CN109181241A - 聚磷腈阻燃剂微纳米材料在pet阻燃中的应用 - Google Patents

聚磷腈阻燃剂微纳米材料在pet阻燃中的应用 Download PDF

Info

Publication number
CN109181241A
CN109181241A CN201810939424.2A CN201810939424A CN109181241A CN 109181241 A CN109181241 A CN 109181241A CN 201810939424 A CN201810939424 A CN 201810939424A CN 109181241 A CN109181241 A CN 109181241A
Authority
CN
China
Prior art keywords
pet
retardant
pzs
fire
pzm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810939424.2A
Other languages
English (en)
Other versions
CN109181241B (zh
Inventor
毛志平
王畅
徐红
隋晓锋
张琳萍
钟毅
王碧佳
陈支泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
National Dong Hwa University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201810939424.2A priority Critical patent/CN109181241B/zh
Publication of CN109181241A publication Critical patent/CN109181241A/zh
Application granted granted Critical
Publication of CN109181241B publication Critical patent/CN109181241B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明公开了一种聚磷腈阻燃剂微纳米材料在PET阻燃中的应用,其特征在于,当聚磷腈阻燃剂微纳米材料为PZM时,将合成的PZM微米管与PET按比例用双螺杆挤出机熔融共混,然后挤出冷却,得到抗融滴型阻燃PET;当聚磷腈阻燃剂微纳米材料为PZS时,将合成的PZS微米球与PET按比例用双螺杆挤出机熔融共混,然后挤出冷却,得到增强型的阻燃PET。本发明合成工艺简单,对涤纶阻燃效果好,在纺织品阻燃整理中具有较好的应用前景。

Description

聚磷腈阻燃剂微纳米材料在PET阻燃中的应用
技术领域
本发明属于材料阻燃领域,特别涉及聚磷腈阻燃剂PZM,PZS微纳米材料在PET阻燃中的应用。
背景技术
半结晶热塑性聚合物聚对苯二甲酸乙二醇酯(PET)由于其自身好的机械性能,耐疲劳性,耐化学性,可纺性和低成本已经被在饮料瓶,纤维,薄膜和运输业在内的广泛领域得到了应用。以满足日常生活中的多元化的需求。但是,在考虑防火安全要求时,PET易燃性以及燃烧过程中伴随的严重的火焰熔滴。容易发生火灾并伴随二次伤害。这样严重的限制了PET的在医疗,航空,居家等材料的应用。
含磷阻燃剂,由于其低毒高效的阻燃性能,被广泛应用在聚酯的无卤阻燃研究。已经证明,含磷阻燃剂可有效提高PET的阻燃性能。尤其是磷腈有机无机杂化材料因其较高的阻燃效率,较低的毒性和环境友好性而受到高度重视。遗憾的是,大多数含磷阻燃剂,包括磷腈对PET阻燃时,当暴露在火中也会造成PET严重的熔滴现象,从而导致二次火灾和直接的灼伤。
为了解决PET聚酯阻燃和抗熔滴之间的矛盾,四川大学王等人将高温自交联单体与PET单体共聚方法实现了较好的阻燃抗熔滴效果。但是考虑到高的添加量和材料的强力损失,这种方法有待改善。据报道,在PET基体中添加少量的微纳米材料(碳纳米管,石墨烯纳米片)就可实现好的抗熔滴效果。然而,单纯添加少量的碳纳米管石墨烯很难提高阻燃效果。
发明内容
本发明所要解决的技术问题是:如何提高PET阻燃抗熔滴的技术问题。
为了解决上述问题,本发明提供了一种聚磷腈阻燃剂微纳米材料在PET阻燃中的应用,其特征在于,当聚磷腈阻燃剂微纳米材料为PZM时,包括以下步骤:
步骤1):含PZM微米管阻燃PET的制备:合成PZM微米管,将合成的PZM微米管与PET按比例用双螺杆挤出机熔融共混,然后挤出冷却,得到抗融滴型阻燃PET;
当聚磷腈阻燃剂微纳米材料为PZS时,包括以下步骤:
步骤2):含PZS微米球阻燃PET的制备:合成PZS微米球,将合成的PZS微米球与PET按比例用双螺杆挤出机熔融共混,然后挤出冷却,得到增强型的阻燃PET。
优选地,所述步骤1)中PZM微米管的加入量为PET质量的1%-10.0%;双螺杆挤出机的一、二、三、四分区温度分别设为245℃、255℃、270℃、260℃。
优选地,所述步骤2)中PZS微米球的加入量为PET质量的1%-10.0%;双螺杆挤出机的一、二、三、四分区温度分别设为255℃、260℃、265℃、270℃。
优选地,所述步骤2)中PZS微米球采用六氯环三磷腈和双酚S为原料合成,其中,六氯环三磷腈与双酚S的质量比为2:7~1:3。
与现有技术相比,本发明的有益效果在于:
(1)本发明仅在PET中添加少量阻燃剂PZM就能明显提高PET材料的阻燃抗熔滴效果;
(2)本发明仅在PET中添加少量阻燃剂PZS就能明显提高PET材料的阻燃效果。同时保持材料较好的强力;
(3)本发明合成的阻燃剂为高聚物,热稳定好,在熔融过程中不会放出有害气体,同时也不会出现阻燃剂迁移现象。阻燃剂无毒无害,燃烧过程不会放出有害气体。
附图说明
图1为实施例1制备的PZM微米管的扫描电镜图(a)和透射电镜图(b)的对比图;
图2为实施例1制备的PET/PZM复合材料在极限氧指数29.5vol%条件下LOI测试过程不同状态的对比图;
图3为实施例1制备的PET/PZM复合材料的流变和碳层拉曼分析图,其中,a为储能模量G'与损耗模量G”的关系图;b为复数黏度|η*|的频率依赖关系图;
图4为实施例1制备的PET、PET-PZM复合材料在600℃氮气条件下处理10min后的残渣SEM照片(a、b)和Raman光谱(c、d)的对比图,其中,a、c为PET,b、d为PET-PZM;
图5为实施例2制备的不同六氯环三磷腈与双酚S比例制成的PZS微米球的扫描电镜图的对比图;
图6为实施例2制备的PET/PZS复合材料的拉伸强力数据图。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例1
一种聚磷腈阻燃剂微纳米材料PZM在PET阻燃中的应用:
采用文献《Z.Li,G.Wang,W.Ren,A.Zhang,L.An,Y.Tian,Cyclotriphosphazene-containing polymeric nanotubes:synthesis,properties,and formation mechanism,Journal of Materials Science 51(8)(2016)4096-4103.》制备PZM微米管(如图1所示)。
将5g PZM微米管与95g PET用双螺杆挤出机高温下熔融共混,然后挤出冷却,得到抗融滴型阻燃复合材料PET-PZM5.0。
本实施例中PET/PZM复合材料的极限氧指数LOI测试如图2所示,将PET纯样和PET/PZM复合材料同在极限氧指数29.5vol%的条件下测试,从图中可以清楚的看到PET剧烈燃烧,然而PET-PZM在同样的氧指数条件下在2S内熄灭,表明PET/PZM复合材料具有好的阻燃性能。
本实施例中PET/PZM复合材料的流变测试如图3所示,当频率低于1rad/s时,PET-PZM储能模量(G')高于损耗模量(G”),这表明PET/PZM5.0的熔体在较低的剪切速率为弹性体而不是粘性体。此外,在270℃时,PET的复数粘度(|η*|)在0.1rad/s的频率下小于100Pa·s。但是,PET-PZM5.0的复数粘度|η*|在同一频率下超过2000Pa·s。因此,处于熔融状态的复合材料为弹性固体和较高的熔体粘度有助于提高PET/PZM5.0的抗熔滴性。
本实施例中PET-PZM复合材料的氮气600℃条件下残渣如图4所示,对图4进行描述(在N2气氛下在600℃处理10min的PET和复合材料中残余焦炭的形态通过扫描电子显微镜研究如图4中a、b所示的。与PET相比,它在碳基底上具有多个微米级孔隙的碳残留物。PET-PZM5.0碳层在隔离氧气和热时提供更紧凑结构的有效保护屏障。同时利用拉曼光谱对PET和复合材料碳层的组成进行研究,结果表明PET-PZM5.0残炭有较大的R值(ID/IG),表明复合材料在燃烧过程中会产生更小的微观结构,更加有利于保护机体免受火焰的破坏。
表1 PET-PZM复合材料的极限氧指数和垂直燃烧测试结果
实施例2
一种聚磷腈阻燃剂微纳米材料PZS在PET阻燃中的应用:
采用文献《Z.Lu,Z.Yan,P.Yang,Y.Huang,X.Huang,X.Tang,Fully CrosslinkedPoly[cyclotriphosphazene‐co‐(4,4′‐sulfonyldiphenol)]Microspheres viaPrecipitation Polymerization and Their Superior Thermal Properties,Macromolecular Reaction Engineering 1(1)(2010)45-52.》制备PZS微米球(如图5所示)。PZS微米球在不同比例下均形成了大小均一的PZS微米球,PZS微米球的直径大多在500nm-700nm之间,球与球之间相互分离,a、b、c中双酚S(BPS)与不同磷腈(HCCP)的质量比分别为3.6:1.0、3.6:1.1、3.6:1.2。所合成的阻燃剂分别命名为PZS1.0,PZS1.1和PZS1.2。
将3g PZS-1.2与97g PET用双螺杆挤出机高温下熔融共混,然后挤出冷却,得到阻燃增强型复合材料PET-PZS1.2-3。
本实施例制得的PET-PZS复合材料的拉伸强力图5所示,PET-PZS1.2-3表示为97gPET和PZS1.2微米球3g熔融共混所得的复合材料。由图5可见,PET-PZS1.2-3材料的强力可达46Mpa,而纯样为35Mpa,其它材料强力也可达到27Mpa,表明PZS微米球对PET阻燃强力保留作用很好。
表2 PET/PZS复合材料的极限氧指数和垂直燃烧测试结果

Claims (4)

1.一种聚磷腈阻燃剂微纳米材料在PET阻燃中的应用,其特征在于,当聚磷腈阻燃剂微纳米材料为PZM时,包括以下步骤:
步骤1):含PZM微米管阻燃PET的制备:合成PZM微米管,将合成的PZM微米管与PET按比例用双螺杆挤出机熔融共混,然后挤出冷却,得到抗融滴型阻燃PET;
当聚磷腈阻燃剂微纳米材料为PZS时,包括以下步骤:
步骤2):含PZS微米球阻燃PET的制备:合成PZS微米球,将合成的PZS微米球与PET按比例用双螺杆挤出机熔融共混,然后挤出冷却,得到增强型的阻燃PET。
2.如权利要求1所述的聚磷腈阻燃剂微纳米材料在PET阻燃中的应用,其特征在于,所述步骤1)中PZM微米管的加入量为PET质量的1%-10.0%;双螺杆挤出机的一、二、三、四分区温度分别设为245℃、255℃、270℃、260℃。
3.如权利要求1所述的聚磷腈阻燃剂微纳米材料在PET阻燃中的应用,其特征在于,所述步骤2)中PZS微米球的加入量为PET质量的1%-10.0%;双螺杆挤出机的一、二、三、四分区温度分别设为255℃、260℃、265℃、270℃。
4.如权利要求1所述的聚磷腈阻燃剂微纳米材料在PET阻燃中的应用,其特征在于,所述步骤2)中PZS微米球采用六氯环三磷腈和双酚S为原料合成,其中,六氯环三磷腈与双酚S的质量比为2:7~1:3。
CN201810939424.2A 2018-08-17 2018-08-17 聚磷腈阻燃剂微纳米材料在pet阻燃中的应用 Active CN109181241B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810939424.2A CN109181241B (zh) 2018-08-17 2018-08-17 聚磷腈阻燃剂微纳米材料在pet阻燃中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810939424.2A CN109181241B (zh) 2018-08-17 2018-08-17 聚磷腈阻燃剂微纳米材料在pet阻燃中的应用

Publications (2)

Publication Number Publication Date
CN109181241A true CN109181241A (zh) 2019-01-11
CN109181241B CN109181241B (zh) 2020-12-29

Family

ID=64918172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810939424.2A Active CN109181241B (zh) 2018-08-17 2018-08-17 聚磷腈阻燃剂微纳米材料在pet阻燃中的应用

Country Status (1)

Country Link
CN (1) CN109181241B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113512227A (zh) * 2021-04-13 2021-10-19 何顺伦 一种高阻燃pet发泡材料及其制备方法
CN114230801A (zh) * 2021-12-02 2022-03-25 东华大学 一种聚磷腈阻燃剂的制备方法和在pet阻燃中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4117041A (en) * 1976-06-15 1978-09-26 E. I. Du Pont De Nemours And Company Flame retardant polymeric compositions
CN1908033A (zh) * 2006-08-17 2007-02-07 上海交通大学 一种交联聚膦腈微球及其制备方法
CN102532828A (zh) * 2011-12-29 2012-07-04 宁波长阳科技有限公司 一种pet/聚膦腈微纳米复合材料及其制备方法
WO2014086832A1 (de) * 2012-12-07 2014-06-12 Bayer Materialscience Ag Flammgeschützte polycarbonatformmassen iii
US20150274966A1 (en) * 2012-10-17 2015-10-01 Polyone Corporation Flame retardant polylactic acid compounds
CN105482163A (zh) * 2016-01-20 2016-04-13 广东工业大学 一种高耐热微胶囊阻燃剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4117041A (en) * 1976-06-15 1978-09-26 E. I. Du Pont De Nemours And Company Flame retardant polymeric compositions
CN1908033A (zh) * 2006-08-17 2007-02-07 上海交通大学 一种交联聚膦腈微球及其制备方法
CN102532828A (zh) * 2011-12-29 2012-07-04 宁波长阳科技有限公司 一种pet/聚膦腈微纳米复合材料及其制备方法
US20150274966A1 (en) * 2012-10-17 2015-10-01 Polyone Corporation Flame retardant polylactic acid compounds
WO2014086832A1 (de) * 2012-12-07 2014-06-12 Bayer Materialscience Ag Flammgeschützte polycarbonatformmassen iii
CN105482163A (zh) * 2016-01-20 2016-04-13 广东工业大学 一种高耐热微胶囊阻燃剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LU ZHU等: "Fully Crosslinked Poly[cyclotriphosphazene-co-(4,4’-sulfonyldiphenol)] Microspheres via Precipitation Polymerization and Their Superior Thermal Properties", 《MACROMOLECULAR REACTION ENGINEERING》 *
WANG CHANG等: "Application of self-templated PHMA sub-microtubes in enhancing flame-retardance and anti-dripping of PET", 《POLYMER DEGRADATION AND STABILITY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113512227A (zh) * 2021-04-13 2021-10-19 何顺伦 一种高阻燃pet发泡材料及其制备方法
CN114230801A (zh) * 2021-12-02 2022-03-25 东华大学 一种聚磷腈阻燃剂的制备方法和在pet阻燃中的应用

Also Published As

Publication number Publication date
CN109181241B (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
Peng et al. NP-Zn-containing 2D supermolecular networks grown on MoS2 nanosheets for mechanical and flame-retardant reinforcements of polyacrylonitrile fiber
Guler et al. Effect of expandable graphite on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral
Kong et al. Improving flame retardancy of IFR/PP composites through the synergistic effect of organic montmorillonite intercalation cobalt hydroxides modified by acidified chitosan
Chen et al. Expanded graphite assistant construction of gradient-structured char layer in PBS/Mg (OH) 2 composites for improving flame retardancy, thermal stability and mechanical properties
Jing et al. Combination of a bio-based polyphosphonate and modified graphene oxide toward superior flame retardant polylactic acid
Xu et al. Synergistic effects of aluminum hypophosphite on intumescent flame retardant polypropylene system
Xu et al. The effect of ammonium polyphosphate on the mechanism of phosphorous-containing hydrotalcite synergism of flame retardation of polypropylene
Fang et al. A bio-based intumescent flame retardant with biomolecules functionalized ammonium polyphosphate enables polylactic acid with excellent flame retardancy
Xie et al. Ammonium polyphosphate/montmorillonite nanocomposite with a completely exfoliated structure and charring–foaming agent flame retardant thermoplastic polyurethane
CN109181241A (zh) 聚磷腈阻燃剂微纳米材料在pet阻燃中的应用
CN112812435A (zh) 一种常温导热高温阻燃的高分子复合材料及其制备方法
Zheng et al. Modified magnesium hydroxide encapsulated by melamine cyanurate in flame-retardant polyamide-6
CN115011078B (zh) 一种阻燃环保pet塑料及其制备方法
Zhan et al. Flexible MXene/aramid nanofiber nanocomposite film with high thermal conductivity and flame retardancy
Li et al. Flame‐retardant poly (ethylene terephthalate) enabled by a novel melamine polyphosphate nanowire
Tang et al. Combustion characteristics and synergistic effects of red phosphorus masterbatch with expandable graphite in the flame retardant HDPE/EVA composites
Huang et al. Flame retardant polypropylene with a single molecule intumescent flame retardant based on chitosan
Rabelo et al. Development and characterization of PLA composites with high contents of a Brazilian refractory clay and improved fire performance
Zhou et al. PEEK composite resin with enhanced intumescent flame retardancy loaded with Octaphenylsilsesquioxane and nano calcium carbonate and its application in fibers
CN103881192A (zh) 高机械性能无卤阻燃聚乙烯复合材料及其制备方法
CN101381493B (zh) 一种无卤阻燃三元乙丙橡胶复合材料及其制备方法
Wang et al. The charring effect and flame retardant properties of thermoplastic elastomers composites applied for cable
Liu et al. Flammability and mechanical properties of EVA/LDPE blended with MHSH whiskers and ATH
Zhan et al. Ma Lao-like structural fireproof aramid nanofiber@ Ag nanocomposite film enhanced with MXene for advanced thermal management applications
Xiao et al. Construction of carbon-based flame retardant composite with reinforced and toughened property and its application in polylactic acid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant