈마 처리된 Si-SiC 나노복합분말을 이용한 SiC 소결체 제조방법
JPH0432030B2 (zh)
Huang et al. Si 3 N 4-SiC p composites reinforced by in situ co-catalyzed generated Si 3 N 4 nanofibers
JP3150606B2 (ja) 炭化珪素焼結体の比抵抗制御方法
KR101659823B1 (ko) HfC 복합체 및 이의 제조방법
JP5161060B2 (ja) 耐熱性黒色部材およびその製造方法
CN113773087A (zh) 一种纳米结合SiC陶瓷粉体的制备方法
WO2020241700A1 (ja) 窒化ケイ素粉末及びその製造方法、並びに、窒化ケイ素焼結体の製造方法
WO2019013247A1 (ja) SiC焼結体およびヒータならびにSiC焼結体の製造方法
JPS61143686A (ja) 寸法精度の優れた耐熱性治具用炭化珪素質焼結体
WO1989008086A1 (en) HIGH-STRENGTH, beta-TYPE SILICON CARBIDE SINTER AND PROCESS FOR ITS PRODUCTION
JPH0463028B2 (zh)
JP4178236B2 (ja) 炭化ケイ素質低摩擦摺動材料及びその製造方法
JPH08151268A (ja) 炭化珪素質焼結体の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220728

Address after: 436043 Dushan South Road, Dushan Town, Echeng District, Ezhou City, Hubei Province

Patentee after: HUBEI DIJIE MEMBRANE TECHNOLOGY CO.,LTD.

Address before: 430000 No.206 Guanggu 1st Road, Donghu New Technology Development Zone, Wuhan, Hubei Province

Patentee before: WUHAN INSTITUTE OF TECHNOLOGY