CN109193784A - 并网逆变器的相位超前补偿控制器和电压前馈控制方法 - Google Patents

并网逆变器的相位超前补偿控制器和电压前馈控制方法 Download PDF

Info

Publication number
CN109193784A
CN109193784A CN201811239419.7A CN201811239419A CN109193784A CN 109193784 A CN109193784 A CN 109193784A CN 201811239419 A CN201811239419 A CN 201811239419A CN 109193784 A CN109193784 A CN 109193784A
Authority
CN
China
Prior art keywords
current
voltage
phase
pcc
lead compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811239419.7A
Other languages
English (en)
Other versions
CN109193784B (zh
Inventor
苗虹
陈博
曾成碧
樊梦蝶
刘明
卢杨
白小丹
吴嘉豪
常宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201811239419.7A priority Critical patent/CN109193784B/zh
Publication of CN109193784A publication Critical patent/CN109193784A/zh
Application granted granted Critical
Publication of CN109193784B publication Critical patent/CN109193784B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

并网逆变器的相位超前补偿控制器和电压前馈控制方法。相位超前补偿器设置在LCL型并联逆变器电路含电压前馈的双环电流控制中,安装在正向通路上,由同向比例放大器、加法器和反向比例放大器构成。加入相位超前补偿后的双环电流控制电路从公共耦合点采集电压Upcc经锁相环PLL后与给定的电流幅值合成电流参考值iref,电流参考值iref与采集的并网电流ig经过电流控制器Gc(s)得到电压U1,经过相位超前补偿器Gi(s)得到补偿后输出电压U* 1。U* 1和电压前馈信号Upcc_f以及反馈的电容电流k1ic相结合,得到相位超前补偿后的调制信号U* inv以控制开关管S1‑S4的开断。本发明减小了由电压前馈控制引起的不稳定区域,增大逆变器输出阻抗的相角、提高对变化电网阻抗的鲁棒性,改善并网电流质量。

Description

并网逆变器的相位超前补偿控制器和电压前馈控制方法
(一)技术领域
本发明属电力电子控制范畴,涉及并网逆变器的相位超前补偿,具体是一种并网逆变器的相位超前补偿控制器和电压前馈控制方法。
(二)背景技术
在弱电网中,由于并网逆变器易出现LCL谐振问题,常采用电容电流和并网电流的双环电流控制方法。并且为了抑制由电网失真引起的低次电流谐波,电压前馈控制得到了广泛地应用。实践证明,在大多数情况下,具有电网电压前馈的逆变器实现了优异的性能并满足电网规范。然而,只要电力电子设备在公共连接点(PCC)接入电网,在PCC处电网阻抗就会变化非常大,不可被忽略。Xu J,Xie S,Tang T发表于2013年《IET Power Electron》第6卷第2期上的《Evaluations of current control in weak grid case for grid-connected LCL-filtered inverter》指出在弱电网下,电压前馈控制会导致系统控制性能下降,稳定裕度大幅度减小,甚至出现不稳定现象。因此,在弱电网下,并网逆变器的稳定运行至关重要,是急需解决的问题。
为此,钱强、谢少军、季林等人发表于2016年《中国电机工程学报》第36卷第22期上的《一种提升逆变器对电网适应能力的电流控制策略》提出通过降低电压前馈增益来提高并网逆变器的稳定裕度。该方法在一定程度上提高了系统的稳定性,但电压前馈增益的减小会使逆变器输出阻抗的减小,不利于并网电流低次谐波的抑制。
另外,J.Xu,S.Xie,T.Tang.发表于2014年《IET Power Electron》第7卷第10期上的《Improved control strategy with grid-voltage feedforward for LCL-filter-based inverter connected to weak grid》提出了一种自适应电流控制来提高控制性能,但需要实时监测电网阻抗,并可能产生由微分电压前馈带来的噪音。
由此可以看出以上方法使得系统设计的复杂性大大增加,同时均未涉及通过增加相位超前或滞后补偿来提高并网逆变器的稳定裕度,使其对变化的电网阻抗具有较强的鲁棒性。
(三)发明内容
本发明的目的是针对弱电网中电压前馈控制所导致的系统控制性能下降,稳定裕度大幅度减小,甚至出现不稳定现象,提出一种新的并网逆变器的相位超前补偿控制器和电压前馈控制方法。提高逆变器对变化电网阻抗的鲁棒性,改善并网电流质量。
本发明的目的是这样达到的:在LCL型并联逆变器电路中,相位超前补偿器Gi(s)设置在含电压前馈的双环电流控制中,安装在正向通路上。
相位超前补偿器由三级运算放大器构成:
第一级由一个运算放大器,三个电阻R1、R2、R3和电容C1构成同向比例放大器。
第二级由一个运算放大器和四个电阻R5、R6、R7、R8构成一个加法器。
第三级由一个运算放大器和三个电阻R9、R10、R11构成反向比例放大器。
电流流入第一级比例放大器的电压为并网电流ig经过电流控制器Gc(s)得到电压U1,经过第二级加法器和第三级反向比例放大器后,输出得到补偿后的输出信号U* 1
输出信号与输入信号之间的关系为U* 1=U1(as+1)/(bs+1),可知传递函数为Gi(s)=(as+1)/(bs+1);其中,a、b为常数,由电阻和电容决定,s为拉普拉斯算子。
加入相位超前补偿后的双环电流控制电路,从公共耦合点采集的电压Upcc经锁相环PLL后与给定的电流幅值合成电流参考值iref,电流参考值iref与采集的并网电流ig经过电流控制器Gc(s)得到电压U1,电压U1经过相位超前补偿器Gi(s)得到补偿后输出电压U* 1
得到补偿后输出电压U* 1和电压前馈信号Upcc_f以及反馈的电容电流k1ic相结合,得到相位超前补偿后的调制信号U* inv
所得的调制信号U*inv在PWM生成器中进行三角载波调制,得到开关占空比,经驱动保护电路,控制开关管S1-S4的开与断。
控制按照如下步骤进行:
步骤1:利用电流传感器和电压传感器检测和采集逆变器并网电流ig、电容电流ic和公共耦合点电压Upcc
步骤2:根据步骤1采集的公共耦合点电压Upcc,将公共耦合点电压Upcc经过锁相环PLL得到公共耦合点电压相角θ;
步骤3:根据步骤1采集的逆变器并网电流ig和电流参考值iref电流控制器Gc(s),得到输出信号U1
步骤4:根据步骤3所得的输出信号U1,通过添加的相位超前补偿器Gi(s),得到补偿后的输出信号U* 1
相位超前函数为:
式中a、b为常数
步骤5:根据步骤1采集的公共耦合点电压Upcc,将Upcc通过电压前馈控制Gf(s),得到公共耦合点电压前馈信号Upcc_f=UpccGf(s);
式中Gf(s)为电压前馈函数,其值为逆变器增益Kpwm的倒数;
步骤6:根据步骤4所得的补偿输出电压U* 1和步骤5所得的电压前馈信号Upcc_f相加,然后与步骤1所得的电容电流ic反馈回的电流k1ic相减,得到相位超前补偿后的调制信号U* inv
步骤7:根据步骤6所得的调制信号U* inv进行三角载波调制,得到开关占空比,经驱动保护电路,控制开关管S1-S4的开通与关断。
所述在步骤步骤3通过电流控制器Gc(s),得到输出信号U1;并网电流闭环控制方程为:
U1=(iref-ig)(kp+ki/s)
式中iref并网电流参考值,其中iref的幅值为给定值,相角即为公共耦合点电压相角θ,kp为电流调节器Gc(s)的比例系数,ki为电流调节器Gc(s)的积分系数,s为拉普拉斯算子。
所述在步骤4中,相位超前补偿器Gi(s),得到补偿后的输出信号U* 1所用的相位超前函数为:
式中a、b为常数,s为拉普拉斯算子。
所述在步骤6中,所述得到相位超前补偿后的调制信号U* inv的方程为:
U* inv=Upcc_f+U* 1-k1ic
式中k1为电容电流反馈系数。
本发明的积极效果是:
1、本发明不仅减小了由电压前馈控制引起的不稳定区域,增大逆变器输出阻抗的相角,扩大稳定裕度,提高逆变器对变化电网阻抗的鲁棒性,而且还能改善并网电流质量。
2、本发明只需在正向通路上添加相位超前补偿器,相位超前补偿器结构简单,易于实现,控制方法简单有效,易于推广。
(四)附图说明
图1为LCL型并联逆变器主电路图,其中,6为本发明的相位超前补偿器Gi(s)。
图2为弱电网下的典型电流双环控制结构图。
图3为加入电压前馈控制的逆变器输出阻抗Zinv_eq(s)和未加电压前馈控制的逆变器输出阻抗Zinv(s)的波特图。图中,A为电压前馈造成的不稳定区域。
图4为本发明中加入相位超前补偿后的双环电流控制图。
图5为本发明中加入相位超前补偿器后的双环电流原理图。
图6为加入相位超前补偿的输出阻抗Z* inv_eq(s)和Zinv_eq(s)的波特图。
图7-1~7-3为不同电网阻抗时未加入相位超前补偿的并网电流波形。
图8-1~8-3为不同电网阻抗时加入相位超前补偿的并网电流波形。
图中,1是直流源;2是由四个带续流二极管的开关管组成的逆变器;3是由滤波电感L1、L2和滤波电容C组成的LCL滤波器;4是由理想电压源Ug串联电网阻抗Lg组成的公共电网;5是电压前馈的双环电流控制器;6是相位超前补偿控制器;7是PWM生成器。
(五)具体实施方式
本发明在现有的在LCL型并联逆变器电路中加上本相位超前补偿控制器进行。在加入相位超前补偿后的双环电流控制电路中,从公共耦合点采集的电压Upcc经锁相环PLL后与给定的电流幅值合成电流参考值iref,电流参考值iref与采集的并网电流ig经过电流控制器Gc(s)得到电压U1,电压U1经过相位超前补偿器Gi(s)得到补偿后输出电压U* 1
得到补偿后输出电压U* 1和电压前馈信号Upcc_f以及反馈的电容电流k1ic相结合,得到相位超前补偿后的调制信号U* inv
所得的调制信号U* inv在PWM生成器中进行三角载波调制,得到开关占空比,经驱动保护电路,控制开关管S1-S4的开与断。
通过添加相位超前补偿,增大逆变器输出阻抗的相角,改善并网电流ig,特别是当电网阻抗Lg较大时并网电流质量。
参见附图1、2、3。
图1为LCL型并联逆变器主电路图,
由于并网逆变器易出现LCL谐振问题,采用了电容电流和并网电流的双环电流控制。四个带续流二极管的开关管组成的逆变器通过降低电压前馈增益来提高并网逆变器的稳定裕度。但电压前馈增益的减小会使逆变器输出阻抗的减小,不利于并网电流低次谐波的抑制。
图2为电网电压前馈的双环电流控制方案图。如图2所示,iref为电流参考值,Kpwm为逆变器增益,Gc(s)为PI电流控制器函数,K1是电容电流反馈系数,Gf(s)是并网电压反馈函数。
图3为加入电压前馈控制前后逆变器输出阻抗的波特图。将Zinv(s)和Zinv_eq(s)波特图进行比较,可以清楚地看出,当加入电压前馈控制后,Zinv_eq(s)幅值裕度和相角裕度很大程度地减少,低频处的arg[Zinv_eq(jwi)]<-90°,系统出现不稳定区域A。当Lg=1mH时,Zg(s)、Zinv_eq(s)和Zinv(s)相交于点G,此时的频率为fi,Zinv_eq(s)的相角裕度远小于Zinv(s)的相角裕度。随着Lg的增大,相角裕度逐渐减小。当Lg>3mH时,PM<0。例如Lg=4mH时,arg[Zinv_eq(jwi)]<-90°,加入电压前馈控制的逆变器将变得不稳定。
参见附图1、4、5。
图4为本发明的加入相位超前补偿器Gi(s)后的双环电流控制图。其中相位超前补偿器Gi(s)设置在含电压前馈的双环电流控制中,安装在正向通路上。
图5是相位超前补偿器由三级运算放大器构成,分别为同向比例放大器、加法器和反向比例放大器;
第一级由一个运算放大器,三个电阻R1、R2、R3和电容C1构成同向比例放大器。
第二级由一个运算放大器和四个电阻R5、R6、R7、R8构成一个加法器。
第三级由一个运算放大器和三个电阻R9、R10、R11构成反向比例放大器。
电流流入第一级比例放大器的电压为并网电流ig经过电流控制器Gc(s)得到电压U1经过加法器、反向比例放大器后,输出得到补偿后的输出信号U* 1
输出信号与输入信号之间的关系为U* 1=U1(as+1)/(bs+1),可知传递函数为Gi(s)=(as+1)/(bs+1);其中,a、b为常数,由电阻和电容决定,s为拉普拉斯算子。加入相位超前补偿后的双环电流控制电路中,从公共耦合点采集的电压Upcc经锁相环PLL后与给定的电流幅值合成电流参考值iref,电流参考值iref与采集的并网电流ig经过电流控制器Gc(s)得到电压U1,电压U1经过相位超前补偿器Gi(s)得到补偿后输出电压U* 1
得到补偿后输出电压U* 1和电压前馈信号Upcc_f以及反馈的电容电流k1ic相结合,得到相位超前补偿后的调制信号U* inv
所得的调制信号U* inv在PWM生成器中进行三角载波调制,得到开关占空比,经驱动保护电路,控制开关管S1-S4的开与断。
图6为加入相位超前补偿的输出阻抗Z* inv_eq(s)和Zinv_eq(s)的波特图。从图中可以看出,添加相位超前补偿后,由电压前馈控制导致的不稳定区域明显减小了。当arg[Zinv_eq(jw)]=-90°时,Z* inv_eq(s)的相角超前20.5°,也就是添加相角超前补偿后,相角裕度增大为20.5°,从而提高对电网阻抗变化的鲁棒性。例如,当Lg=5mH时,没加相位超前补偿的逆变器输出阻抗相角小于-90°,系统不稳定。在加入相位超前补偿后,PM>0,达到稳定要求。
本实施例利用MATLAB/Simulink上搭建LCL型并网逆变器进行了仿真验证,逆变器相关参数如表1所示。
表1
本实施例按照如下步骤进行:
步骤1:利用电流传感器和电压传感器检测和采集逆变器并网电流ig、电容电流ic和公共耦合点电压Upcc
步骤2:根据步骤1采集的公共耦合点电压Upcc,将公共耦合点电压Upcc经过锁相环PLL得到公共耦合点电压相角θ;
步骤3:根据步骤1采集的逆变器并网电流ig和电流参考值iref通过电流控制器,得到输出信号U1
所述并网电流闭环控制方程为:
U1=(iref-ig)(kp+ki/s)
式中iref并网电流参考值,其中iref的幅值为给定值,相角即为公共耦合点电压相角θ,kp为电流调节器Gc(s)的比例系数,ki为电流调节器Gc(s)的积分系数,s为复频域变量;
步骤4:根据步骤3所得的输出信号U1,通过添加的相位超前补偿器Gi(s),得到补偿后的输出信号U* 1
所述相位超前函数:
式中a、b为常数
步骤5:根据步骤1采集的公共耦合点电压Upcc,将Upcc通过电压前馈控制环,得到公共耦合点电压前馈信号Upcc_f=UpccGf(s);
式中Gf(s)为电压前馈函数,其值为逆变器增益Kpwm的倒数;
步骤6:根据步骤4所得的补偿输出电压U* 1和步骤5所得的电压前馈信号Upcc_f相加,然后与步骤1所得的电容电流ic反馈回的电流k1ic相减,得到相位超前补偿后的调制信号U* inv
所述得到调制信号的方程为:
U* inv=Upcc_f+U* 1-k1ic
式中k1为电容电流反馈系数;
步骤7:根据步骤6所得的调制信号U* inv进行三角载波调制,得到开关占空比,经驱动保护电路,控制开关管S1-S4的开通与关断。
图7-1~7-3为电网阻抗分别为Lg=0、Lg=2mH、Lg=4mH时未加入相位超前补偿的并网电流波形。当电网阻抗Lg分别为0、2、4mH时,未加入相位超前补偿和加入该补偿的并网电流波形。随着电网阻抗Lg的增大,会导致并网电流的失真并出现不稳定现象。
图8-1~8-3为不同电网阻抗时加入本发明的相位超前补偿的并网电流波形。很明显,通过添加相位超前补偿,改善了并网电流ig,特别是当电网阻抗Lg较大时,这与分析十分吻合。对比图7-1~7-3和图8-1~8-3,同样是加入电网阻抗Lg分别为0、2、4mH可以清晰地看到相位超前补偿方法增大逆变器输出阻抗的相角,不仅使系统对于变化的电网阻抗具有较强的鲁棒性,还能有效改善并网电流质量。

Claims (7)

1.一种并网逆变器的相位超前补偿控制器,其特征在于:在LCL型并联逆变器电路中,相位超前补偿器Gi(s)设置在含电压前馈的双环电流控制中,安装在正向通路上;
相位超前补偿器由三级运算放大器构成:
第一级由一个运算放大器,三个电阻(R1、R2、R3)和电容(C1)构成同向比例放大器,
第二级由一个运算放大器和四个电阻(R5、R6、R7、R8)构成一个加法器,
第三级由一个运算放大器和三个电阻(R9、R10、R11)构成反向比例放大器,
电流流入第一级比例放大器的电压为并网电流ig经过电流控制器Gc(s)得到的电压U1,经过第二级加法器和第三级反向比例放大器后,输出得到补偿后的输出信号U* 1
输出信号与输入信号之间的关系为U* 1=U1(as+1)/(bs+1),可知传递函数为Gi(s)=(as+1)/(bs+1);其中,a、b为常数,由电阻和电容决定,s为拉普拉斯算子。
2.如权利要求1所述的并网逆变器的相位超前补偿控制器,其特征在于:
加入相位超前补偿后的双环电流控制电路,从公共耦合点采集的电压Upcc经锁相环PLL后与给定的电流幅值合成电流参考值iref,电流参考值iref与采集的并网电流ig经过电流控制器Gc(s)得到电压U1,电压U1经过相位超前补偿器Gi(s)得到补偿后输出电压U* 1
3.如权利要求1所述的并网逆变器的相位超前补偿控制器,其特征在于:得到补偿后输出电压U* 1和电压前馈信号Upcc_f以及反馈的电容电流k1ic相结合,得到相位超前补偿后的调制信号U* inv
所得的调制信号U* inv在PWM生成器中进行三角载波调制,得到开关占空比,经驱动保护电路,控制开关管(S1-S4)的开与断。
4.一种如权利要求1所述的并网逆变器的相位超前补偿控制器的电压前馈控制方法,其特征在于:在LCL型并联逆变器电路中,引入相位超前补偿控制器增大逆变器输出阻抗的相角,减小由电压前馈造成的不稳定区域;
相位超前补偿器Gi(s)设置在含电压前馈的双环电流控制中,安装在正向通路上;
相位超前补偿器由三级运算放大器构成:
第一级由一个运算放大器,三个电阻(R1、R2、R3)和电容(C1)构成同向比例放大器
第二级由一个运算放大器和四个电阻(R5、R6、R7、R8)构成一个加法器,
第三级由一个运算放大器和三个电阻(R9、R10、R11)构成反向比例放大器,
电流流入第一级比例放大器的电压为并网电流ig经过电流控制器Gc(s)得到电压U1经过加法器、反向比例放大器后,输出得到补偿后的输出信号U* 1
输出信号与输入信号之间的关系为U* 1=U1(as+1)/(bs+1),可知传递函数为Gi(s)=(as+1)/(bs+1);其中,a、b为常数,s为拉普拉斯算子;
控制按照如下步骤进行:
步骤1:利用电流传感器和电压传感器检测和采集逆变器并网电流ig、电容电流ic和公共耦合点电压Upcc
步骤2:根据步骤1采集的公共耦合点电压Upcc,将公共耦合点电压Upcc经过锁相环PLL得到公共耦合点电压相角θ;
步骤3:根据步骤1采集的逆变器并网电流ig和电流参考值iref电流控制器Gc(s),得到输出信号U1
步骤4:根据步骤3所得的输出信号U1,通过添加的相位超前补偿器Gi(s),得到补偿后的输出信号U* 1
相位超前函数为:
式中a、b为常数
步骤5:根据步骤1采集的公共耦合点电压Upcc,将Upcc通过电压前馈的双环电流控制器(5)得到公共耦合点电压前馈信号Upcc_f=UpccGf(s);
式中Gf(s)为电压前馈函数,其值为逆变器增益Kpwm的倒数;
步骤6:根据步骤4所得的补偿输出电压U* 1和步骤5所得的电压前馈信号Upcc_f相加,然后与步骤1所得的电容电流ic反馈回的电流k1ic相减,得到相位超前补偿后的调制信号U* inv
步骤7:根据步骤6所得的调制信号U* inv进行三角载波调制,得到开关占空比,经驱动保护电路,控制开关管(S1-S4)的开通与关断。
5.如权利要求4所述的并网逆变器的相位超前补偿控制器的电压前馈控制方法,其特征在于:所述在步骤步骤3通过电流控制器Gc(s),得到输出信号U1
并网电流闭环控制方程为:
U1=(iref-ig)(kp+ki/s)
式中iref并网电流参考值,其中iref的幅值为给定值,相角即为公共耦合点电压相角θ,kp为电流调节器Gc(s)的比例系数,ki为电流调节器Gc(s)的积分系数,s为拉普拉斯算子。
6.如权利要求4所述的并网逆变器的相位超前补偿控制器的电压前馈控制方法,其特征在于:所述在步骤4中,相位超前补偿器Gi(s),得到补偿后的输出信号U* 1所用的相位超前函数为:
式中a、b为常数,s为拉普拉斯算子。
7.如权利要求4所述的并网逆变器的相位超前补偿控制器的电压前馈控制方法,其特征在于:所述在步骤6中,所述得到相位超前补偿后的调制信号U* inv的方程为:U* inv=Upcc_f+U* 1-k1ic
式中k1为电容电流反馈系数。
CN201811239419.7A 2018-10-23 2018-10-23 并网逆变器的相位超前补偿控制器和电压前馈控制方法 Active CN109193784B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811239419.7A CN109193784B (zh) 2018-10-23 2018-10-23 并网逆变器的相位超前补偿控制器和电压前馈控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811239419.7A CN109193784B (zh) 2018-10-23 2018-10-23 并网逆变器的相位超前补偿控制器和电压前馈控制方法

Publications (2)

Publication Number Publication Date
CN109193784A true CN109193784A (zh) 2019-01-11
CN109193784B CN109193784B (zh) 2023-10-27

Family

ID=64942852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811239419.7A Active CN109193784B (zh) 2018-10-23 2018-10-23 并网逆变器的相位超前补偿控制器和电压前馈控制方法

Country Status (1)

Country Link
CN (1) CN109193784B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110880787A (zh) * 2019-11-25 2020-03-13 浙江工业大学 一种适用于lcl型并网逆变器的网侧单环延时反馈控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181970A (zh) * 2014-08-29 2014-12-03 电子科技大学 一种内嵌基准运算放大器的低压差线性稳压器
CN107887910A (zh) * 2017-12-13 2018-04-06 华北电力大学(保定) 一种改善分布式光伏并网性能的超前滞后补偿方法
CN108565883A (zh) * 2017-12-22 2018-09-21 四川大学 一种基于statcom-ess的光伏低电压穿越装置及控制方法
CN108631629A (zh) * 2018-02-28 2018-10-09 南京航空航天大学 提高lcl型并网逆变器鲁棒性的一种相位超前补偿方法
CN209046269U (zh) * 2018-10-23 2019-06-28 四川大学 并网逆变器的相位超前补偿控制器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181970A (zh) * 2014-08-29 2014-12-03 电子科技大学 一种内嵌基准运算放大器的低压差线性稳压器
CN107887910A (zh) * 2017-12-13 2018-04-06 华北电力大学(保定) 一种改善分布式光伏并网性能的超前滞后补偿方法
CN108565883A (zh) * 2017-12-22 2018-09-21 四川大学 一种基于statcom-ess的光伏低电压穿越装置及控制方法
CN108631629A (zh) * 2018-02-28 2018-10-09 南京航空航天大学 提高lcl型并网逆变器鲁棒性的一种相位超前补偿方法
CN209046269U (zh) * 2018-10-23 2019-06-28 四川大学 并网逆变器的相位超前补偿控制器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110880787A (zh) * 2019-11-25 2020-03-13 浙江工业大学 一种适用于lcl型并网逆变器的网侧单环延时反馈控制方法
CN110880787B (zh) * 2019-11-25 2021-10-29 浙江工业大学 一种适用于lcl型并网逆变器的网侧单环延时反馈控制方法

Also Published As

Publication number Publication date
CN109193784B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
CN107332281B (zh) 弱电网下具有电网电压前馈滞后补偿的并网逆变器控制方法
AU2018238817B2 (en) Method for suppressing common-mode current of intermediate line of T-shaped three-level three-phase inverter
CN105024406B (zh) 并网逆变器复合型虚拟谐波阻抗控制方法
CN102118028B (zh) 一种三相lcl型并网逆变器电流谐波抑制控制方法
Xu et al. Grid-voltage feedforward based control for grid-connected LCL-filtered inverter with high robustness and low grid current distortion in weak grid
CN102097824A (zh) 抑制电网电压对并网电流影响的lcl型并网逆变器控制方法
CN106451545B (zh) 基于重复比例谐振控制的z源逆变器双环并网控制方法
CN110912150B (zh) 一种基于虚拟阻抗的混合有源滤波器并网方法
CN104716668A (zh) 提高lcl型并网逆变器对电网适应性的前馈控制方法
US20150381027A1 (en) Resonance suppression device
Wang et al. Design of the PI regulator and feedback coefficient of capacitor current for grid-connected inverter with an LCL filter in discrete-time domain
CN102324745A (zh) 智能电网中的混合型有源电力动态滤波器的控制方法及装置
CN107863775A (zh) 一种适用于有源电力滤波器选择性谐波补偿的电流控制算法
CN109327048B (zh) 一种并网变流器鲁棒锁相系统及方法
CN113036767B (zh) 一种自适应频率耦合振荡抑制装置的控制方法
CN209046269U (zh) 并网逆变器的相位超前补偿控制器
CN109193784A (zh) 并网逆变器的相位超前补偿控制器和电压前馈控制方法
Zhou et al. Control research of NPC three level high-power grid connected inverter based on multi sampling
KR100706181B1 (ko) 회전좌표계를 이용한 단상 능동전력필터
CN104518651B (zh) 弱电网下三相lcl型并网逆变器电流谐波抑制控制方法
Chen et al. Single phase inverter system using proportional resonant current control
Ma et al. Proportional capacitor current feedback based active damping control for lcl-filter converters with considerable control delay
CN114094802A (zh) 一种拓宽正阻尼区间的lcl型逆变器并网装置及方法
Bukka et al. Performance Analysis of three phase shunt hybrid active power filter
Chang et al. A novel control of series active power filter without harmonics detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant