CN109166735A - 一种木质素为碳源的复合氧化镍电容器的制备方法 - Google Patents

一种木质素为碳源的复合氧化镍电容器的制备方法 Download PDF

Info

Publication number
CN109166735A
CN109166735A CN201810883336.5A CN201810883336A CN109166735A CN 109166735 A CN109166735 A CN 109166735A CN 201810883336 A CN201810883336 A CN 201810883336A CN 109166735 A CN109166735 A CN 109166735A
Authority
CN
China
Prior art keywords
electrode
preparation
capacitor
lignin
carbon source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810883336.5A
Other languages
English (en)
Inventor
周泽平
魏晓娟
陈枫
赵正平
范萍
杨晋涛
钟明强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201810883336.5A priority Critical patent/CN109166735A/zh
Publication of CN109166735A publication Critical patent/CN109166735A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

一种木质素为碳源的复合氧化镍电容器的制备方法,包括以下步骤:(1)利用木质素磺酸钠和硝酸镍制备分级介孔碳纳米复合氧化镍材料NiO/HMPC NSs;(2)配置粘合剂;(3)制备石墨电极。(4)用循环伏安法和电化学阻抗法对电极进行了电化学研究;(5)计算比容量。本发明提供一种具有良好的电容性能和良好的功率性能、比容量保持率较高的木质素为碳源的复合氧化镍电容器的制备方法。

Description

一种木质素为碳源的复合氧化镍电容器的制备方法
技术领域
本发明涉及一种木质素为碳源的复合氧化镍电容器的制备方法。
背景技术
由于能源消耗的增加,高效节能的电能存储系统是非常需要的。目前的电化学储能系统基于性能和储能机制可以分为三个不同的系统:电池、超级电容器和电容器。
近年来,由于超级电容器具有满足许多先进技术对能量和功率密度的巨大需求的潜力,近年来引起了人们的极大关注。然而,其电导率和循环稳定性仍然是超级电容器广泛应用面临的主要挑战。为了满足超级电容器不断增长的能量和功率需求,人们制定了各种策略。
Jiang等人研究了Ni@MPC核壳结构的纳米线,该纳米线可以将纳米级镍氧化成相应的氧化镍,复合电极具有较高的比容量,在1M KOH水溶液中具有较高的放电容量和循环稳定性,但需要昂贵的多巴胺作为碳前驱体(Advanced Materials,2012,24(30):4196-4196.)
介孔碳结合金属氧化物纳米材料用于高性能超级电容器的应用是超级电容器的最新发展趋势。
发明内容
为了克服已有超级电容器的电容性能和功率性能较差、比容量保持率较低的不足,本发明提供一种具有良好的电容性能和良好的功率性能、比容量保持率较高的木质素为碳源的复合氧化镍电容器的制备方法。
本发明解决其技术问题所采用的技术方案是:
一种木质素为碳源的复合氧化镍电容器的制备方法,包括以下步骤:
(1)利用木质素磺酸钠和硝酸镍制备分级介孔碳纳米复合氧化镍材料NiO/HMPCNSs;
(2)配置粘合剂;
(3)制备石墨电极。
(4)用循环伏安法和电化学阻抗法对电极进行了电化学研究;
(5)比容量按下列公式计算:
当C为比电容(F·g-1),I为电流(A),V为电位窗口(V),v为扫描速率(mV·s-1),m为用于电化学测试(g)的样品质量。
所述步骤(2)中,将聚四氟乙烯和去离子水(质量比,1∶20)配置为粘合剂。
所述步骤(3)中,在乙醇中充分混合质量比为8∶1∶1的碳球、乙炔黑和粘合剂;然后,将得到的浆料均匀地涂布在石墨片(1×2cm2)的1×1cm2面积上;将制备的电极在室温下干燥一天,然后在真空室温放置过夜。
所述步骤(4)中,电化学研究采用循环伏安法和电化学阻抗谱法进行。用6M KOH溶液做电解质,装有一套以石墨片为工作电极的三层烧杯电极,Ag/AgCl电极为参比电极,Pt板(1×1cm2)为对电极。
本发明的有益效果主要表现在:
1、本发明中木质素为碳源的复合氧化镍电容器(NiO/HMPC NSs电容器)具有良好的电容性能和良好的功率性能,具有理想的电容行为特性。
2、NiO/HMPC NSs电容器具有结构稳定的孔隙,氧化镍分布均匀,经过多次充放电循环,仍未发生变形或塌陷。经过2000次循环后,比容量保持率高达91%。
附图说明
图1是HMPC NSs电容器在不同扫描速率下的CV图;
图2是HMPC NSs电容器的电容和比能量随扫描速率的变化,其中a表示HMPC NSs电容器的电容随扫描速率的变化,b表示HMPCNSs电容器的比能量随扫描速率的变化;
图3是HMPC NSs电容器在20mV/s条件下试验2000次的循环测试;
图4是HMPC NSs电容器的电容保持率和比能量,其中a表示HMPC NSs电容器的电容保持率,b表示HMPC NSs电容器的电容比能量。
具体实施方式
下面结合附图对本发明作进一步描述。
参照图1~图4,一种木质素为碳源的复合氧化镍电容器的制备方法,包括以下步骤:
(1)利用木质素磺酸钠和硝酸镍制备分级介孔碳纳米复合氧化镍材料NiO/HMPCNSs;
(2)配置粘合剂;
(3)制备石墨电极。
(4)用循环伏安法和电化学阻抗法对电极进行了电化学研究;
(5)比容量按下列公式计算:
当C为比电容(F·g-1),I为电流(A),V为电位窗口(V),v为扫描速率(mV·s-1),m为用于电化学测试(g)的样品质量。
所述步骤(2)中,将聚四氟乙烯和去离子水(质量比,1∶20)配置为粘合剂。
所述步骤(3)中,在乙醇中充分混合质量比为8∶1∶1的碳球、乙炔黑和粘合剂;然后,将得到的浆料均匀地涂布在石墨片(1×2cm2)的1×1cm2面积上;将制备的电极在室温下干燥一天,然后在真空室温放置过夜。
所述步骤(4)中,电化学研究采用循环伏安法和电化学阻抗谱法进行。用6M KOH溶液做电解质,装有一套以石墨片为工作电极的三层烧杯电极,Ag/AgCl电极为参比电极,Pt板(1×1cm2)为对电极。
图1显示了扫描速率为20~100mV·s-1时,电容器的CV曲线。可以看到曲线不仅呈准矩形形状,而且在每条CV曲线上都有一对氧化还原峰,尽管比值有所变化,但NiO/HMPCNSs电容器的电容均表现为双电层电容和法拉第拟电容的结合。两个明显的峰表明电子的转移是可逆的,阳极峰是由NiO氧化成NiOOH,阴极峰是反向过程,这些峰对应于NiO的不同氧化状态之间的转换,具体如下:
随着扫描速率的增加,CV曲线的形状不发生明显的变化,表明电极材料具有很高的电化学反应活性和较快的活化,说明随着扫描速率的增加,两个峰的电位向正、负方向移动,这可能是由于在较高的速率下,电极材料的极化和不可逆反应增强所致。反应是由离子扩散速率所决定的,在氧化还原反应中不满足电子中和。
为了分析电容随NiO含量和扫描速率的变化,用以下公式计算出电极的比容量:
图2a显示了在不同扫描速率下计算的比电容。随着扫描速率的增加,循环伏安曲线附近的面积也在增加,这一现象反映了NiO/HMPCNSs电容器具有良好的电容性能和良好的功率性能,并表明该复合材料具有理想的电容行为特性。
在较高的扫描速率下,由于中孔存在,离子电荷迁移受阻,离子在孔洞中扩散被延迟,导致电流响应的延迟。一方面电荷以分散的状态储存。不可避免地造成电解液电阻发生欧姆电位下降,导致分布电容效应。随着扫描速率增加,矩形特征的循环曲线偏差程度也增大,如图2b所示,电容不同程度降低。
此外,循环性是其在超级电容器中应用所需的重要质量。图3是扫描速率为20mV/s的CV曲线,经过2000次循环后,曲线形状高度重叠,氧化峰和还原峰略有移动,图4计算出材料的比容量保持率高达91%,表明NiO/HMPC NSs电容器具有结构稳定的孔隙,氧化镍分布均匀,经过多次充放电循环,仍未发生变形或塌陷。

Claims (4)

1.一种木质素为碳源的复合氧化镍电容器的制备方法,其特征在于,所述方法包括以下步骤:
(1)利用木质素磺酸钠和硝酸镍制备分级介孔碳纳米复合氧化镍材料NiO/HMPC NSs;
(2)配置粘合剂;
(3)制备石墨电极;
(4)用循环伏安法和电化学阻抗法对电极进行了电化学研究;
(5)比容量按下列公式计算:
当C为比电容(F·g-1),I为电流(A),V为电位窗口(V),v为扫描速率(mV·s-1),m为用于电化学测试(g)的样品质量。
2.如权利要求1所述的一种木质素为碳源的复合氧化镍电容器的制备方法,其特征在于,所述步骤(2)中,将聚四氟乙烯和去离子水(质量比,1∶20)配置为粘合剂。
3.如权利要求1或2所述的一种木质素为碳源的复合氧化镍电容器的制备方法,其特征在于,所述步骤(3)中,在乙醇中充分混合质量比为8∶1∶1的碳球、乙炔黑和粘合剂;然后,将得到的浆料均匀地涂布在石墨片(1×2cm2)的1×1cm2面积上;将制备的电极在室温下干燥一天,然后在真空室温放置过夜。
4.如权利要求1或2所述的一种木质素为碳源的复合氧化镍电容器的制备方法,其特征在于,所述步骤(4)中,电化学研究采用循环伏安法和电化学阻抗谱法进行,用6M KOH溶液做电解质,装有一套以石墨片为工作电极的三层烧杯电极,Ag/AgCl电极为参比电极,Pt板(1×1cm2)为对电极。
CN201810883336.5A 2018-08-06 2018-08-06 一种木质素为碳源的复合氧化镍电容器的制备方法 Pending CN109166735A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810883336.5A CN109166735A (zh) 2018-08-06 2018-08-06 一种木质素为碳源的复合氧化镍电容器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810883336.5A CN109166735A (zh) 2018-08-06 2018-08-06 一种木质素为碳源的复合氧化镍电容器的制备方法

Publications (1)

Publication Number Publication Date
CN109166735A true CN109166735A (zh) 2019-01-08

Family

ID=64898925

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810883336.5A Pending CN109166735A (zh) 2018-08-06 2018-08-06 一种木质素为碳源的复合氧化镍电容器的制备方法

Country Status (1)

Country Link
CN (1) CN109166735A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113278985A (zh) * 2021-04-02 2021-08-20 浙江工业大学 一种氧化镍和木质素碳电化学催化纳米复合材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426932A (zh) * 2011-08-23 2012-04-25 韦华鹏 双电层电容器制备方法
CN103151182A (zh) * 2013-02-07 2013-06-12 浙江工业大学 一种纳米氧化镍电极材料及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426932A (zh) * 2011-08-23 2012-04-25 韦华鹏 双电层电容器制备方法
CN103151182A (zh) * 2013-02-07 2013-06-12 浙江工业大学 一种纳米氧化镍电极材料及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZEPING ZHOU,ET AL: ""Lignin-derived hierarchical mesoporous carbon and NiO hybrid nanospheres with exceptional Li-ion battery and pseudocapacitive properties"", 《ELECTROCHIMICA ACTA》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113278985A (zh) * 2021-04-02 2021-08-20 浙江工业大学 一种氧化镍和木质素碳电化学催化纳米复合材料的制备方法

Similar Documents

Publication Publication Date Title
Lang et al. Asymmetric supercapacitors based on stabilized α-Ni (OH) 2 and activated carbon
CN103401030B (zh) 一种水系可充镁或锌离子电容电池
CN102013330B (zh) 石墨烯/多孔氧化镍复合超级电容器薄膜及其制备方法
WO2017121080A1 (zh) 一种水系电解质超级电容电池
Liu et al. Impedance of Al-substituted α-nickel hydroxide electrodes
CN104795252A (zh) 超薄Ti3C2纳米片自组装的超级电容器电极的制备方法
CN106876153A (zh) 一种自支撑结构的电极及其制备和应用
CN102723209A (zh) 一种石墨烯纳米片/导电聚合物纳米线复合材料的制备方法
CN102915844B (zh) 一种制备碳片/二氧化锰纳米片的分级复合材料的方法及其应用
Bao et al. Effects of nano-SiO2 doped PbO2 as the positive electrode on the performance of lead-carbon hybrid capacitor
CN105161675A (zh) 一种锂电池钛酸锂负极浆料的制备方法
CN111689523B (zh) 金属铬掺杂δ-MnO2纳米片的制备方法
CN108987120A (zh) 一种通过刻蚀锰参杂氢氧化镍制备超薄多孔硒化镍纳米片阵列的方法
CN103426640A (zh) 一种制造薄膜复合材料的方法
CN105448536B (zh) 氧化镍/氧化钛纳米复合材料及其制备方法和储能应用
CN105655146A (zh) 钠插层二氧化锰/石墨烯双壳空心微球材料及其制备方法和应用
CN106024414A (zh) 一种无粘结剂的二氧化锰/聚吡咯复合电极、制备方法及其应用
Xiang et al. Electrochemical enhancement of carbon paper by indium modification for the positive side of vanadium redox flow battery
CN106298254A (zh) 聚苯胺/多孔金属薄膜材料、复合正极极片、制备方法及应用
CN113270585A (zh) 一种电极材料及其制备方法和应用
Wu et al. Nickel-cobalt oxide nanocages derived from cobalt-organic frameworks as electrode materials for electrochemical energy storage with redox electrolyte
Teng et al. Preparation and characterization of CdSe as electrode materials for supercapacitors
Zhou et al. Facile fabrication of highly porous TiO2 microrods anode with enhanced Al-ion storage for hybrid capacitors
Vanags et al. Two-step decoupled electrolysis approach based on pseudocapacitive WO3 auxiliary electrode
Chu et al. Semi-solid zinc slurry with abundant electron-ion transfer interfaces for aqueous zinc-based flow batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190108

RJ01 Rejection of invention patent application after publication