CN109176480B - 一种并联机器人的滑模控制方法及系统 - Google Patents

一种并联机器人的滑模控制方法及系统 Download PDF

Info

Publication number
CN109176480B
CN109176480B CN201811310662.3A CN201811310662A CN109176480B CN 109176480 B CN109176480 B CN 109176480B CN 201811310662 A CN201811310662 A CN 201811310662A CN 109176480 B CN109176480 B CN 109176480B
Authority
CN
China
Prior art keywords
parallel robot
determining
speed
judgment result
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811310662.3A
Other languages
English (en)
Other versions
CN109176480A (zh
Inventor
苏婷婷
何广平
赵全亮
赵磊
贾涛鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Technology
Original Assignee
North China University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Technology filed Critical North China University of Technology
Priority to CN201811310662.3A priority Critical patent/CN109176480B/zh
Publication of CN109176480A publication Critical patent/CN109176480A/zh
Application granted granted Critical
Publication of CN109176480B publication Critical patent/CN109176480B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/163Programme controls characterised by the control loop learning, adaptive, model based, rule based expert control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

本发明公开一种并联机器人的滑模控制方法及系统,本发明首先构建并联机器人的动力学模型;其次确定期望运动轨迹;然后采用滑模控制算法,根据所述期望运动轨迹和并联机器人末端执行点的实际位置和实际速度确定力矩;根据所述力矩控制所述并联机器人的动力学模型,获得关节空间坐标;最后获取运动学模型;根据所述关节空间坐标和所述运动学模型,对所述并联机器人末端执行点的实际位置和实际速度进行更新,并返回步骤“采用滑模控制算法,根据所述期望运动轨迹和并联机器人末端执行点的实际位置和实际速度确定力矩”,可见本发明基于动力学的控制策略,提高定位控制精度。

Description

一种并联机器人的滑模控制方法及系统
技术领域
本发明涉及轨迹跟踪控制技术领域,特别是涉及一种并联机器人的滑模控制方法及系统。
背景技术
高速Delta并联机器人以其独特的并联结构,实现了运动速度快、定位精确、工作效率高且成本低等优点,被广泛应用于医药分装、食品包装和电子产品等工业自动化生产或包装流水线的快速分拣、抓取和装配中。目前国内Delta并联机器人在各方面性能低于国外机器人,比如目前国内Delta并联机器人还存在一些关键技术不完善、控制器性能不好落后于国外技术等情况。
并联机器人是一个多变量、结构复杂、多参数耦合、多自由度的非线性系统,其控制策略较为复杂,因此针对性的研究其控制策略、控制方法,对提高我国并联机器人产业竞争力,促进高速并联机器人理论的发展,实现并联机器人产业化等方面,都具有重要的意义。目前常用的控制方法有PID控制、计算力矩控制等。但上述控制方法没有对Delta并联机器人的动力学进行考虑,因此惯性和重力效应直接影响定位控制精度。
发明内容
本发明的目的是提供一种并联机器人的滑模控制方法及系统,基于动力学的控制策略,提高定位控制精度。
为实现上述目的,本发明提供了一种并联机器人的滑模控制方法,所述滑模控制方法包括:
构建并联机器人的动力学模型;
确定期望运动轨迹;
采用滑模控制算法,根据所述期望运动轨迹和并联机器人末端执行点的实际位置和实际速度确定力矩;
根据所述力矩控制所述并联机器人的动力学模型,获得关节空间坐标;
获取运动学模型;
根据所述关节空间坐标和所述运动学模型,对所述并联机器人末端执行点的实际位置和实际速度进行更新,并返回步骤“采用滑模控制算法,根据所述期望运动轨迹和并联机器人末端执行点的实际位置和实际速度确定力矩”。
可选的,所述构建并联机器人的动力学模型,具体为:
根据所述并联机器人的力和运动之间关系构建并联机器人的动力学模型。
可选的,所述确定期望运动轨迹,具体包括:
获取原始轨迹;
判断所述原始轨迹上位置点个数是否大于设定阈值,获得第一判断结果;如果所述第一判断结果表示大于设定阈值,则将所述原始轨迹作为期望运动轨迹;如果所述第一判断结果表示小于或等于设定阈值,则对所述原始轨迹的笛卡尔坐标系下的三个坐标轴分别独立进行三次多项式轨迹插补,获得所述期望运动轨迹。
可选的,所述对所述原始轨迹的笛卡尔坐标系下的三个坐标轴分别独立进行三次多项式轨迹插补,获得所述期望运动轨迹,具体包括:
从所述原始轨迹中获取四个连续的位置点;
根据所述四个连续的位置点确定三次多项式的系数;
从四个连续的位置点中任意选取两个相邻连续的位置点进行三项式插值,获得位置点;
判断插值后的位置点个数是否大于设定阈值,获得第二判断结果;如果所述第二判断结果表示大于设定阈值,则将插补后的所述原始轨迹作为期望运动轨迹;如果所述第二判断结果表示小于或等于设定阈值,采用窗口滑动,依次从所述原始轨迹中选取四个连续的位置点,并返回步骤“根据所述四个连续的位置点确定三次多项式的系数”。
可选的,所述采用滑模控制算法,根据所述期望运动轨迹和并联机器人末端执行点的实际位置和实际速度确定力矩,具体包括:
根据所述期望运动轨迹确定并联机器人末端执行点的期望位置、期望速度和期望加速度;
根据所述位置和所述期望位置确定位置误差;
根据所述速度和所述期望速度确定速度误差;
根据所述位置误差、所述速度误差和所述期望加速度确定力矩。
可选的,所述力矩,具体公式为:
Figure BDA0001854887500000031
其中,
Figure BDA0001854887500000032
并联机器人末端执行点的期望加速度,e=p-pref,e为位置误差,p为并联机器人末端执行点的实际位置,pref为并联机器人末端执行点的期望位置,
Figure BDA0001854887500000033
为速度误差,
Figure BDA0001854887500000034
为并联机器人末端执行点的实际速度,
Figure BDA0001854887500000035
并联机器人末端执行点的期望速度,M(p)=mJ-1+ITJ,J为雅克比矩阵,m为并联机器人动平台的总质量,
Figure BDA0001854887500000036
j为减速器的减速比,Ired为减速器的转动惯量,Ia为主动臂对其转轴的转动惯量,mf为单条支链的从动臂的平行四边形结构中两个杆的总质量,rf为主动臂杆长,C为一个对角阵,C=diag(c1,c2,c3),且有c1,c2,c3都是大于0的常数,
Figure BDA0001854887500000037
Figure BDA0001854887500000038
re为从动臂的杆长,wi为从动臂的单位矢量,
Figure BDA0001854887500000039
为每一个主动臂对应的角度,
Figure BDA00018548875000000310
θi为第i个主动臂的转角,
Figure BDA00018548875000000311
Figure BDA00018548875000000312
为OXYZ坐标系中的z轴单位矢量,I3为三阶单位矩阵,
Figure BDA00018548875000000313
mara为主动臂对其转轴的质径积,mfrf/2为从动臂等效在主动驱动臂末端的质量相对转轴的质径积,g为重力加速度,n1、n2、n3均为常数,
Figure BDA00018548875000000314
为M(p)的导数,
Figure BDA00018548875000000315
本发明还提供一种并联机器人的滑模控制系统,所述滑模控制系统包括:
动力学模型构建模块,用于构建并联机器人的动力学模型;
期望轨迹确定模块,用于确定期望运动轨迹;
力矩确定模块,用于采用滑模控制算法,根据所述期望运动轨迹和并联机器人末端执行点的实际位置和实际速度确定力矩;
关节空间坐标确定模块,用于根据所述力矩控制所述并联机器人的动力学模型,获得关节空间坐标;
获取模块,用于获取运动学模型;
更新模块,用于根据所述关节空间坐标和所述运动学模型,对所述并联机器人末端执行点的实际位置和实际速度进行更新,并返回“力矩确定模块”。
可选的,所述期望轨迹确定模块,具体包括:
获取单元,用于获取原始轨迹;
第一判断单元,用于判断所述原始轨迹上位置点个数是否大于设定阈值,获得第一判断结果;
第一结果确定单元,用于当所述第一判断结果表示大于设定阈值时,则将所述原始轨迹作为期望运动轨迹;
第二结果确定单元,用于当所述第一判断结果表示小于或等于设定阈值时,则对所述原始轨迹的笛卡尔坐标系下的三个坐标轴分别独立进行三次多项式轨迹插补,获得所述期望运动轨迹。
可选的,所述第二结果确定单元,具体包括:
第一获取子单元,用于当所述第一判断结果表示小于或等于设定阈值时,则从所述原始轨迹中获取四个连续的位置点;
系数确定子单元,用于根据所述四个连续的位置点确定三次多项式的系数;
插补子单元,用于从四个连续的位置点中任意选取两个相邻连续的位置点进行三项式插值,获得位置点;
判断子单元,用于判断插值后的位置点个数是否大于设定阈值,获得第二判断结果;如果所述第二判断结果表示大于设定阈值,则将插补后的所述原始轨迹作为期望运动轨迹;如果所述第二判断结果表示小于或等于设定阈值,采用窗口滑动,依次从所述原始轨迹中选取四个连续的位置点,并返回“系数确定子单元”。
可选的,所述力矩确定模块,具体包括:
期望位置、期望速度和期望加速度确定单元,用于根据所述期望运动轨迹确定并联机器人末端执行点的期望位置、期望速度和期望加速度;
位置误差确定单元,用于根据所述位置和所述期望位置确定位置误差;
速度误差确定单元,用于根据所述速度和所述期望速度确定速度误差;
力矩确定单元,用于根据所述位置误差、所述速度误差和所述期望加速度确定力矩。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明滑模控制首先构建并联机器人的动力学模型;其次确定期望运动轨迹;然后采用滑模控制算法,根据所述期望运动轨迹和并联机器人末端执行点的实际位置和实际速度确定力矩;根据所述力矩控制所述并联机器人的动力学模型,获得关节空间坐标;最后获取运动学模型;根据所述关节空间坐标和所述运动学模型,对所述并联机器人末端执行点的实际位置和实际速度进行更新,并返回步骤“采用滑模控制算法,根据所述期望运动轨迹和并联机器人末端执行点的实际位置和实际速度确定力矩”,可见本发明基于动力学的控制策略,提高定位控制精度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例并联机器人的滑模控制方法流程图;
图2为本发明实施例并联机器人的滑模控制结构图;
图3为本发明实施例轨迹插补示意图;
图4为本发明实施例并联机器人的滑模控制系统结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明实施例并联机器人的滑模控制方法流程图,图2为本发明实施例并联机器人的滑模控制结构图,如图1-2所示,本发明的目的是提供一种并联机器人的滑模控制方法,所述滑模控制方法包括:
步骤S1:构建并联机器人的动力学模型;
步骤S2:确定期望运动轨迹;
步骤S3:采用滑模控制算法,根据所述期望运动轨迹和并联机器人末端执行点的实际位置和实际速度确定力矩;
步骤S4:根据所述力矩控制所述并联机器人的动力学模型,获得关节空间坐标;
步骤S5:获取运动学模型;本发明所述运动学模型采用现有的运动学模型。
步骤S6:根据所述关节空间坐标和所述运动学模型,对所述并联机器人末端执行点的实际位置和实际速度进行更新,并返回步骤S3。
下面对各个步骤进行详细分析:
步骤S1:构建并联机器人的动力学模型,具体为:根据所述并联机器人的力和运动之间关系构建并联机器人的动力学模型。
采用虚功原理,构建动力学理论模型,具体公式为:
Figure BDA0001854887500000061
其中,M(p)=mJ-1+ITJ,J为雅克比矩阵,m为并联机器人动平台的总质量,
Figure BDA0001854887500000062
j为减速器的减速比,Ired为减速器的转动惯量,Ia为主动臂对其转轴的转动惯量,mf为单条支链的从动臂的平行四边形结构中两个杆的总质量,rf为主动臂杆长,
Figure BDA0001854887500000063
为并联机器人末端执行点的加速度,
Figure BDA0001854887500000064
Figure BDA0001854887500000065
re为从动臂的杆长,wi为从动臂的单位矢量,
Figure BDA0001854887500000066
为每一个主动臂对应的角度,
Figure BDA0001854887500000071
θi为第i个主动臂的转角,
Figure BDA0001854887500000072
Figure BDA0001854887500000073
为OXYZ坐标系中的z轴单位矢量,I3为三阶单位矩阵,
Figure BDA0001854887500000074
mara为主动臂对其转轴的质径积,mfrf/2为从动臂等效在主动驱动臂末端的质量相对转轴的质径积,g为重力加速度,τ为力矩。
由于采用采用动力学分析法构建的并联机器人的动力学理论模型与实际动力学模型存在一定的偏差,因此考虑系统的外界干扰、系统模型摄动等不确定性因素,对动力学理论模型加入模型干扰项,获得动力学模型,即实际动力学模型,具体公式如下:
Figure BDA0001854887500000075
其中,
Figure BDA0001854887500000076
分别为并联机器人实际模型的参数,Me(p)、
Figure BDA0001854887500000077
Fe分别为模型的干扰项,τd为外部干扰项。
步骤S2:确定期望运动轨迹,具体包括:
步骤S21:获取原始轨迹;
步骤S22:判断所述原始轨迹上位置点个数是否大于设定阈值,获得第一判断结果;
步骤S23:如果所述第一判断结果表示大于设定阈值,则将所述原始轨迹作为期望运动轨迹;
步骤S24:如果所述第一判断结果表示小于或等于设定阈值,则对所述原始轨迹的笛卡尔坐标系下的三个坐标轴分别独立进行三次多项式轨迹插补,获得所述期望运动轨迹。本发明所述的设定阈值是根据并联机器人控制系统要求的轨迹位置点的精度要求设置的。
步骤S24:如果所述第一判断结果表示小于或等于设定阈值,则对所述原始轨迹的笛卡尔坐标系下的三个坐标轴分别独立进行三次多项式轨迹插补,获得所述期望运动轨迹,具体包括:
步骤S241:如果所述第一判断结果表示小于或等于设定阈值,则从所述原始轨迹中获取四个连续的位置点;例如从第一个点开始,取其对应的四个连续点,即第一个、第二个、第三个、第四个点。
步骤S242:根据所述四个连续的位置点确定三次多项式的系数;例如根据第一个、第二个、第三个、第四个点确定三次多项式的系数。
例如设三次多项式为:
y=mx3+nx2+lx+k;
其中x,y分别为坐标点的横坐标和纵坐标。若已知A、B、C、D点,即可求三次多项式的系数m、n、l和k。
步骤S243:从四个连续的位置点中任意选取两个相邻连续的位置点进行三项式插值,获得位置点;例如在取出的四点中的第一个点和第二个点的中间应用三次多项式进行插值,即插补点为前两个点的中间点。
步骤S244:判断插值后的位置点个数是否大于设定阈值,获得第二判断结果;
步骤S245:如果所述第二判断结果表示大于设定阈值,则将插补后的所述原始轨迹作为期望运动轨迹;
步骤S246:如果所述第二判断结果表示小于或等于设定阈值,采用窗口滑动,依次从所述原始轨迹中选取四个连续的位置点,并返回步骤S242。
例如进行窗口滑动,即取第二个点对应的连续的四个点,即第二个原始点、第三个原始点、第四个原始点、第五个原始点,然后返回步骤S242,插补位置点,如此通过窗口滑动,一直插补完整个轨迹,直到达到设定阈值位置,具体如图3所示。
本发明也可以将每次当前滑动窗口中的插补点设置为中间两个点的中间点或者后两个点的中间点等,依次对整个轨迹进行插补。得到轨迹点后,需要结合速度和周期重新对轨迹点进行设计,进而得到每个周期对应的位置点。
步骤S3:采用滑模控制算法,根据所述期望运动轨迹和并联机器人末端执行点的实际位置和实际速度确定力矩,具体包括:
步骤S31:根据所述期望运动轨迹确定并联机器人末端执行点的期望位置pref、期望速度
Figure BDA0001854887500000091
和期望加速度
Figure BDA0001854887500000092
步骤S32:根据所述位置p和所述期望位置pref确定位置误差e,具体公式为:
e=p-pref; (3)
步骤S33:根据所述速度
Figure BDA0001854887500000093
和所述期望速度
Figure BDA0001854887500000094
确定速度误差
Figure BDA0001854887500000095
具体公式为:
Figure BDA0001854887500000096
步骤S34:根据所述位置误差、所述速度误差和所述期望加速度确定力矩,具体过程如下:
设所述位置p=(x,y,z)T,所述期望位置pref=(xref,yref,zref)T
系统的切换函数为:
Figure BDA0001854887500000097
其中,C为一个对角阵,C=diag(c1,c2,c3),且有c1,c2,c3都是大于0的常数。对切换函数求导,则有:
Figure BDA0001854887500000098
等效控制由
Figure BDA0001854887500000099
可得:
Figure BDA00018548875000000910
则有:
Figure BDA00018548875000000911
设李雅普诺夫函数为:
Figure BDA00018548875000000912
对李雅普诺夫函数求导:
Figure BDA0001854887500000101
将式(8)代入式(10)可得:
Figure BDA0001854887500000102
将式(7)代入式(11),可得:
Figure BDA0001854887500000103
上式中,
Figure BDA0001854887500000104
Fe、τd
Figure BDA0001854887500000105
是外部干扰项和模型误差引起的项,因此定义E为系统干扰和模型误差项:
Figure BDA0001854887500000106
系统干扰和模型误差是有上界的,即:
max|Ei|≤ε,ε>0; (14)
因此式(12)可简化为:
Figure BDA0001854887500000107
为了使
Figure BDA0001854887500000108
所述力矩具体公式为:
Figure BDA0001854887500000111
其中,
Figure BDA0001854887500000112
并联机器人末端执行点的期望加速度,e=p-pref,e为位置误差,p为并联机器人末端执行点的实际位置,pref为并联机器人末端执行点的期望位置,
Figure BDA0001854887500000113
为速度误差,
Figure BDA0001854887500000114
为并联机器人末端执行点的实际速度,
Figure BDA0001854887500000115
并联机器人末端执行点的期望速度,M(p)=mJ-1+ITJ,J为雅克比矩阵,m为并联机器人动平台的总质量,
Figure BDA0001854887500000116
j为减速器的减速比,Ired为减速器的转动惯量,Ia为主动臂对其转轴的转动惯量,mf为单条支链的从动臂的平行四边形结构中两个杆的总质量,rf为主动臂杆长,C为一个对角阵,C=diag(c1,c2,c3),且有c1,c2,c3都是大于0的常数,
Figure BDA0001854887500000117
Figure BDA0001854887500000118
为从动臂的杆长,ui和wi分别为对应的主动臂和从动臂的单位矢量,
Figure BDA0001854887500000119
为每一个主动臂对应的角度,
Figure BDA00018548875000001110
θi为第i个主动臂的转角,
Figure BDA00018548875000001111
为OXYZ坐标系中的z轴单位矢量,I3为三阶单位矩阵,
Figure BDA00018548875000001112
mara为主动臂对其转轴的质径积,mfrf/2为从动臂等效在主动驱动臂末端的质量相对转轴的质径积,g为重力加速度,n1、n2、n3均为常数,
Figure BDA00018548875000001113
为M(p)的导数,
Figure BDA00018548875000001114
本发明中的雅克比矩阵
Figure BDA00018548875000001115
其中Jq为直接雅克比矩阵,Jx为间接雅克比矩阵;
Figure BDA00018548875000001116
将式(16)代入式(15),可得:
Figure BDA0001854887500000121
因此可以找到合适的ni使得ni≥ε+δ,因此:
Figure BDA0001854887500000122
其中,δ为足够小的正常数。
图4为本发明实施例并联机器人的滑模控制系统结构框图,如图4所示,本发明还提供一种并联机器人的滑模控制系统,所述滑模控制系统包括:
动力学模型构建模块1,用于构建并联机器人的动力学模型;
期望轨迹确定模块2,用于确定期望运动轨迹;
力矩确定模块3,用于采用滑模控制算法,根据所述期望运动轨迹和并联机器人末端执行点的实际位置和实际速度确定力矩;
关节空间坐标确定模块,用于根据所述力矩控制所述并联机器人的动力学模型,获得关节空间坐标;
获取模块5,用于获取运动学模型;
更新模块6,用于根据所述关节空间坐标和所述运动学模型,对所述并联机器人末端执行点的实际位置和实际速度进行更新,并返回“力矩确定模块”。
下面对各个模块进行详细论述:
所述动力学模型构建模块1,具体为:
动力学模型建模单元,用于根据所述并联机器人的力和运动之间关系构建并联机器人的动力学模型。
所述期望轨迹确定模块2,具体包括:
获取单元,用于获取原始轨迹;
第一判断单元,用于判断所述原始轨迹上位置点个数是否大于设定阈值,获得第一判断结果;
第一结果确定单元,用于当所述第一判断结果表示大于设定阈值时,则将所述原始轨迹作为期望运动轨迹;
第二结果确定单元,用于当所述第一判断结果表示小于或等于设定阈值时,则对所述原始轨迹的笛卡尔坐标系下的三个坐标轴分别独立进行三次多项式轨迹插补,获得所述期望运动轨迹。
所述第二结果确定单元,具体包括:
第一获取子单元,用于当所述第一判断结果表示小于或等于设定阈值时,则从所述原始轨迹中获取四个连续的位置点;
系数确定子单元,用于根据所述四个连续的位置点确定三次多项式的系数;
插补子单元,用于从四个连续的位置点中任意选取两个相邻连续的位置点进行三项式插值,获得位置点;
判断子单元,用于判断插值后的位置点个数是否大于设定阈值,获得第二判断结果;如果所述第二判断结果表示大于设定阈值,则将插补后的所述原始轨迹作为期望运动轨迹;如果所述第二判断结果表示小于或等于设定阈值,采用窗口滑动,依次从所述原始轨迹中选取四个连续的位置点,并返回“系数确定子单元”。
所述力矩确定模块3,具体包括:
期望位置、期望速度和期望加速度确定单元,用于根据所述期望运动轨迹确定并联机器人末端执行点的期望位置、期望速度和期望加速度;
位置误差确定单元,用于根据所述位置和所述期望位置确定位置误差;
速度误差确定单元,用于根据所述速度和所述期望速度确定速度误差;
力矩确定单元,用于根据所述位置误差、所述速度误差和所述期望加速度确定力矩。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (7)

1.一种并联机器人的滑模控制方法,其特征在于,所述滑模控制方法包括:
构建并联机器人的动力学模型;
确定期望运动轨迹;
采用滑模控制算法,根据所述期望运动轨迹和并联机器人末端执行点的实际位置和实际速度确定力矩;
根据所述力矩控制所述并联机器人的动力学模型,获得关节空间坐标;
获取运动学模型;
根据所述关节空间坐标和所述运动学模型,对所述并联机器人末端执行点的实际位置和实际速度进行更新,并返回步骤“采用滑模控制算法,根据所述期望运动轨迹和并联机器人末端执行点的实际位置和实际速度确定力矩”;
所述采用滑模控制算法,根据所述期望运动轨迹和并联机器人末端执行点的实际位置和实际速度确定力矩,具体包括:
根据所述期望运动轨迹确定并联机器人末端执行点的期望位置、期望速度和期望加速度;
根据所述位置和所述期望位置确定位置误差;
根据所述速度和所述期望速度确定速度误差;
根据所述位置误差、所述速度误差和所述期望加速度确定力矩;
所述力矩,具体公式为:
Figure FDA0002527382010000011
其中,
Figure FDA0002527382010000012
并联机器人末端执行点的期望加速度,e=p-pref,e为位置误差,p为并联机器人末端执行点的实际位置,pref为并联机器人末端执行点的期望位置,
Figure FDA0002527382010000013
Figure FDA0002527382010000014
为速度误差,
Figure FDA0002527382010000015
为并联机器人末端执行点的实际速度,
Figure FDA0002527382010000016
并联机器人末端执行点的期望速度,M(p)=mJ-1+ITJ,J为雅克比矩阵,m为并联机器人动平台的总质量,
Figure FDA0002527382010000017
j为减速器的减速比,Ired为减速器的转动惯量,Ia为主动臂对其转轴的转动惯量,mf为单条支链的从动臂的平行四边形结构中两个杆的总质量,rf为主动臂杆长,C为一个对角阵,C=diag(c1,c2,c3),且有c1,c2,c3都是大于0的常数,
Figure FDA0002527382010000021
Figure FDA0002527382010000022
Figure FDA0002527382010000023
re为从动臂的杆长,wi为从动臂的单位矢量,
Figure FDA0002527382010000024
Figure FDA0002527382010000025
为每一个主动臂对应的角度,
Figure FDA0002527382010000026
θi为第i个主动臂的转角,
Figure FDA0002527382010000027
Figure FDA0002527382010000028
为OXYZ坐标系中的z轴单位矢量,I3为三阶单位矩阵,
Figure FDA0002527382010000029
mara为主动臂对其转轴的质径积,mfrf/2为从动臂等效在主动驱动臂末端的质量相对转轴的质径积,g为重力加速度,n1、n2、n3均为常数,
Figure FDA00025273820100000210
为M(p)的导数,
Figure FDA00025273820100000211
2.根据权利要求1所述的滑模控制方法,其特征在于,所述构建并联机器人的动力学模型,具体为:
根据所述并联机器人的力和运动之间关系构建并联机器人的动力学模型。
3.根据权利要求1所述的滑模控制方法,其特征在于,所述确定期望运动轨迹,具体包括:
获取原始轨迹;
判断所述原始轨迹上位置点个数是否大于设定阈值,获得第一判断结果;如果所述第一判断结果表示大于设定阈值,则将所述原始轨迹作为期望运动轨迹;如果所述第一判断结果表示小于或等于设定阈值,则对所述原始轨迹的笛卡尔坐标系下的三个坐标轴分别独立进行三次多项式轨迹插补,获得所述期望运动轨迹。
4.根据权利要求3所述的滑模控制方法,其特征在于,所述对所述原始轨迹的笛卡尔坐标系下的三个坐标轴分别独立进行三次多项式轨迹插补,获得所述期望运动轨迹,具体包括:
从所述原始轨迹中获取四个连续的位置点;
根据所述四个连续的位置点确定三次多项式的系数;
从四个连续的位置点中任意选取两个相邻连续的位置点进行三项式插值,获得位置点;
判断插值后的位置点个数是否大于设定阈值,获得第二判断结果;如果所述第二判断结果表示大于设定阈值,则将插补后的所述原始轨迹作为期望运动轨迹;如果所述第二判断结果表示小于或等于设定阈值,采用窗口滑动,依次从所述原始轨迹中选取四个连续的位置点,并返回步骤“根据所述四个连续的位置点确定三次多项式的系数”。
5.一种并联机器人的滑模控制系统,其特征在于,所述滑模控制系统包括:
动力学模型构建模块,用于构建并联机器人的动力学模型;
期望轨迹确定模块,用于确定期望运动轨迹;
力矩确定模块,用于采用滑模控制算法,根据所述期望运动轨迹和并联机器人末端执行点的实际位置和实际速度确定力矩;
关节空间坐标确定模块,用于根据所述力矩控制所述并联机器人的动力学模型,获得关节空间坐标;
获取模块,用于获取运动学模型;
更新模块,用于根据所述关节空间坐标和所述运动学模型,对所述并联机器人末端执行点的实际位置和实际速度进行更新,并返回“力矩确定模块”;
所述力矩确定模块,具体包括:
期望位置、期望速度和期望加速度确定单元,用于根据所述期望运动轨迹确定并联机器人末端执行点的期望位置、期望速度和期望加速度;
位置误差确定单元,用于根据所述位置和所述期望位置确定位置误差;
速度误差确定单元,用于根据所述速度和所述期望速度确定速度误差;
力矩确定单元,用于根据所述位置误差、所述速度误差和所述期望加速度确定力矩;
所述力矩,具体公式为:
Figure FDA0002527382010000041
其中,
Figure FDA0002527382010000042
并联机器人末端执行点的期望加速度,e=p-pref,e为位置误差,p为并联机器人末端执行点的实际位置,pref为并联机器人末端执行点的期望位置,
Figure FDA0002527382010000043
Figure FDA0002527382010000044
为速度误差,
Figure FDA0002527382010000045
为并联机器人末端执行点的实际速度,
Figure FDA0002527382010000046
并联机器人末端执行点的期望速度,M(p)=mJ-1+ITJ,J为雅克比矩阵,m为并联机器人动平台的总质量,
Figure FDA0002527382010000047
j为减速器的减速比,Ired为减速器的转动惯量,Ia为主动臂对其转轴的转动惯量,mf为单条支链的从动臂的平行四边形结构中两个杆的总质量,rf为主动臂杆长,C为一个对角阵,C=diag(c1,c2,c3),且有c1,c2,c3都是大于0的常数,
Figure FDA0002527382010000048
Figure FDA0002527382010000049
Figure FDA00025273820100000410
re为从动臂的杆长,wi为从动臂的单位矢量,
Figure FDA00025273820100000411
Figure FDA00025273820100000412
为每一个主动臂对应的角度,
Figure FDA00025273820100000413
θi为第i个主动臂的转角,
Figure FDA00025273820100000414
Figure FDA00025273820100000415
为OXYZ坐标系中的z轴单位矢量,I3为三阶单位矩阵,
Figure FDA00025273820100000416
mara为主动臂对其转轴的质径积,mfrf/2为从动臂等效在主动驱动臂末端的质量相对转轴的质径积,g为重力加速度,n1、n2、n3均为常数,
Figure FDA00025273820100000417
为M(p)的导数,
Figure FDA00025273820100000418
6.根据权利要求5所述的滑模控制系统,其特征在于,所述期望轨迹确定模块,具体包括:
获取单元,用于获取原始轨迹;
第一判断单元,用于判断所述原始轨迹上位置点个数是否大于设定阈值,获得第一判断结果;
第一结果确定单元,用于当所述第一判断结果表示大于设定阈值时,则将所述原始轨迹作为期望运动轨迹;
第二结果确定单元,用于当所述第一判断结果表示小于或等于设定阈值时,则对所述原始轨迹的笛卡尔坐标系下的三个坐标轴分别独立进行三次多项式轨迹插补,获得所述期望运动轨迹。
7.根据权利要求6所述的滑模控制系统,其特征在于,所述第二结果确定单元,具体包括:
第一获取子单元,用于当所述第一判断结果表示小于或等于设定阈值时,则从所述原始轨迹中获取四个连续的位置点;
系数确定子单元,用于根据所述四个连续的位置点确定三次多项式的系数;
插补子单元,用于从四个连续的位置点中任意选取两个相邻连续的位置点进行三项式插值,获得位置点;
判断子单元,用于判断插值后的位置点个数是否大于设定阈值,获得第二判断结果;如果所述第二判断结果表示大于设定阈值,则将插补后的所述原始轨迹作为期望运动轨迹;如果所述第二判断结果表示小于或等于设定阈值,采用窗口滑动,依次从所述原始轨迹中选取四个连续的位置点,并返回“系数确定子单元”。
CN201811310662.3A 2018-11-06 2018-11-06 一种并联机器人的滑模控制方法及系统 Active CN109176480B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811310662.3A CN109176480B (zh) 2018-11-06 2018-11-06 一种并联机器人的滑模控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811310662.3A CN109176480B (zh) 2018-11-06 2018-11-06 一种并联机器人的滑模控制方法及系统

Publications (2)

Publication Number Publication Date
CN109176480A CN109176480A (zh) 2019-01-11
CN109176480B true CN109176480B (zh) 2020-12-01

Family

ID=64941955

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811310662.3A Active CN109176480B (zh) 2018-11-06 2018-11-06 一种并联机器人的滑模控制方法及系统

Country Status (1)

Country Link
CN (1) CN109176480B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113050634B (zh) * 2021-03-12 2022-03-18 北方工业大学 一种攀爬机器人闭环控制方法及系统
CN113855475B (zh) * 2021-08-25 2023-10-27 上海傅利叶智能科技有限公司 用于控制两个康复机器人的方法、装置和康复机器人系统
CN114265318A (zh) * 2022-03-02 2022-04-01 北京航空航天大学 一种基于滑模控制和模糊算法的协作机器人轨迹跟踪方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103197673A (zh) * 2012-01-05 2013-07-10 沈阳新松机器人自动化股份有限公司 定位机器人运动轨迹的方法和装置
DE102014104132A1 (de) * 2014-03-25 2015-10-01 Technische Universität Dresden Parallelroboter und Steuerungsverfahren

Also Published As

Publication number Publication date
CN109176480A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
CN109176480B (zh) 一种并联机器人的滑模控制方法及系统
Gasparetto et al. Experimental validation and comparative analysis of optimal time-jerk algorithms for trajectory planning
CN107414827B (zh) 基于线性反馈控制器的六自由度机械臂自适应检测方法
CN110597051A (zh) 基于RBF神经网络的Stewart稳定平台控制方法
CN111673742A (zh) 一种工业机器人轨迹跟踪控制算法
Zheng et al. Simple online smooth trajectory generations for industrial systems
Tangpattanakul et al. Optimal trajectory of robot manipulator using harmony search algorithms
Wang et al. A method of robot grinding force control based on internal model control principle
CN108406766B (zh) 一种基于复合积分滑模的多机械臂系统同步控制方法
CN113664830B (zh) 基于模型预测阻抗控制的双机器人同步加工方法及系统
Liu et al. N-PD cross-coupling synchronization control based on adjacent coupling error analysis
CN111399397B (zh) 机器人的控制方法、控制器及控制系统
Han et al. Integral backstepping based computed torque control for a 6 DOF arm robot
Zhuo et al. SCARA Modeling and Simulation based on SimMechanics and Solidworks
Yao et al. Hybrid position, posture, force and moment control with impedance characteristics for robot manipulators
Wang et al. Smooth trajectory planning for manipulator of cotton harvesting machinery based on quaternion and b-spline
Ren et al. Performance improvement of tracking control for a planar parallel robot using synchronized control
Yang et al. Nonsingular terminal sliding-mode control for nonlinear robot manipulators with uncertain parameters
Ren et al. Controller design applied to planar parallel manipulators for trajectory tracking control
Liu et al. Vibration suppression for wafer transfer robot during trajectory tracking
Hartl-Nesic et al. Swing-up of a spherical pendulum on a 7-axis industrial robot
Fang et al. An iteration method for inverse kinematics of redundancy robot
Shang et al. Adaptive compensation of dynamics and friction for a planar parallel manipulator with redundant actuation
Zhao Adaptive Inversion Sliding Mode Control of Double-joint Manipulator Based on Nonlinear Disturbance Observer
Guoqin et al. Precision motion control for the parallel mechanism of a virtual axis machine tool

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant