CN109167022A - 一种CoS空心壳包埋TiO2纳米颗粒的锂离子电池负极材料及其制备方法 - Google Patents

一种CoS空心壳包埋TiO2纳米颗粒的锂离子电池负极材料及其制备方法 Download PDF

Info

Publication number
CN109167022A
CN109167022A CN201810135071.0A CN201810135071A CN109167022A CN 109167022 A CN109167022 A CN 109167022A CN 201810135071 A CN201810135071 A CN 201810135071A CN 109167022 A CN109167022 A CN 109167022A
Authority
CN
China
Prior art keywords
tio
nano particle
ion battery
hollow shell
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810135071.0A
Other languages
English (en)
Other versions
CN109167022B (zh
Inventor
严微微
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201810135071.0A priority Critical patent/CN109167022B/zh
Publication of CN109167022A publication Critical patent/CN109167022A/zh
Application granted granted Critical
Publication of CN109167022B publication Critical patent/CN109167022B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种CoS空心壳包埋TiO2纳米颗粒的锂离子电池负极材料,属于锂离子电池技术领域。本发明的制备方法是以钛酸异丙酯水解法合成TiO2纳米颗粒,再在TiO2纳米颗粒表面包覆一层亲MOF的PVP,使TiO2纳米颗粒在ZIF67生长过程中能被吸收,表面镶嵌及内部包埋于ZIF67上,形成一种枣糕结构,最后通过硫代乙酰胺水热法硫化获得最终产物。采用本发明所提供的CoS空心壳包埋TiO2纳米颗粒作为锂离子电池负极材料,表现出良好的充放电性能和循环稳定性,在锂离子电池中具有重要的应用价值。

Description

一种CoS空心壳包埋TiO2纳米颗粒的锂离子电池负极材料及其 制备方法
技术领域
本发明属于锂离子电池技术领域,特别涉及一种锂离子电池负极材料及其制备方法。
背景技术
锂离子电池具有能量密度高、使用寿命长、安全稳定、环境友好等特点,在移动设备、绿色交通以及能源存储等领域具有广泛的应用前景。近年来智能电子设备发展迅猛,对电源提出了更高要求,迫切需要电源具有高的能量密度和功率密度,长的循环寿命,以及良好的使用性能。当前的商品锂离子电池已不能完全满足市场需求,开发高性能电极和电极材料以提高锂离子电池的电化学性能,推动锂离子电池进一步发展,就成为十分重要的工作。
目前商品锂离子电池的负极材料主要是石墨化碳基材料。石墨作为负极材料的理论比容量达372mAh g-1,但是它存在充放电倍率性能差、与电解质相容性差、低温性能差等缺点,这些都直接影响到锂离子电池在动力及储能电池领域的应用。因此高性能锂离子电池负极材料的研究和开发受到各国研究者的广泛重视。
在众多可替代负极材料中,TiO2具有无毒无害、储量丰富、价格低廉、结构稳定等优点,理论容量为335mAh g-1,以其为负极可有效提高电池的实际容量;TiO2的脱嵌锂电位较高(1.5~1.8 V),可避免锂枝晶的生成,提升了电池的安全性;同时,TiO2的储锂机制为Li+的嵌入-脱出,不涉及合金化或氧化还原反应,在充放电过程中体积变化小(<4%),具有良好的循环稳定性,可有效延长电池的使用寿命,因此是一种优良的锂离子电池负极材料。
将TiO2合成为纳米结构材料可改善TiO2作为锂离子电池的电化学性能。公开号为CN105826546A的中国专利文献公开了一种TiO2-B超细纳米线及其制备方法与应用;公开号为CN106058234A的中国专利文献公开了一种分级多孔核壳结构的TiO2微米球材料及其制备方法和应用;公开号为CN101967010B的中国专利文献公开了一种制备锂离子电池负极材料纳米TiO2的方法;这些都是基于纳米结构来改善TiO2的锂离子电池性能,说明材料结构设计对TiO2在锂电池中的应用十分重要。但也要看到TiO2纳米材料一般存在颗粒尺寸分布宽、颗粒间堆积密度低、在电极制备过程中易团聚、导电性能差等缺点,导致了差的充放电性能,因此优良的TiO2锂离子电池负极材料仍然在不断探索找寻中。
发明内容
本发明的目的是为提高TiO2作为锂离子电池负极材料的充放电性能,而提出一种新结构锂离子电池负极材料及其制备方法。
本发明所述的新结构锂离子电池负极材料是CoS空心壳包埋TiO2纳米颗粒,CoS空心壳呈多面体结构,直径0.5-4 μm,壳厚10-100 nm;CoS空心壳表面镶嵌及内部包埋TiO2纳米颗粒,TiO2颗粒呈球形,粒径100-300 nm。
本发明所述的CoS空心壳包埋TiO2纳米颗粒的制备方法,其步骤如下:
合成TiO2纳米颗粒:将0.2 mL氨水加入10 mL无水乙醇中,搅拌5 min后,在剧烈搅拌的条件下加入0.1 mL钛酸异丙酯(TIP),搅拌10 min后离心分离,用无水乙醇清洗3次。
枣糕结构的TiO2纳米颗粒嵌ZIF67:将0.5 g PVP溶解于10 mL无水乙醇,然后将清洗干净的TiO2纳米颗粒分散于该PVP的乙醇溶液,室温下搅拌24 h,用无水乙醇清洗3遍后再次分散于2.5 mL甲醇溶液。取0-2 mL TiO2甲醇溶液滴入体积为50 mL,浓度为5-40 mM的硝酸钴的甲醇溶液中,搅拌3 min后快速加入体积为80 mL,浓度为20-160 mM的2-甲基咪唑的甲醇溶液,继续搅拌1 min后静置12 h,离心分离产物,用甲醇清洗3遍。
CoS空心壳包埋TiO2纳米颗粒:将TiO2纳米颗粒嵌ZIF67材料加入30 mL无水乙醇,搅拌15 min后加入硫代乙酰胺,TiO2纳米颗粒与硫代乙酰胺的质量比为1:3,TiO2纳米颗粒的质量小于0.5 g,继续搅拌15 min后将溶液倒入容积为50 mL的水热反应釜内,密闭后置于烘箱加热到120°C反应6 h,冷却到室温后离心分离产物,用无水乙醇清洗3遍。
采用本发明的负极材料制备锂离子电池负极:分别称取质量比为8:1:1的CoS空心壳包埋TiO2纳米颗粒、乙炔黑导电剂、聚偏氟乙烯(PVDF)粘结剂,将PVDF溶于适量的1-甲基-2-吡咯烷酮(NMP)中,搅拌直至完全溶解,再将研磨均匀的活性粉末和乙炔黑导电剂加入上述溶液中,继续搅拌以保证浆料混合均匀。然后将浆料均匀涂覆在圆片状的泡沫镍集流体上(直径为12 mm),置于真空烘箱内80°C烘干,最后在压片机上用10 MPa的压强压平,即制得电极片。
在充满高纯氩气的手套箱内将制备的电池负极与锂片、隔膜组成CR2025纽扣型锂离子电池。电解液为1 mol L-1 LiPF6的EC/DMC电解液。采用新威电池测试系统测试锂离子电池的充放电性能与循环稳定性。
与现有技术相比,本发明具有以下优点:
(1)通过CoS空心壳表面镶嵌及内部包埋TiO2纳米颗粒的结构,有效解决了TiO2纳米颗粒容易团聚的问题,使纳米TiO2高比表面积和高电化学活性的优点有效发挥出来。
(2)由于CoS空心壳是介孔结构,使得CoS壳内部也能储存电解液,使壳内部的TiO2纳米颗粒都能充分接触到电解液,这有效缩短了锂离子的扩散路径,加大了TiO2材料的电化学反应面积,提高了TiO2参与电化学反应的能力。
(3)由于CoS电导率高,使得CoS空心壳具有良好的导电性能,有利于内部TiO2纳米颗粒的电传导。
(4)CoS也是优秀的锂电池材料,也能参与锂电池充放电反应,贡献充放电容量,有利于提高CoS@TiO2复合材料整体的充放电比容量。
(5)CoS空心壳包埋TiO2纳米颗粒的结构提高了材料的空间利用效率。
(6)本发明的材料合成工艺简单,反应条件温和,对环境无污染,可以大量生产,具有较大的商业应用前景。
附图说明
图1为实施例1制备的TiO纳米颗粒的SEM照片。
图2为实施例1制备的枣糕结构的TiO2纳米颗粒嵌ZIF67的SEM照片。
图3为实施例1制备的枣糕结构的TiO2纳米颗粒嵌ZIF67的TEM照片。
图4为实施例1制备的CoS空心壳包埋TiO2纳米颗粒的SEM照片。
图5为实施例1制备的CoS空心壳包埋TiO2纳米颗粒的TEM照片。
图6为实施例1制备的CoS空心壳包埋TiO2纳米颗粒的循环性能图。
具体实施方式
以下结合实施例和附图对本发明作进一步说明。
实施例1
合成TiO2纳米颗粒:将0.2 mL氨水加入10 mL无水乙醇中,搅拌5 min后,在剧烈搅拌的条件下加入0.1 mL钛酸异丙酯(TIP),搅拌10 min后离心分离,用无水乙醇清洗3次。
枣糕结构的TiO2纳米颗粒嵌ZIF67:将0.5 g PVP溶解于10 mL无水乙醇,然后将清洗干净的TiO2纳米颗粒分散于该PVP的乙醇溶液,室温下搅拌24 h,用无水乙醇清洗3遍后分散于2.5 mL甲醇溶液。取1.3 mL TiO2甲醇溶液滴入体积为50 mL,浓度为20 mM的硝酸钴甲醇溶液中,搅拌3 min后快速加入体积为80 mL,浓度为80 mM的2-甲基咪唑的甲醇溶液,继续搅拌1 min后静置12 h,离心分离产物,用甲醇清洗3遍。
CoS空心壳包埋TiO2纳米颗粒:将20 mg枣糕结构的TiO2纳米颗粒嵌ZIF67材料加入30 mL无水乙醇,搅拌15 min后加入60 mg硫代乙酰胺,继续搅拌15 min后将溶液倒入容积为50 mL的水热反应釜内,密闭后置于烘箱加热到120°C反应6 h,冷却到室温后离心分离产物,用无水乙醇清洗3遍。
图1是TiO纳米颗粒的SEM照片。可以清楚地看到TiO2纳米颗粒尺寸均匀,分散良好,表面光滑,呈球形颗粒状,平均粒径约200 nm。
图2是枣糕结构的TiO2纳米颗粒嵌ZIF67的SEM照片。可以看到ZIF67尺寸约为2um,呈多面体结构。在ZIF67表面镶嵌了一些TiO2纳米颗粒。对该复合材料进一步进行TEM观察,结果如图3所示,可以看到在ZIF67内部有一些纳米颗粒存在。图2和图3一起说明了TiO2纳米颗粒表面镶嵌及内部包埋于ZIF67上,呈现一种枣糕结构。
图4是对TiO2纳米颗粒嵌ZIF67进行水热法硫化处理以后的SEM照片。ZIF67硫化后成为CoS空心壳,壳体表面粗糙,尺寸收缩到大约1.7 μm。通过局部破损处可以看到内部是空心的,表面镶嵌的TiO2纳米颗粒有的已经缺失,留下了一个凹坑。图5是CoS空心壳包埋TiO2纳米颗粒的TEM照片。可以看到空心的球壳结构和内部的TiO2纳米颗粒,壳厚约50 nm。
采用本发明的负极材料制备锂离子电池负极:分别称取质量比为8:1:1的CoS空心壳包埋TiO2纳米颗粒、乙炔黑导电剂、聚偏氟乙烯(PVDF)粘结剂,将PVDF溶于适量的1-甲基-2-吡咯烷酮(NMP)中,搅拌直至完全溶解,再将研磨均匀的活性粉末和乙炔黑导电剂加入上述溶液中,继续搅拌以保证浆料混合均匀。然后将浆料均匀涂覆在圆片状的泡沫镍集流体上(直径为12 mm),置于真空烘箱内80°C烘干,最后在压片机上用10 MPa的压强压平,即制得电极片。
在充满高纯氩气的手套箱内将制备的负极与金属锂片(正极)、隔膜组成CR2025纽扣型锂离子电池。电解液为1 mol L-1 LiPF6的EC/DMC电解液。采用新威电池测试系统测试锂离子电池的充放电性能与循环稳定性。充放电电流0.5 C倍率,充放电电压范围0.01-3.0V。
图6是实施例1制备的CoS空心壳包埋TiO2纳米颗粒的循环性能图。第1个循环CoS空心壳包埋TiO2纳米颗粒的放电容量是405 mAh g-1,到第7个循环快速减小到332 mAh g-1,然后基本维持在330 mAh g-1。循环充放电测试结果表明CoS空心壳包埋TiO2纳米颗粒复合材料能够显著提高TiO2纳米材料的充放电性能和循环稳定性。复合材料整体的放电比电容较高,主要原因是复合材料的结构有利于改善TiO2纳米颗粒的电化学性能,次要原因是CoS空心壳的贡献。
实施例2
合成TiO2纳米颗粒:将0.2 mL氨水加入10 mL无水乙醇中,搅拌5 min后,在剧烈搅拌的条件下加入0.1 mL钛酸异丙酯(TIP),搅拌10 min后离心分离,无水乙醇清洗3次。
枣糕结构的TiO2纳米颗粒嵌ZIF67:将0.5 g PVP溶解于10 mL无水乙醇,然后将清洗干净的TiO2纳米颗粒分散于该PVP的乙醇溶液,室温下搅拌24 h,用无水乙醇清洗3遍后分散于2.5 mL甲醇溶液。取0.5 mL TiO2甲醇溶液滴入体积为50 mL,浓度为10 mM的硝酸钴甲醇溶液中,搅拌3 min后快速加入体积为80 mL,浓度为40 mM的2-甲基咪唑的甲醇溶液,继续搅拌1 min后静置12 h,离心分离产物,用甲醇清洗3遍。
CoS空心壳包埋TiO2纳米颗粒:将0.1 g枣糕结构的TiO2纳米颗粒嵌ZIF67材料加入30 mL无水乙醇,搅拌15 min后加入0.3 g硫代乙酰胺,继续搅拌15 min后将溶液倒入容积为50 mL的水热反应釜内,密闭后置于烘箱加热到120°C反应6 h,冷却到室温后离心分离产物,无水乙醇清洗3遍。
复合材料中CoS空心壳尺寸约3.6 μm,壳厚约75 nm,空心壳表面和内部包埋有大量粒径约200 nm的TiO2纳米颗粒。
采用与实施例1相同的工艺制作锂离子电池负极,装配成锂离子电池,以0.5C倍率,0.01-3.0V电压范围进行循环充放电测试,TiO2空心介孔球壳包TiO2纳米颗粒的放电比容量变化趋势和实施例1相似。首循环放电容量380 mAh g-1,到第7个循环快速减小到311mAh g-1,然后基本维持在310 mAh g-1
实施例3
合成TiO2纳米颗粒:将0.2 mL氨水加入10 mL无水乙醇中,搅拌5 min后,在剧烈搅拌的条件下加入0.1 mL钛酸异丙酯(TIP),搅拌10 min后离心分离,无水乙醇清洗3次。
枣糕结构的TiO2纳米颗粒嵌ZIF67:将0.5 g PVP溶解于10 mL无水乙醇,然后将清洗干净的TiO2纳米颗粒分散于该PVP的乙醇溶液,室温下搅拌24 h,用无水乙醇清洗3遍后分散于2.5 mL甲醇溶液。取1.7 mL TiO2甲醇溶液滴入体积为50 mL,浓度为30 mM的硝酸钴甲醇溶液中,搅拌3 min后快速加入体积为80 mL,浓度为120 mM的2-甲基咪唑的甲醇溶液,继续搅拌1 min后静置12 h,离心分离产物,用甲醇清洗3遍。
CoS空心壳包埋TiO2纳米颗粒:将0.2 g枣糕结构的TiO2纳米颗粒嵌ZIF67材料加入30 mL无水乙醇,搅拌15 min后加入0.6 g硫代乙酰胺,继续搅拌15 min后将溶液倒入容积为50 mL的水热反应釜内,密闭后置于烘箱加热到120°C反应6 h,冷却到室温后离心分离产物,无水乙醇清洗3遍。
复合材料中CoS空心壳尺寸约0.85 μm,壳厚约 24 nm,空心壳表面和内部包埋有大量粒径约200 nm的TiO2纳米颗粒。
采用与实施例1相同的工艺制作锂离子电池负极,装配成锂离子电池,以0.5C倍率,0.01-3.0V电压范围进行循环充放电测试,TiO2空心介孔球壳包TiO2纳米颗粒的放电比容量变化趋势和实施例1相似。首循环放电容量374 mAh g-1,到第7个循环快速减小到293mAh g-1,然后基本维持在291 mAh g-1

Claims (2)

1.一种CoS空心壳包埋TiO2纳米颗粒的锂离子电池负极材料,其特征在于:CoS空心壳呈多面体结构,直径0.5-4μ m,壳厚10-100 nm;CoS空心壳表面镶嵌及内部包埋TiO2纳米颗粒,TiO2颗粒呈球形,粒径100-300 nm。
2.制备权利要求1所述的CoS空心壳包埋TiO2纳米颗粒的锂离子电池负极材料的方法,其特征在于:
合成TiO2纳米颗粒:将0.2 mL氨水加入10 mL无水乙醇中,搅拌5 min后,在剧烈搅拌的条件下加入0.1 mL钛酸异丙酯,搅拌10 min后离心分离,用无水乙醇清洗3次;
枣糕结构的TiO2纳米颗粒嵌ZIF67:将0.5g PVP溶解于10 mL无水乙醇,然后将清洗干净的TiO2纳米颗粒分散于该PVP的乙醇溶液,室温下搅拌24 h,用无水乙醇清洗3遍后再次分散于2.5 mL甲醇溶液;取0-2 mL TiO2甲醇溶液滴入体积为50 mL,浓度为5-40 mM的硝酸钴的甲醇溶液中,搅拌3 min后快速加入体积为80 mL,浓度为20-160mM的2-甲基咪唑的甲醇溶液,继续搅拌1 min后静置12 h,离心分离产物,用甲醇清洗3遍,100°C烘干;
CoS空心壳包埋TiO2纳米颗粒:将TiO2纳米颗粒嵌ZIF67材料加入30 mL无水乙醇,搅拌15 min后加入硫代乙酰胺,TiO2纳米颗粒与硫代乙酰胺的质量比为1:3,TiO2纳米颗粒的质量小于0.5 g,继续搅拌15 min后将溶液倒入容积为50 mL的水热反应釜内,密闭后置于烘箱加热到120°C反应6 h,冷却到室温后离心分离产物,用无水乙醇清洗3遍,100°C烘干。
CN201810135071.0A 2018-02-09 2018-02-09 一种CoS空心壳包埋TiO2纳米颗粒的锂离子电池负极材料及其制备方法 Expired - Fee Related CN109167022B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810135071.0A CN109167022B (zh) 2018-02-09 2018-02-09 一种CoS空心壳包埋TiO2纳米颗粒的锂离子电池负极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810135071.0A CN109167022B (zh) 2018-02-09 2018-02-09 一种CoS空心壳包埋TiO2纳米颗粒的锂离子电池负极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109167022A true CN109167022A (zh) 2019-01-08
CN109167022B CN109167022B (zh) 2021-02-26

Family

ID=64897082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810135071.0A Expired - Fee Related CN109167022B (zh) 2018-02-09 2018-02-09 一种CoS空心壳包埋TiO2纳米颗粒的锂离子电池负极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109167022B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110880588A (zh) * 2019-11-25 2020-03-13 浙江理工大学 一种钛钴复合材料及其制备方法和应用
CN113087013A (zh) * 2021-03-19 2021-07-09 浙江理工大学 一种二氧化钛及其制备方法
CN114497475A (zh) * 2021-12-24 2022-05-13 合肥国轩高科动力能源有限公司 一种锂离子电池用含锌的氮掺杂多孔碳包覆锌基负极材料
WO2024059922A1 (pt) * 2022-09-23 2024-03-28 Instituto Hercílio Randon Célula de bateria, aditivo para a modulação da velocidade de carga e/ou ciclabilidade de uma célula de bateria, método para a modulação da velocidade de carga e/ou ciclabilidade de uma célula de bateria, uso de nanopartículas de nióbio, titânio ou combinações das mesmas e uso de célula de bateria

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1772363A (zh) * 2004-11-11 2006-05-17 中国科学院化学研究所 用模板法制备中空球和复合中空球的方法
CN103050661A (zh) * 2012-12-12 2013-04-17 清华大学深圳研究生院 石墨烯复合锂离子电池负极材料及其制备方法
US20170141382A1 (en) * 2015-11-18 2017-05-18 GM Global Technology Operations LLC Forming sulfur-based positive electrode active materials
CN107487790A (zh) * 2017-08-01 2017-12-19 江苏大学 一种多元纳米笼复合材料的制备方法
CN107552017A (zh) * 2017-08-30 2018-01-09 河南师范大学 Zif‑67@cc复合吸附材料的制备方法及其在吸附净化处理含甲基橙废水中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1772363A (zh) * 2004-11-11 2006-05-17 中国科学院化学研究所 用模板法制备中空球和复合中空球的方法
CN103050661A (zh) * 2012-12-12 2013-04-17 清华大学深圳研究生院 石墨烯复合锂离子电池负极材料及其制备方法
US20170141382A1 (en) * 2015-11-18 2017-05-18 GM Global Technology Operations LLC Forming sulfur-based positive electrode active materials
CN107487790A (zh) * 2017-08-01 2017-12-19 江苏大学 一种多元纳米笼复合材料的制备方法
CN107552017A (zh) * 2017-08-30 2018-01-09 河南师范大学 Zif‑67@cc复合吸附材料的制备方法及其在吸附净化处理含甲基橙废水中的应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110880588A (zh) * 2019-11-25 2020-03-13 浙江理工大学 一种钛钴复合材料及其制备方法和应用
CN110880588B (zh) * 2019-11-25 2021-03-05 浙江理工大学 一种钛钴复合材料及其制备方法和应用
CN113087013A (zh) * 2021-03-19 2021-07-09 浙江理工大学 一种二氧化钛及其制备方法
CN114497475A (zh) * 2021-12-24 2022-05-13 合肥国轩高科动力能源有限公司 一种锂离子电池用含锌的氮掺杂多孔碳包覆锌基负极材料
WO2024059922A1 (pt) * 2022-09-23 2024-03-28 Instituto Hercílio Randon Célula de bateria, aditivo para a modulação da velocidade de carga e/ou ciclabilidade de uma célula de bateria, método para a modulação da velocidade de carga e/ou ciclabilidade de uma célula de bateria, uso de nanopartículas de nióbio, titânio ou combinações das mesmas e uso de célula de bateria

Also Published As

Publication number Publication date
CN109167022B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
Bao et al. Porous MgCo2O4 nanoflakes serve as electrode materials for hybrid supercapacitors with excellent performance
Guo et al. The application of transition metal cobaltites in electrochemistry
Chu et al. NiO nanocrystals encapsulated into a nitrogen-doped porous carbon matrix as highly stable Li-ion battery anodes
CN107946561A (zh) 负极材料及其制备方法、负极极片及锂离子电池
Li et al. Advanced electrospun nanofibers as bifunctional electrocatalysts for flexible metal-air (O2) batteries: Opportunities and challenges
Sun et al. Application of NiO-modified NiCo2O4 hollow spheres for high performance lithium ion batteries and supercapacitors
Wang et al. Application of MOFs-derived mixed metal oxides in energy storage
CN109167022A (zh) 一种CoS空心壳包埋TiO2纳米颗粒的锂离子电池负极材料及其制备方法
Jia et al. Robust 3D network architectures of MnO nanoparticles bridged by ultrathin graphitic carbon for high-performance lithium-ion battery anodes
Liang et al. β-Ni (OH) 2 nanosheets coating on 3D flower-like α-Ni (OH) 2 as high-performance electrodes for asymmetric supercapacitor and Ni/MH battery
Wang et al. High electrochemical performance and structural stability of CoO nanosheets/CoO film as self-supported anodes for lithium-ion batteries
CN103346302A (zh) 一种锂电池硅碳纳米管复合负极材料及其制备方法与应用
CN111573743B (zh) 双层空心十二面体锌钴基硫化物复合材料及其制备方法
CN107732172A (zh) 一种锂离子电池负极材料及其制备方法
CN108448093A (zh) 一种CoS分级纳米泡复合硫的锂硫电池正极材料及其制备方法
Sun et al. Heterostructure of MnSe2@ NiCo2Se4 as novel electrode material for high-performance asymmetric supercapacitors
CN102983308A (zh) 碳纳米管阵列/氧化镍纳米颗粒同轴复合负极材料及其制备方法
Zhou et al. Ingenious construction of hierarchical spherical nanostructures by in-situ confining Ni–Co–Mn hydroxide nanosheets inside/outside hollow carbon nanospheres for high-performance hybrid supercapacitors
Han et al. Construction of spherical ZnTiO3/MWCNTs composites as anode material for high-performance Li-ion batteries
Xiang et al. Design and synthesis of Cr2O3@ C@ G composites with yolk-shell structure for Li+ storage
CN104953105B (zh) 一种锂离子电池用SnOx/碳纳米管复合材料的制备方法
Li et al. Unique 3D bilayer nanostructure basic cobalt carbonate@ NiCo–layered double hydroxide nanosheets on carbon cloth for supercapacitor electrode material
Guo et al. High-performance supercapacitors based on flower-like FexCo3-xO4 electrodes
Qiao et al. Nanoneedle-assembled hollow α-Fe2O3 microflowers as Li-ion battery anode with high capacity and good temperature tolerance
Dai et al. Facile synthesis and high lithium storage properties of mesoporous polypyrrole coated CoFe2O4 nanofibers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210226

CF01 Termination of patent right due to non-payment of annual fee