CN109181241B - 聚磷腈阻燃剂微纳米材料在pet阻燃中的应用 - Google Patents
聚磷腈阻燃剂微纳米材料在pet阻燃中的应用 Download PDFInfo
- Publication number
- CN109181241B CN109181241B CN201810939424.2A CN201810939424A CN109181241B CN 109181241 B CN109181241 B CN 109181241B CN 201810939424 A CN201810939424 A CN 201810939424A CN 109181241 B CN109181241 B CN 109181241B
- Authority
- CN
- China
- Prior art keywords
- pet
- flame
- pzs
- retardant
- flame retardant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
本发明公开了一种聚磷腈阻燃剂微纳米材料在PET阻燃中的应用,其特征在于,当聚磷腈阻燃剂微纳米材料为PZM时,将合成的PZM微米管与PET按比例用双螺杆挤出机熔融共混,然后挤出冷却,得到抗融滴型阻燃PET;当聚磷腈阻燃剂微纳米材料为PZS时,将合成的PZS微米球与PET按比例用双螺杆挤出机熔融共混,然后挤出冷却,得到增强型的阻燃PET。本发明合成工艺简单,对涤纶阻燃效果好,在纺织品阻燃整理中具有较好的应用前景。
Description
技术领域
本发明属于材料阻燃领域,特别涉及聚磷腈阻燃剂PZM,PZS微纳米材料在PET阻燃中的应用。
背景技术
半结晶热塑性聚合物聚对苯二甲酸乙二醇酯(PET)由于其自身好的机械性能,耐疲劳性,耐化学性,可纺性和低成本已经被在饮料瓶,纤维,薄膜和运输业在内的广泛领域得到了应用。以满足日常生活中的多元化的需求。但是,在考虑防火安全要求时,PET易燃性以及燃烧过程中伴随的严重的火焰熔滴。容易发生火灾并伴随二次伤害。这样严重的限制了PET的在医疗,航空,居家等材料的应用。
含磷阻燃剂,由于其低毒高效的阻燃性能,被广泛应用在聚酯的无卤阻燃研究。已经证明,含磷阻燃剂可有效提高PET的阻燃性能。尤其是磷腈有机无机杂化材料因其较高的阻燃效率,较低的毒性和环境友好性而受到高度重视。遗憾的是,大多数含磷阻燃剂,包括磷腈对PET阻燃时,当暴露在火中也会造成PET严重的熔滴现象,从而导致二次火灾和直接的灼伤。
为了解决PET聚酯阻燃和抗熔滴之间的矛盾,四川大学王等人将高温自交联单体与PET单体共聚方法实现了较好的阻燃抗熔滴效果。但是考虑到高的添加量和材料的强力损失,这种方法有待改善。据报道,在PET基体中添加少量的微纳米材料(碳纳米管,石墨烯纳米片)就可实现好的抗熔滴效果。然而,单纯添加少量的碳纳米管石墨烯很难提高阻燃效果。
发明内容
本发明所要解决的技术问题是:如何提高PET阻燃抗熔滴的技术问题。
为了解决上述问题,本发明提供了一种聚磷腈阻燃剂微纳米材料在PET阻燃中的应用,其特征在于,当聚磷腈阻燃剂微纳米材料为PZM时,包括以下步骤:
步骤1):含PZM微米管阻燃PET的制备:合成PZM微米管,将合成的PZM微米管与PET按比例用双螺杆挤出机熔融共混,然后挤出冷却,得到抗融滴型阻燃PET;
当聚磷腈阻燃剂微纳米材料为PZS时,包括以下步骤:
步骤2):含PZS微米球阻燃PET的制备:合成PZS微米球,将合成的PZS微米球与PET按比例用双螺杆挤出机熔融共混,然后挤出冷却,得到增强型的阻燃PET。
优选地,所述步骤1)中PZM微米管的加入量为PET质量的1%-10.0%;双螺杆挤出机的一、二、三、四分区温度分别设为245℃、255℃、270℃、260℃。
优选地,所述步骤2)中PZS微米球的加入量为PET质量的1%-10.0%;双螺杆挤出机的一、二、三、四分区温度分别设为255℃、260℃、265℃、270℃。
优选地,所述步骤2)中PZS微米球采用六氯环三磷腈和双酚S为原料合成,其中,六氯环三磷腈与双酚S的质量比为2:7~1:3。
与现有技术相比,本发明的有益效果在于:
(1)本发明仅在PET中添加少量阻燃剂PZM就能明显提高PET材料的阻燃抗熔滴效果;
(2)本发明仅在PET中添加少量阻燃剂PZS就能明显提高PET材料的阻燃效果。同时保持材料较好的强力;
(3)本发明合成的阻燃剂为高聚物,热稳定好,在熔融过程中不会放出有害气体,同时也不会出现阻燃剂迁移现象。阻燃剂无毒无害,燃烧过程不会放出有害气体。
附图说明
图1为实施例1制备的PZM微米管的扫描电镜图(a)和透射电镜图(b)的对比图;
图2为实施例1制备的PET/PZM复合材料在极限氧指数29.5vol%条件下LOI测试过程不同状态的对比图;
图3为实施例1制备的PET/PZM复合材料的流变和碳层拉曼分析图,其中,a为储能模量G'与损耗模量G”的关系图;b为复数黏度|η*|的频率依赖关系图;
图4为实施例1制备的PET、PET-PZM复合材料在600℃氮气条件下处理10min后的残渣SEM照片(a、b)和Raman光谱(c、d)的对比图,其中,a、c为PET,b、d为PET-PZM;
图5为实施例2制备的不同六氯环三磷腈与双酚S比例制成的PZS微米球的扫描电镜图的对比图;
图6为实施例2制备的PET/PZS复合材料的拉伸强力数据图。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例1
一种聚磷腈阻燃剂微纳米材料PZM在PET阻燃中的应用:
采用文献《Z.Li,G.Wang,W.Ren,A.Zhang,L.An,Y.Tian,Cyclotriphosphazene-containing polymeric nanotubes:synthesis,properties,and formation mechanism,Journal of Materials Science 51(8)(2016)4096-4103.》制备PZM微米管(如图1所示)。
将5g PZM微米管与95g PET用双螺杆挤出机高温下熔融共混,然后挤出冷却,得到抗融滴型阻燃复合材料PET-PZM5.0。
本实施例中PET/PZM复合材料的极限氧指数LOI测试如图2所示,将PET纯样和PET/PZM复合材料同在极限氧指数29.5vol%的条件下测试,从图中可以清楚的看到PET剧烈燃烧,然而PET-PZM在同样的氧指数条件下在2S内熄灭,表明PET/PZM复合材料具有好的阻燃性能。
本实施例中PET/PZM复合材料的流变测试如图3所示,当频率低于1rad/s时,PET-PZM储能模量(G')高于损耗模量(G”),这表明PET/PZM5.0的熔体在较低的剪切速率为弹性体而不是粘性体。此外,在270℃时,PET的复数粘度(|η*|)在0.1rad/s的频率下小于100Pa·s。但是,PET-PZM5.0的复数粘度|η*|在同一频率下超过2000Pa·s。因此,处于熔融状态的复合材料为弹性固体和较高的熔体粘度有助于提高PET/PZM5.0的抗熔滴性。
本实施例中PET-PZM复合材料的氮气600℃条件下残渣如图4所示,对图4进行描述(在N2气氛下在600℃处理10min的PET和复合材料中残余焦炭的形态通过扫描电子显微镜研究如图4中a、b所示的。与PET相比,它在碳基底上具有多个微米级孔隙的碳残留物。PET-PZM5.0碳层在隔离氧气和热时提供更紧凑结构的有效保护屏障。同时利用拉曼光谱对PET和复合材料碳层的组成进行研究,结果表明PET-PZM5.0残炭有较大的R值(ID/IG),表明复合材料在燃烧过程中会产生更小的微观结构,更加有利于保护机体免受火焰的破坏。
表1 PET-PZM复合材料的极限氧指数和垂直燃烧测试结果
实施例2
一种聚磷腈阻燃剂微纳米材料PZS在PET阻燃中的应用:
采用文献《Z.Lu,Z.Yan,P.Yang,Y.Huang,X.Huang,X.Tang,Fully CrosslinkedPoly[cyclotriphosphazene‐co‐(4,4′‐sulfonyldiphenol)]Microspheres viaPrecipitation Polymerization and Their Superior Thermal Properties,Macromolecular Reaction Engineering 1(1)(2010)45-52.》制备PZS微米球(如图5所示)。PZS微米球在不同比例下均形成了大小均一的PZS微米球,PZS微米球的直径大多在500nm-700nm之间,球与球之间相互分离,a、b、c中双酚S(BPS)与不同磷腈(HCCP)的质量比分别为3.6:1.0、3.6:1.1、3.6:1.2。所合成的阻燃剂分别命名为PZS1.0,PZS1.1和PZS1.2。
将3g PZS-1.2与97g PET用双螺杆挤出机高温下熔融共混,然后挤出冷却,得到阻燃增强型复合材料PET-PZS1.2-3。
本实施例制得的PET-PZS复合材料的拉伸强力图5所示,PET-PZS1.2-3表示为97gPET和PZS1.2微米球3g熔融共混所得的复合材料。由图5可见,PET-PZS1.2-3材料的强力可达46Mpa,而纯样为35Mpa,其它材料强力也可达到27Mpa,表明PZS微米球对PET阻燃强力保留作用很好。
表2 PET/PZS复合材料的极限氧指数和垂直燃烧测试结果
Claims (1)
1.一种聚磷腈阻燃剂微纳米材料在PET阻燃中的应用,其特征在于,聚磷腈阻燃剂微纳米材料为PZS,包括以下步骤:
含PZS微米球阻燃PET的制备:合成PZS微米球,将合成的PZS微米球与PET按质量比3:97用双螺杆挤出机熔融共混,然后挤出冷却,得到增强型的阻燃PET;PZS微米球的加入量为PET质量的1%-10.0%;双螺杆挤出机的一、二、三、四分区温度分别设为255℃、260℃、265℃、270℃;
所述PZS微米球采用六氯环三磷腈和双酚S为原料合成,其中,六氯环三磷腈与双酚S的质量比为2:7~1:3。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810939424.2A CN109181241B (zh) | 2018-08-17 | 2018-08-17 | 聚磷腈阻燃剂微纳米材料在pet阻燃中的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810939424.2A CN109181241B (zh) | 2018-08-17 | 2018-08-17 | 聚磷腈阻燃剂微纳米材料在pet阻燃中的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109181241A CN109181241A (zh) | 2019-01-11 |
CN109181241B true CN109181241B (zh) | 2020-12-29 |
Family
ID=64918172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810939424.2A Active CN109181241B (zh) | 2018-08-17 | 2018-08-17 | 聚磷腈阻燃剂微纳米材料在pet阻燃中的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109181241B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113512227B (zh) * | 2021-04-13 | 2023-03-24 | 何顺伦 | 一种高阻燃pet发泡材料及其制备方法 |
CN114230801A (zh) * | 2021-12-02 | 2022-03-25 | 东华大学 | 一种聚磷腈阻燃剂的制备方法和在pet阻燃中的应用 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4094856A (en) * | 1976-06-15 | 1978-06-13 | E. I. Du Pont De Nemours And Company | Flame retardant polymeric compositions |
CN1908033A (zh) * | 2006-08-17 | 2007-02-07 | 上海交通大学 | 一种交联聚膦腈微球及其制备方法 |
CN102532828B (zh) * | 2011-12-29 | 2013-11-06 | 宁波长阳科技有限公司 | 一种pet/聚膦腈微纳米复合材料及其制备方法 |
US9534116B2 (en) * | 2012-10-17 | 2017-01-03 | Polyone Corporation | Flame retardant polylactic acid compounds |
MX2015006829A (es) * | 2012-12-07 | 2015-09-07 | Bayer Materialscience Ag | Compuestos de moldeo de policarbonato ignifugos iii. |
CN105482163B (zh) * | 2016-01-20 | 2017-11-28 | 广东工业大学 | 一种高耐热微胶囊阻燃剂及其制备方法 |
-
2018
- 2018-08-17 CN CN201810939424.2A patent/CN109181241B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN109181241A (zh) | 2019-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jin et al. | The preparation of a bio-polyelectrolytes based core-shell structure and its application in flame retardant polylactic acid composites | |
Tang et al. | Phosphorus-containing silane modified steel slag waste to reduce fire hazards of rigid polyurethane foams | |
Chen et al. | Fire safety improvement of para-aramid fiber in thermoplastic polyurethane elastomer | |
Xu et al. | Fabrication of green alginate-based and layered double hydroxides flame retardant for enhancing the fire retardancy properties of polypropylene | |
Gao et al. | Synergistic effect of expandable graphite, melamine polyphosphate and layered double hydroxide on improving the fire behavior of rosin-based rigid polyurethane foam | |
Fang et al. | Mechanical properties, fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber | |
Meng et al. | Effects of expandable graphite and ammonium polyphosphate on the flame‐retardant and mechanical properties of rigid polyurethane foams | |
Zhang et al. | A phosphorus-, nitrogen-and carbon-containing polyelectrolyte complex: preparation, characterization and its flame retardant performance on polypropylene | |
Huang et al. | Ultrastrong, flexible and lightweight anisotropic polypropylene foams with superior flame retardancy | |
Zhang et al. | Expandable graphite‐methyl methacrylate‐acrylic acid copolymer composite particles as a flame retardant of rigid polyurethane foam | |
Wu et al. | Flame retardant efficiency of modified para-aramid fiber synergizing with ammonium polyphosphate on PP/EPDM | |
Li et al. | Novel organic-inorganic hybrid polyphosphazene modified manganese hypophosphite shuttles towards the fire retardance and anti-dripping of PET | |
CN109181241B (zh) | 聚磷腈阻燃剂微纳米材料在pet阻燃中的应用 | |
Fang et al. | A bio-based intumescent flame retardant with biomolecules functionalized ammonium polyphosphate enables polylactic acid with excellent flame retardancy | |
Yang et al. | In situ reinforced and flame-retarded polycarbonate by a novel phosphorus-containing thermotropic liquid crystalline copolyester | |
Zheng et al. | Modified magnesium hydroxide encapsulated by melamine cyanurate in flame-retardant polyamide-6 | |
CN112812435A (zh) | 一种常温导热高温阻燃的高分子复合材料及其制备方法 | |
Huang et al. | Flame retardant polypropylene with a single molecule intumescent flame retardant based on chitosan | |
Yan et al. | Preparation and characterization of intumescent flame retardant biodegradable poly (lactic acid) nanocomposites based on sulfamic acid intercalated layered double hydroxides | |
Xu et al. | Intumescent flame retardant of polypropylene system with enhanced thermal properties and flame retardancy based on α-zirconium phosphate composite particles | |
CN108503895B (zh) | 镧负载有机磷修饰氮掺杂石墨烯的制备方法及其阻燃改性abs | |
Li et al. | Preparation and properties of polybutylene‐terephthalate/graphene oxide in situ flame‐retardant material | |
CN115011078B (zh) | 一种阻燃环保pet塑料及其制备方法 | |
Zhan et al. | Ma Lao-like structural fireproof aramid nanofiber@ Ag nanocomposite film enhanced with MXene for advanced thermal management applications | |
Wang et al. | Fabrication of highly hydrophobic layered double hydroxide decorated with tannic acid cross-linked phosphazene as a novel flame retardant for polypropylene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |