CN109182696B - 一种三代渗碳钢材料氮化表面改性方法 - Google Patents

一种三代渗碳钢材料氮化表面改性方法 Download PDF

Info

Publication number
CN109182696B
CN109182696B CN201811393789.6A CN201811393789A CN109182696B CN 109182696 B CN109182696 B CN 109182696B CN 201811393789 A CN201811393789 A CN 201811393789A CN 109182696 B CN109182696 B CN 109182696B
Authority
CN
China
Prior art keywords
nitriding
generation
steel material
carburized steel
surface modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811393789.6A
Other languages
English (en)
Other versions
CN109182696A (zh
Inventor
孙振淋
钱珏
何培刚
辛玉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Harbin Dongan Engine Co Ltd
Original Assignee
AECC Harbin Dongan Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Harbin Dongan Engine Co Ltd filed Critical AECC Harbin Dongan Engine Co Ltd
Priority to CN201811393789.6A priority Critical patent/CN109182696B/zh
Publication of CN109182696A publication Critical patent/CN109182696A/zh
Application granted granted Critical
Publication of CN109182696B publication Critical patent/CN109182696B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/04Treatment of selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

本发明属于金属热处理技术领域,涉及一种三代渗碳钢材料氮化表面改性方法。本发明三代渗碳钢材料氮化表面改性方法,是在其淬火、冰冷、时效后进行氮化,对氮化表面吹砂处理后,采用气体氮化方式进行零件氮化表面改性,其中,为去除零件表面致密钝化膜,需要使用NH4Cl作为催化剂,先通入Ar气,置换炉内空气,然后,再通入氮气,进行氮化。氮化分为两个阶段,第一阶段采取低分解率,第二阶段采用高分解率。本发明三代渗碳钢材料氮化方法通过氮化前热处理工艺参数优化,特别是氮化前促进基体马氏体转变,从而能够提三代渗碳钢氮化速率的同时,保证金相组织中不出现网状组织和波纹状组织,使得三代渗碳钢材料气体氮化后符合设计要求。

Description

一种三代渗碳钢材料氮化表面改性方法
技术领域
本发明属于金属热处理技术领域,涉及一种三代渗碳钢材料氮化表面改性方法。
背景技术
三代渗碳钢材料属于相变控制性沉淀硬化不锈钢超高合金钢,主要应用于航空航天等耐温轴齿及轴承类材料,其国产牌号对应为
15Cr14Co12Mo4Ni2VNb。该材料实际生产时,其工艺条件不成熟,特别是缺乏合适的氮化表面改性相关工艺参数。
由于三代渗碳钢材料中的合金含量超高,含有大量的强碳、氮化物形成元素,利用传统气体氮化工艺容易造成其氮化物以网状组织形式析出或呈波纹状,金相组织严重不合格,无法满足三代渗碳钢材料的氮化设计工艺要求。
发明内容
本发明的目的是:提供一种渗层和金相组织均满足工艺要求的三代渗碳钢材料氮化表面改性方法。
本发明的技术解决方案为:一种三代渗碳钢氮化表面改性方法,氮化前淬火后,对材料进行冰冷、时效处理。
冰冷处理为-80~100℃保温3~5h,时效处理是580~620℃时效1.5~2.5h。
三代渗碳钢包括CSS-42L材料和BG801材料。
对氮化表面吹砂处理后,采用气体渗氮方式对渗氮表面进行气体氮化。
使用NH4Cl作为催化剂。
先通入Ar对炉内空气进行置换,然后再升温通入NH3
气体氮化采取两段法,其中第一阶段采用低分解率,分解率不超过48%,第二阶段采用高分解率,分解率不低于70%,通过两阶段氮化分解率控制,调控氮势,避免氮化过程中氮势过高,出现网状氮化物以及波纹状氮化物,从而优化氮化金相组织,提高组织质量。
氮化层深为0.15~0.60mm。
本发明的技术效果是:本发明三代渗碳钢材料氮化表面改性方法,通过淬火后氮化前对材料进行冰冷、时效处理以及氮化工艺参数控制,从而保证基体材料马氏体转变程度,使得三代渗碳钢氮化速率较快,氮化后氮化层深度0.15~0.30mm,表面硬度达到HV1000以上的同时,金相组织满足三代渗碳钢的设计要求。
具体实施方式
下面结合实施例对本发明做进一步说明:
实施例1,首先对三代渗碳钢材料CSS-42L进行真空1060℃保温1h,气冷淬火,-85℃保温4h,以促进材料发生马氏体转变,提高组织强度,随后600℃时效2h(允许有上下20°温度浮动),该时效处理温度明显高于常规渗碳钢时效处理温度(比常规时效处理温度高大概100°),从可以促使组织变性能够大面积析出碳化二钼,使得碳化二钼相长大,氮原子在机体中扩散阻力减小,扩散快,速度氮化时间,可以有效缩短氮化时间,节约成本,同时碳化二钼析出可以实现二次强化,利于提高氮化组织的稳定性。
时效处理完成后,进行气体氮化,将CSS-42L材料氮化表面吹砂处理后,随同NH4Cl放入气体氮化炉内,通入Ar气体12h后,随炉升温至550℃,到温后停止通入Ar,通入NH3。第一阶段氨分解率为45%,氮化工艺时间60h,第二阶段氨分解率为70%,氮化工艺时间50h,氮化结束后随炉冷却。
采用显微硬度分析法检测氮化层有效深度为0.20mm,氮化表面显微硬度HV1127,金相法观察金相组织未存在网状氮化物以及波纹状氮化物,满足了设计要求。
实施例2,首先对三代渗碳钢BG801材料进行真空1080℃保温1h,气冷淬火,-95℃保温4h,随后620℃时效2h,从而有效提高组织强度和稳定性,以及优化后续氮化工艺条件,然后再进行气体氮化。
将BG801材料氮化表面吹砂处理后,随同NH4Cl放入气体氮化炉内,通入Ar气体12h后,随炉升温至560℃,到温后停止通入Ar,通入NH3。第一阶段氨分解率为43%,氮化工艺时间60h,第二阶段氨分解率为75%,氮化工艺时间50h,氮化结束后随炉冷却。
采用显微硬度分析法检测氮化层有效深度为0.22mm,氮化表面显微硬度HV1130,金相法观察金相组织未存在网状氮化物以及波纹状氮化物,满足了设计要求。

Claims (8)

1.一种三代渗碳钢材料氮化表面改性方法,其特征在于,所述三代渗碳钢为相变控制性沉淀硬化不锈钢超高合金钢,淬火后氮化前,对材料进行冰冷、时效处理,冰冷处理为-80~-100℃保温3~5h,时效处理是600~620℃时效1.5~2.5h,使组织变性能够大面积析出碳化二钼,使得碳化二钼相长大,氮原子在机体中扩散阻力减小,缩短氮化时间。
2.根据权利要求1所述的三代渗碳钢材料氮化表面改性方法,其特征在于,三代渗碳钢材料包括CSS-42L材料和BG801材料。
3.根据权利要求2所述的三代渗碳钢材料氮化表面改性方法,其特征在于,对氮化表面吹砂处理后,采用气体渗氮方式对渗氮表面进行气体氮化。
4.根据权利要求3所述的三代渗碳钢材料氮化表面改性方法,其特征在于,使用NH4Cl作为催化剂。
5.根据权利要求4所述的三代渗碳钢材料氮化表面改性方法,其特征在于,先通入Ar对炉内空气进行置换,然后再升温通入NH3。
6.根据权利要求5所述的三代渗碳钢材料氮化表面改性方法,其特征在于,气体氮化采取两段法,其中第一阶段采用低分解率,分解率不超过48%,第二阶段采用高分解率,分解率不低于70%。
7.根据权利要求6所述的三代渗碳钢材料氮化表面改性方法,其特征在于,气体氮化工艺温度在400~650℃。
8.根据权利要求7所述的三代渗碳钢材料氮化表面改性方法,其特征在于,氮化层深为0.10~0.75mm。
CN201811393789.6A 2018-11-21 2018-11-21 一种三代渗碳钢材料氮化表面改性方法 Active CN109182696B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811393789.6A CN109182696B (zh) 2018-11-21 2018-11-21 一种三代渗碳钢材料氮化表面改性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811393789.6A CN109182696B (zh) 2018-11-21 2018-11-21 一种三代渗碳钢材料氮化表面改性方法

Publications (2)

Publication Number Publication Date
CN109182696A CN109182696A (zh) 2019-01-11
CN109182696B true CN109182696B (zh) 2021-11-05

Family

ID=64940436

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811393789.6A Active CN109182696B (zh) 2018-11-21 2018-11-21 一种三代渗碳钢材料氮化表面改性方法

Country Status (1)

Country Link
CN (1) CN109182696B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020462A (zh) * 2019-11-22 2020-04-17 中国航发西安动力控制科技有限公司 可提高钨钼系高速钢表面硬度处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144470A (ja) * 1984-12-19 1986-07-02 Riken Corp ピストンリング
EP0950723A1 (en) * 1996-12-17 1999-10-20 Komatsu Ltd. High bearing-strength steel parts and processes for the production thereof
CN101353763A (zh) * 2007-07-23 2009-01-28 宝山钢铁股份有限公司 高硬度耐磨热轧带钢及其制造方法
CN104294152A (zh) * 2013-07-16 2015-01-21 无锡华冶钢铁有限公司 一种12Cr2Ni4A合金结构钢及齿轮加工制造方法
CN106755773A (zh) * 2016-12-02 2017-05-31 哈尔滨东安发动机(集团)有限公司 一种css‑42l齿轮钢渗碳后渗碳区域的软化方法
JP2018510261A (ja) * 2015-02-04 2018-04-12 ノード−ロック・アーベー 耐腐食性が上昇したウェッジロックワッシャおよびその製造方法
CN108220810A (zh) * 2017-12-29 2018-06-29 钢铁研究总院 一种高耐磨高强韧高温渗氮钢及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106431A (en) * 1990-11-13 1992-04-21 Alliant Techsystems Inc. Process for creating high strength tubing with isotropic mechanical properties
JPH1180923A (ja) * 1997-09-01 1999-03-26 Ntn Corp 転がり軸受およびその製造方法
US6105374A (en) * 1998-07-28 2000-08-22 Nu-Bit, Inc. Process of nitriding metal-containing materials
AU2001245704A1 (en) * 2000-03-14 2001-09-24 The Timken Company High performance carburizing stainless steel for high temperature use
CN101942632B (zh) * 2010-09-21 2012-05-23 南京工业职业技术学院 00Ni18Co8Mo5AlTi高强度马氏体时效钢的气体渗氮工艺
CN105177455B (zh) * 2015-10-08 2018-04-03 中国航空工业集团公司北京航空材料研究院 一种2400MPa级高合金超高强度钢
CN106191705A (zh) * 2016-08-12 2016-12-07 刘少尊 一种Mo,Al复合渗氮高强度不锈轴承钢及制备方法
CN106755772B (zh) * 2016-12-02 2021-03-19 哈尔滨东安发动机(集团)有限公司 一种css-42l齿轮钢非渗碳区域软化方法
CN108118260A (zh) * 2017-12-26 2018-06-05 钢铁研究总院 一种超强超硬高温不锈轴承齿轮钢及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144470A (ja) * 1984-12-19 1986-07-02 Riken Corp ピストンリング
EP0950723A1 (en) * 1996-12-17 1999-10-20 Komatsu Ltd. High bearing-strength steel parts and processes for the production thereof
CN101353763A (zh) * 2007-07-23 2009-01-28 宝山钢铁股份有限公司 高硬度耐磨热轧带钢及其制造方法
CN104294152A (zh) * 2013-07-16 2015-01-21 无锡华冶钢铁有限公司 一种12Cr2Ni4A合金结构钢及齿轮加工制造方法
JP2018510261A (ja) * 2015-02-04 2018-04-12 ノード−ロック・アーベー 耐腐食性が上昇したウェッジロックワッシャおよびその製造方法
CN106755773A (zh) * 2016-12-02 2017-05-31 哈尔滨东安发动机(集团)有限公司 一种css‑42l齿轮钢渗碳后渗碳区域的软化方法
CN108220810A (zh) * 2017-12-29 2018-06-29 钢铁研究总院 一种高耐磨高强韧高温渗氮钢及其制备方法

Also Published As

Publication number Publication date
CN109182696A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
JP2016519715A (ja) 向上された窒化特性を有するベイナイト系マイクロアロイ鋼
CN104178771A (zh) 热冲压用模具钢sdcm1热处理及表面处理方法
CN107245691A (zh) 金属材料复合热处理表面强化方法
KR101719560B1 (ko) 표면경화 합금강의 열처리 방법
CN109182696B (zh) 一种三代渗碳钢材料氮化表面改性方法
CN105714190A (zh) 一种耐冲击载荷轴承用钢及其热处理方法
CN114000058A (zh) 一种稀土合金化的钢材及其渗氮方法及一种渗氮钢件
JP2013000790A (ja) フェライト−パーライト型非調質鍛造部品の製造方法
CN112501396B (zh) 一种第三代轴承钢的等温淬火热处理工艺方法
JP2006348321A (ja) 窒化処理用鋼
CN110592331B (zh) 一种铸造钢铁耐磨件的热处理生产方法
CN109338280B (zh) 一种三代渗碳钢渗碳后氮化方法
CN115011882A (zh) 一种应用于齿轮高效节能的热处理方法
CN108823502A (zh) 一种30CrMnTi钢大型螺旋伞齿轮的热处理工艺
JP2741222B2 (ja) 窒化処理した鋼部材の製造方法
JPS5916949A (ja) 軟窒化用鋼
CN112760594B (zh) 一种金属材料表面晶粒超细化的方法
CN114959553A (zh) 一种提高金属表面碳化性能的热处理方法
BR112019008898B1 (pt) Processo para tratamento a quente de uma peça de trabalho consistindo em um aço de alta liga
CN112708734A (zh) 一种具有提高耐磨性的热处理工艺
CN107419175B (zh) 疲劳寿命良好的经济型工具钢及其生产方法
CN106756759B (zh) 一种铁基合金表面高强韧渗氮层及其制备方法
JP4175933B2 (ja) 短時間の窒化処理で高い表面硬さと深い硬化深さの得られる窒化鋼部品及びその製造方法
CN105177231B (zh) 一种辐条条帽用快削钢的热处理工艺
RU2324001C1 (ru) Способ термической и химико-термической обработки стальных изделий в вакууме

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant