CN109187686A - 一种电极修饰材料二硫铟化银/还原氧化石墨烯的制备方法及其检测环丙沙星的应用 - Google Patents

一种电极修饰材料二硫铟化银/还原氧化石墨烯的制备方法及其检测环丙沙星的应用 Download PDF

Info

Publication number
CN109187686A
CN109187686A CN201811059712.5A CN201811059712A CN109187686A CN 109187686 A CN109187686 A CN 109187686A CN 201811059712 A CN201811059712 A CN 201811059712A CN 109187686 A CN109187686 A CN 109187686A
Authority
CN
China
Prior art keywords
electrode
agins
solution
ciprofloxacin
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811059712.5A
Other languages
English (en)
Other versions
CN109187686B (zh
Inventor
陈萍华
王涛
蒋华麟
李雪芹
王�琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN201811059712.5A priority Critical patent/CN109187686B/zh
Publication of CN109187686A publication Critical patent/CN109187686A/zh
Application granted granted Critical
Publication of CN109187686B publication Critical patent/CN109187686B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种电极修饰材料二硫铟化银/还原氧化石墨烯的制备方法及其检测环丙沙星的应用,将GO分散液与AgInS2溶液充分混和均匀后,转入反应釜进行水热反应进行复合。反应结束后,过滤、洗涤、冻干即获得产品AgInS2/rGO。以所制备的AgInS2/rGO纳米复合材料修饰的玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂电极为对电极,以1M的H2SO溶液作为支持电解质溶液,利用微分脉冲伏安法(DPV),可对含不同浓度环丙沙星的溶液进行检测。该方法对环丙沙星的电流响应快、灵敏度高、检测限低、抗干扰性能强,具有很强的实用性能。

Description

一种电极修饰材料二硫铟化银/还原氧化石墨烯的制备方法 及其检测环丙沙星的应用
技术领域
本发明涉及一种对环丙沙星具有低检测限,优良选择性的检测方法,属于环境污染物检测技术领域,具体为一种电极修饰材料二硫铟化银/还原氧化石墨烯的制备方法及其检测环丙沙星的应用。
背景技术
环丙沙星作为第三代喹诺酮类抗菌药物,具有广谱抗菌活性,杀菌效果好,成本低,目前在人、畜都有广泛的应用。但如同其他大多数抗生素药物一样,大部分的环丙沙星经过病人或动物代谢后,以代谢产物甚至原药形式被排出体外而进入环境,从而带来破坏环境生态平衡,产生耐药超级菌等严重影响环境安全的问题。随着抗生素被大范围的使用,由抗生素带来的环境污染问题也越来越引起高度重视,环丙沙星就是比较典型的一种。因此,对环境中,特别是水体中环丙沙星的检测和去除技术越来越受到重视,已成为目前环境保护研究的焦点之一。
环丙沙星的目前常用的检测方法包括酶联免疫吸附测定法、高效液相色谱法和液相色谱串联质谱分析法等[Food Control,2017,77:1-7;现代畜牧兽医,2016, (4):8-12;Journal of ChromatographyB,2011,879(25):2601-2610]等,但所需的技术和设备较复杂或昂贵。因此,发展简单、高效、快捷、廉价的检测技术意义重大。电化学检测分析法具有灵敏度高、检测限低、设备简单、价格低廉等特点,在抗生素的检测领域具备很好的应用前景。AgInS和还原氧化石墨烯(rGO)具有很好的电响应性能,可用来制备电极修饰材料,以增强电极的响应能力。
基于以上技术背景,本技术发明了一种电极修饰材料——AgInS2/rGO纳米复合材料的制备方法,并将其应用于环丙沙星的检测。
发明内容
本发明的内容在于提供一种电极修饰材料二硫铟化银/还原氧化石墨烯的制备方法及其检测环丙沙星的应用。
本发明采用如下手段,
一种电极修饰材料二硫铟化银/还原氧化石墨烯的制备方法及其检测环丙沙星的应用,其特征在于:
(1)以改性Hummer’s法制备GO;
(2)以沉淀法制备AgInS2
(3)将GO用去离子配成4.3mg/ml的分散液;
(4)取30mL的乙二醇,搅拌下加入由(3)所得的GO分散液9.3mL;
(5)用1mL去离子水配AgInS2的溶液,然后加入至由(4)所得GO的乙二醇分散液;
(6)用KOH的乙二醇溶液将由(5)所得混和液的pH调至13,继续搅拌30min;
(7)将由(6)所得混和液转入反应釜,180℃下进行水热反应6h,反应后分离得到固体,将其充分洗涤后,冷冻干燥即获得产品AgInS2/rGO纳米复合材料。
进一步地,上述步骤(5)中加入的AgInS2的量按如下比例:AgInS2与GO 的质量比为1:0.5至1:2。
进一步地,所述的一种电极修饰材料二硫铟化银/还原氧化石墨烯的制备方法及其检测环丙沙星的应用,其特征在于:以所制备的AgInS2/rGO纳米复合材料修饰的玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂电极为对电极,以 1M的H2SO4溶液作为支持电解质溶液,利用微分脉冲伏安法(DPV),对含不同浓度环丙沙星的溶液进行检测。
本发明方法的优点是:1.制备方法简单易操作,成本低廉;2.对环丙沙星的电流响应快、灵敏度高、检测限低;3.抗干扰性能强,具有很强的实用性能。该材料及方法具有很好的应用前景,相关方法未见报道。
附图说明
图1为本发明实施例1产品的XRD谱图。
图2为本发明实施例1产品的SEM图。
图3为本发明实施例1产品对不同浓度4-NP的微分脉冲伏安法(DPV)扫描所得峰电流数值与4-NP浓度关系图。
图4为本发明实施例1产品对25uM环丙沙星分别与50倍浓度的不同干扰物共存时,DPV扫描所得峰电流数值的变化。
具体实施方式
在本发明方法中,二硫铟化银/还原氧化石墨烯和AgInS2/rGO是指同一种物质。
实施例1
以改性Hummer’s法制备氧化石墨烯(GO)。
以沉淀法制备AgInS2,具体为:取0.0012mol AgNO3溶解于50mL乙二醇中,在搅拌下逐滴加入0.0054mol InCl3·4H2O,再搅拌10min,再在搅拌下加入 0.75g硫代乙酰胺。持续搅拌约1h后,将上述溶液转移至100mL的三口瓶中回流3h。反应完成后,将浑浊溶液自然冷却至室温,陈化12h。将所得固体过滤收集,用无水乙醇和去离子水交替清洗。最后将产品在真空干燥箱中干燥12h,研磨,得到AgInS2材料。
通过超声分散法,将GO用去离子配成4.3mg/ml的分散液,取30mL的乙二醇,搅拌下加入上述GO的分散液9.3mL。称取40mg AgInS2,用1mL去离子水配成溶液,然后加入至上述GO的乙二醇分散液(AgInS2与GO的质量为 1:1)。用KOH的乙二醇溶液将上述GO与AgInS2的混和液的pH调至13,继续搅拌30min,然后转入反应釜,180℃下进行水热反应6h,反应后分离得到固体,将其充分洗涤后,冷冻干燥即获得产品AgInS2/rGO纳米复合材料。所得 AgInS2/rGO复合材料的XRD图如图1所示,其表现出典型的AgInS2/rGO复合材料特征峰,表明AgInS2/rGO复合成功;所得AgInS2/rGO复合材料的SEM图如图2所示,可明显地看出纳米颗粒状的AgInS2负载在片状的rGO片层上。
以所制备的AgInS2/rGO纳米复合材料修饰的玻碳电极为工作电极,Ag/AgCl 电极为参比电极,铂电极为对电极,以1M的H2SO4溶液作为支持电解质溶液,利用微分脉冲伏安法(DPV),对含不同浓度环丙沙星的溶液进行检测。在5min 内,即可检测到明显的电响应信号。所测得响应电流与环丙沙星浓度的关系如图 3所示,可见在1×10-6μM到4×10-5μM的浓度范围内,响应电流值与环丙沙星的浓度成正线,线性方程为Ip=0.007743C+0.12513(R2=0.9939),依据此线性关系,可以通过响应电流的值确定环丙沙星的浓度。有干扰物共存时的响应电流情况如图4所示,可见在有干扰物时,对电极响应环丙沙星的性能几乎没有影响,体现本发明方法极强的抗干扰性能。
实施例2
以改性Hummer’s法制备氧化石墨烯(GO)。
以沉淀法制备AgInS2,具体为:取0.0012mol AgNO3溶解于50mL乙二醇中,在搅拌下逐滴加入0.0054mol InCl3·4H2O,再搅拌10min,再在搅拌下加入 0.75g硫代乙酰胺。持续搅拌约1h后,将上述溶液转移至100mL的三口瓶中回流3h。反应完成后,将浑浊溶液自然冷却至室温,陈化12h。将所得固体过滤收集,用无水乙醇和去离子水交替清洗。最后将产品在真空干燥箱中干燥12h,研磨,得到AgInS2材料。
将GO用去离子配成4.3mg/ml的分散液,取30mL的乙二醇,搅拌下加入上述GO的分散液9.3mL。称取20mg AgInS2,用1mL去离子水配成溶液,然后加入至上述GO的乙二醇分散液(AgInS2与GO的质量为1:0.5)。用KOH的乙二醇溶液将上述GO与AgInS2的混和液的pH调至13,继续搅拌30min,然后转入反应釜,180℃下进行水热反应6h,反应后分离得到固体,将其充分洗涤后,冷冻干燥即获得产品AgInS2/rGO纳米复合材料。
以所制备的AgInS2/rGO纳米复合材料修饰的玻碳电极为工作电极,Ag/AgCl 电极为参比电极,铂电极为对电极,以1M的H2SO4溶液作为支持电解质溶液,利用微分脉冲伏安法(DPV),对含不同浓度环丙沙星的溶液进行检测。
实施例3
以改性Hummer’s法制备氧化石墨烯(GO)。
以沉淀法制备AgInS2,具体为:取0.0012mol AgNO3溶解于50mL乙二醇中,在搅拌下逐滴加入0.0054mol InCl3·4H2O,再搅拌10min,再在搅拌下加入 0.75g硫代乙酰胺。持续搅拌约1h后,将上述溶液转移至100mL的三口瓶中回流3h。反应完成后,将浑浊溶液自然冷却至室温,陈化12h。将所得固体过滤收集,用无水乙醇和去离子水交替清洗。最后将产品在真空干燥箱中干燥12h,研磨,得到AgInS2材料。
将GO用去离子配成4.3mg/ml的分散液,取30mL的乙二醇,搅拌下加入上述GO的分散液9.3mL。称取80mg AgInS2,用1mL去离子水配成溶液,然后加入至上述GO的乙二醇分散液(AgInS2与GO的质量为1:2)。用KOH的乙二醇溶液将上述GO与AgInS2的混和液的pH调至13,继续搅拌30min,然后转入反应釜,180℃下进行水热反应6h,反应后分离得到固体,将其充分洗涤后,冷冻干燥即获得产品AgInS2/rGO纳米复合材料。
以所制备的AgInS2/rGO纳米复合材料修饰的玻碳电极为工作电极,Ag/AgCl 电极为参比电极,铂电极为对电极,以1M的H2SO4溶液作为支持电解质溶液,利用微分脉冲伏安法(DPV),对含不同浓度环丙沙星的溶液进行检测。
上述三个实施例区别只在于:称取不同量的AgInS2,用1mL去离子水配成溶液,然后加入至上述GO的乙二醇分散液。

Claims (3)

1.一种电极修饰材料二硫铟化银/还原氧化石墨烯的制备方法及其检测环丙沙星的应用,其特征在于:
(1)以改性Hummer’s法制备GO;
(2)以沉淀法制备AgInS2
(3)将GO用去离子配成4.3mg/ml的分散液;
(4)取30mL的乙二醇,搅拌下加入由(3)所得的GO分散液9.3mL;
(5)用1mL去离子水配AgInS2的溶液,然后加入至由(4)所得GO的乙二醇分散液;
(6)用KOH的乙二醇溶液将由(5)所得混和液的pH调至13,继续搅拌30min;
(7)将由(6)所得混和液转入反应釜,180℃下进行水热反应6h,反应后分离得到固体,将其充分洗涤后,冷冻干燥即获得产品AgInS2/rGO纳米复合材料。
2.根据权利要求1所述的一种电极修饰材料二硫铟化银/还原氧化石墨烯的制备方法及其检测环丙沙星的应用,其特征在于:步骤(5)中加入的AgInS2的量按如下比例:AgInS2与GO的质量比为1:0.5至1:2。
3.根据权利要求1所述的一种电极修饰材料二硫铟化银/还原氧化石墨烯的制备方法及其检测环丙沙星的应用,其特征在于:以所制备的AgInS2/rGO纳米复合材料修饰的玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂电极为对电极,以1M的H2SO4溶液作为支持电解质溶液,利用微分脉冲伏安法(DPV),应用于检测不同浓度环丙沙星的溶液。
CN201811059712.5A 2018-09-12 2018-09-12 一种电极修饰材料二硫铟化银/还原氧化石墨烯的制备方法及其检测环丙沙星的应用 Active CN109187686B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811059712.5A CN109187686B (zh) 2018-09-12 2018-09-12 一种电极修饰材料二硫铟化银/还原氧化石墨烯的制备方法及其检测环丙沙星的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811059712.5A CN109187686B (zh) 2018-09-12 2018-09-12 一种电极修饰材料二硫铟化银/还原氧化石墨烯的制备方法及其检测环丙沙星的应用

Publications (2)

Publication Number Publication Date
CN109187686A true CN109187686A (zh) 2019-01-11
CN109187686B CN109187686B (zh) 2020-05-12

Family

ID=64910240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811059712.5A Active CN109187686B (zh) 2018-09-12 2018-09-12 一种电极修饰材料二硫铟化银/还原氧化石墨烯的制备方法及其检测环丙沙星的应用

Country Status (1)

Country Link
CN (1) CN109187686B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111650266A (zh) * 2020-06-09 2020-09-11 宁波大学 一种光电检测抗生素环丙沙星的传感器、制备方法及其用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234894A (ja) * 1991-12-26 1993-09-10 Fuji Electric Co Ltd カルコパイライト型化合物薄膜の製造方法および製造装置
US20120205532A1 (en) * 2010-08-31 2012-08-16 Waters Technologies Corporation Techniques For Sample Analysis
CN103043709A (zh) * 2012-12-19 2013-04-17 上海师范大学 一种氧化石墨烯/AgInS2纳米杂化材料及其制备方法
CN105510390A (zh) * 2016-01-18 2016-04-20 郑州轻工业学院 一种多级结构纳米In2O3/石墨烯复合材料及其制备方法和应用
CN107812529A (zh) * 2017-10-30 2018-03-20 江苏大学 一种复合材料光催化剂及制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234894A (ja) * 1991-12-26 1993-09-10 Fuji Electric Co Ltd カルコパイライト型化合物薄膜の製造方法および製造装置
US20120205532A1 (en) * 2010-08-31 2012-08-16 Waters Technologies Corporation Techniques For Sample Analysis
CN103043709A (zh) * 2012-12-19 2013-04-17 上海师范大学 一种氧化石墨烯/AgInS2纳米杂化材料及其制备方法
CN105510390A (zh) * 2016-01-18 2016-04-20 郑州轻工业学院 一种多级结构纳米In2O3/石墨烯复合材料及其制备方法和应用
CN107812529A (zh) * 2017-10-30 2018-03-20 江苏大学 一种复合材料光催化剂及制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAN LI 等: "Preparation of AgIn5S8/TiO2 Heterojunction Nanocomposite and Its Enhanced Photocatalytic H2 Production Property under Visible Light", 《ACS CATALYSIS》 *
ZHIGANG ZANG 等: "Tunable photoluminescence of water-soluble AgInZnS-graphene oxide (GO) nanocomposites and their application in-vivo bioimaging", 《SENSORS AND ACTUATORS B》 *
闫长领 等: "盐酸环丙沙星分子印迹电化学传感器", 《化学通报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111650266A (zh) * 2020-06-09 2020-09-11 宁波大学 一种光电检测抗生素环丙沙星的传感器、制备方法及其用途

Also Published As

Publication number Publication date
CN109187686B (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
Xu et al. Facile synthesis of hierarchical MXene/ZIF-67/CNTs composite for electrochemical sensing of luteolin
Radhakrishnan et al. A promising electrochemical sensing platform based on ternary composite of polyaniline–Fe2O3–reduced graphene oxide for sensitive hydroquinone determination
CN109307700B (zh) 一种钴基金属有机框架材料/三维石墨烯纳米复合材料修饰电极测定芦丁的方法
Han et al. A novel electrochemical sensor based on poly (p-aminobenzene sulfonic acid)-reduced graphene oxide composite film for the sensitive and selective detection of levofloxacin in human urine
Wu et al. Simultaneous electrochemical sensing of hydroquinone and catechol using nanocomposite based on palygorskite and nitrogen doped graphene
Dong et al. Electro-oxidation of ascorbic acid at bismuth sulfide nanorod modified glassy carbon electrode
Sasikumar et al. Electrochemical determination of morin in Kiwi and Strawberry fruit samples using vanadium pentoxide nano-flakes
CN104198559B (zh) 用于有机磷农药检测的电化学生物传感器及制备方法
Jiao et al. Tannic acid functionalized N-doped graphene modified glassy carbon electrode for the determination of bisphenol A in food package
Prathap et al. Electrochemical reduction of lindane (γ-HCH) at NiCo2O4 modified electrode
Ermis et al. Recent advantage in electrochemical monitoring of gallic acid and kojic acid: a new perspective in food science
Węgiel et al. A graphene oxide modified carbon ceramic electrode for voltammetric determination of gallic acid
CN109507272A (zh) 一种基于ZIF-67合成的NiCoLDH@Au复合材料及其在葡萄糖传感器中的应用
Wei et al. Detection of ascorbic acid using green synthesized carbon quantum dots
Martin et al. In-situ electrochemical analysis of microbial activity
Wang et al. Application of nanosized gold and graphene modified carbon ionic liquid electrode for the sensitive electrochemical determination of folic acid
Zhang et al. Characterization of PEDOT: PSS-reduced graphene oxide@ Pd composite electrode and its application in voltammetric determination of vitamin K3
Zhang et al. Fabrication an electrochemical sensor based on composite of Cu-TCPP nanosheets and PSS functionalized graphene for simultaneous and sensitive determination of dihydroxybenzene isomers
Sriram et al. Zirconium phosphate supported on g-C3N4 nanocomposite for sensitive detection of nitrite
CN106770563A (zh) 一种检测水体急性生物毒性的双电子介体电化学生物传感器及其应用
Sundaresan et al. Design and investigation of ytterbium tungstate nanoparticles: An efficient catalyst for the sensitive and selective electrochemical detection of antipsychotic drug chlorpromazine
Luo et al. SnO2 nanofibers decorated with Au nanoparticles for Ru (bpy) 32+ sensitized photoelectrochemical determination of NO2− in urine
CN109187678A (zh) 利用纳米金石墨烯修饰电化学方法的亚硝酸盐检测装置
Wang et al. Constructed ILs@ hollow porous spherical Ni-loaded CdFe2O4 modified electrode for highly sensitive simultaneous electrochemical analysis of bisphenols
Tanaka et al. Potentiometric evaluation of antioxidant capacity using polyoxometalate-immobilized electrodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant