CN109164559B - Large-numerical aperture near-infrared object image bilateral telecentric optical system - Google Patents
Large-numerical aperture near-infrared object image bilateral telecentric optical system Download PDFInfo
- Publication number
- CN109164559B CN109164559B CN201811184809.9A CN201811184809A CN109164559B CN 109164559 B CN109164559 B CN 109164559B CN 201811184809 A CN201811184809 A CN 201811184809A CN 109164559 B CN109164559 B CN 109164559B
- Authority
- CN
- China
- Prior art keywords
- lens
- adopts
- curvature radius
- surface curvature
- positive power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 42
- 230000002146 bilateral effect Effects 0.000 title claims abstract description 14
- 230000005499 meniscus Effects 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 25
- 239000005331 crown glasses (windows) Substances 0.000 claims description 11
- 239000005308 flint glass Substances 0.000 claims description 11
- 229910052746 lanthanum Inorganic materials 0.000 claims description 7
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 2
- 238000003384 imaging method Methods 0.000 abstract description 13
- 238000001514 detection method Methods 0.000 abstract description 11
- 230000004075 alteration Effects 0.000 description 12
- 238000013461 design Methods 0.000 description 4
- 238000002329 infrared spectrum Methods 0.000 description 4
- 206010010071 Coma Diseases 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 201000009310 astigmatism Diseases 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0055—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
- G02B13/006—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/22—Telecentric objectives or lens systems
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本发明介绍了一种大数值孔径近红外物像双侧远心光学系统,包括在光线沿像平面到物平面传播方向上依次排列的第一透镜、第二透镜、分光棱镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜、光阑。其中所述第一透镜采用双凸正光焦度透镜、所述第二透镜采用双凹负光焦度透镜、所述第三透镜采用弯月正光焦度透镜、所述第四透镜采用双凸正光焦度透镜、所述第五透镜采用双凹负光焦度透镜、所述第六透镜采用双凸正光焦度透镜、所述第七透镜采用双凸正光焦度透镜、所述第八透镜采用弯月形正光焦度透镜。本发明物方数值孔径达到0.5,探测集光能力强;分辨率达到0.85μm,可实现高分辨率成像;另外本发明能实现物像双侧远心及低畸变。
The invention introduces a large numerical aperture near-infrared object image bilateral telecentric optical system, which includes a first lens, a second lens, a beam splitting prism, a third lens, and a first lens, a second lens, a beam splitting prism, and a third lens arranged in sequence in the propagation direction of light from the image plane to the object plane. The fourth lens, the fifth lens, the sixth lens, the seventh lens, the eighth lens, and the diaphragm. The first lens adopts a biconvex positive power lens, the second lens adopts a biconcave negative power lens, the third lens adopts a meniscus positive power lens, and the fourth lens adopts a biconvex positive power lens. power lens, the fifth lens adopts a biconcave negative power lens, the sixth lens adopts a biconvex positive power lens, the seventh lens adopts a biconvex positive power lens, and the eighth lens adopts a biconvex positive power lens. Meniscus positive power lens. The object-side numerical aperture of the invention reaches 0.5, and the detection and light-gathering ability is strong; the resolution reaches 0.85 μm, and high-resolution imaging can be achieved; in addition, the invention can realize bilateral telecentricity and low distortion of the object image.
Description
技术领域Technical field
本发明涉及光学领域,尤其涉及一种大数值孔径近红外物像双侧远心光学系统。The invention relates to the field of optics, and in particular to a large numerical aperture near-infrared object image bilateral telecentric optical system.
背景技术Background technique
当前机器视觉系统采用物像双侧远心光学系统具有无影像变形、无视角误差、超宽景深、超低畸变以及成像倍率恒定等优点,相比普通工业镜头具有明显的技术优势,在精密工业检测领域获得了广泛的应用。现有市场的物像双侧远心光学镜头一般应用在可见光检测谱段,在近红外谱段的远心工业镜头种类较少,并存在分辨率不够高、探测能力不够强等缺陷。The current machine vision system uses an object-image bilateral telecentric optical system, which has the advantages of no image deformation, no viewing angle error, ultra-wide depth of field, ultra-low distortion, and constant imaging magnification. Compared with ordinary industrial lenses, it has obvious technical advantages. In precision industry It has been widely used in the field of detection. Bilateral telecentric optical lenses for object images in the existing market are generally used in the visible light detection spectrum band. There are fewer types of telecentric industrial lenses in the near-infrared spectrum band, and they have shortcomings such as insufficient resolution and insufficient detection capabilities.
发明内容Contents of the invention
针对现有的物方远心光学系统存在的不足,本发明提供了一种大数值孔径近红外物像双侧远心光学系统。In view of the shortcomings of the existing object-side telecentric optical system, the present invention provides a large numerical aperture near-infrared object image bilateral telecentric optical system.
为达到以上目的,本发明采用如下技术方案:In order to achieve the above objectives, the present invention adopts the following technical solutions:
一种大数值孔径近红外物像双侧远心光学系统,包括在光线沿像平面到物平面传播方向上依次排列的第一透镜、第二透镜、分光棱镜、第三透镜、第四透镜、光阑、第五透镜、第六透镜、第七透镜、第八透镜;A large numerical aperture near-infrared object image bilateral telecentric optical system, including a first lens, a second lens, a dichroic prism, a third lens, and a fourth lens arranged in sequence in the propagation direction of light from the image plane to the object plane. Diaphragm, fifth lens, sixth lens, seventh lens, eighth lens;
所述第一透镜、第二透镜构成前透镜组,所述第三透镜、第四透镜、第五透镜、第六透镜、第七透镜以及第八透镜构成后透镜组;The first lens and the second lens constitute a front lens group, and the third lens, fourth lens, fifth lens, sixth lens, seventh lens and eighth lens constitute a rear lens group;
所述前透镜组的光焦度设为φA,所述后透镜组的光焦度设为φC,所述系统的光焦度设为φ,The optical power of the front lens group is set to φA, the optical power of the rear lens group is set to φC, and the optical power of the system is set to φ,
则φA与φ的比值满足如下条件:Then the ratio of φA to φ satisfies the following conditions:
1.8≤φA/φ≤2.2;1.8≤φA/φ≤2.2;
则φC与φ的比值满足如下条件:Then the ratio of φC to φ satisfies the following conditions:
9.1≤φC/φ≤10.5。9.1≤φC/φ≤10.5.
进一步,所述第一透镜前表面曲率半径为32.863mm,后表面曲率半径为-55.462mm,中心厚度4.2mm,透镜通光口径为φ16.8mm;所述第二透镜前表面曲率半径为-24.588mm,后表面曲率半径为14.602mm,中心厚度为2.5mm,透镜通光口径为φ12.2mm;所述第三透镜前表面曲率半径为-468.981mm,后表面曲率半径为-52.485mm,中心厚度为8.7mm,透镜通光口径为φ52.3mm;所述第四透镜前表面曲率半径为140.698mm,后表面曲率半径为-162.111mm,中心厚度为6.7mm,透镜通光口径为φ50.2mm;所述第五透镜前表面曲率半径为-66.202mm,后表面曲率半径为39.859mm,中心厚度为2.5mm,透镜通光口径为φ48.2mm;所述第六透镜前表面曲率半径为39.859mm,后表面曲率半径为-185.774mm,中心厚度为11.9mm,透镜通光口径为φ48.2mm;所述第七透镜前表面曲率半径为50.225mm,后表面曲率半径为-578.471,中心厚度为9.6mm,透镜通光口径为φ49.1mm;所述第八透镜前表面曲率半径为23.513mm,后表面曲率半径为35.756mm,中心厚度为5.1mm,透镜通光口径为φ29.2mm。Further, the front surface curvature radius of the first lens is 32.863mm, the rear surface curvature radius is -55.462mm, the center thickness is 4.2mm, and the lens clear aperture is φ16.8mm; the curvature radius of the second lens front surface is -24.588 mm, the radius of curvature of the rear surface is 14.602mm, the center thickness is 2.5mm, and the clear aperture of the lens is φ12.2mm; the radius of curvature of the front surface of the third lens is -468.981mm, the radius of curvature of the rear surface is -52.485mm, and the center thickness is 8.7mm, the lens clear aperture is φ52.3mm; the front surface curvature radius of the fourth lens is 140.698mm, the rear surface curvature radius is -162.111mm, the center thickness is 6.7mm, and the lens clear aperture is φ50.2mm; The front surface curvature radius of the fifth lens is -66.202mm, the rear surface curvature radius is 39.859mm, the center thickness is 2.5mm, and the lens clear aperture is φ48.2mm; the sixth lens front surface curvature radius is 39.859mm, The radius of curvature of the rear surface is -185.774mm, the center thickness is 11.9mm, and the clear aperture of the lens is φ48.2mm; the radius of curvature of the front surface of the seventh lens is 50.225mm, the radius of curvature of the rear surface is -578.471, and the center thickness is 9.6mm , the clear aperture of the lens is φ49.1mm; the front surface curvature radius of the eighth lens is 23.513mm, the rear surface curvature radius is 35.756mm, the center thickness is 5.1mm, and the lens clear aperture is φ29.2mm.
进一步,所述第五透镜与所述第六透镜组成双胶合透镜。Further, the fifth lens and the sixth lens form a double cemented lens.
进一步,所述第一透镜采用双凸正光焦度透镜、所述第二透镜采用双凹负光焦度透镜、所述第三透镜采用弯月正光焦度透镜、所述第四透镜采用双凸正光焦度透镜、所述第五透镜采用双凹负光焦度透镜、所述第六透镜采用双凸正光焦度透镜、所述第七透镜采用双凸正光焦度透镜、所述第八透镜采用弯月形正光焦度透镜。Further, the first lens adopts a biconvex positive power lens, the second lens adopts a biconcave negative power lens, the third lens adopts a meniscus positive power lens, and the fourth lens adopts a biconvex lens. The fifth lens adopts a biconcave negative power lens, the sixth lens adopts a biconvex positive power lens, the seventh lens adopts a biconvex positive power lens, and the eighth lens adopts a biconvex positive power lens. Adopts meniscus-shaped positive power lens.
进一步,所述第一透镜采用重镧火石玻璃材料制成、所述第二透镜采用火石玻璃材料制成、所述第三透镜采用重冕玻璃材料制成、所述第四透镜采用冕牌玻璃材料制成、所述第五透镜采用火石玻璃材料制成、所述第六透镜采用澜冕玻璃材料制成、所述第七透镜采用重冕玻璃材料制成、所述第八透镜采用重镧火石玻璃材料制成。Further, the first lens is made of heavy lanthanum flint glass material, the second lens is made of flint glass material, the third lens is made of heavy crown glass material, and the fourth lens is made of crown glass. The fifth lens is made of flint glass material, the sixth lens is made of lanthanum glass material, the seventh lens is made of heavy crown glass material, and the eighth lens is made of heavy lanthanum material. Made of flint glass material.
本发明有益效果如下:The beneficial effects of the present invention are as follows:
本发明采用近红外谱段进行工业检测成像,相比可见光谱段具有抗外界杂光能力强,不易受干扰的优点;The present invention uses the near-infrared spectrum band for industrial detection imaging. Compared with the visible spectrum band, it has the advantages of stronger resistance to external stray light and less susceptible to interference;
本发明实现了大数值孔径探测成像,解决了当前CCD或CMOS相机在近红外谱段探测能力不足的问题,有利于获得高对比度的被测物体图像信息;The invention realizes large numerical aperture detection imaging, solves the problem of insufficient detection capabilities of current CCD or CMOS cameras in the near-infrared spectrum band, and is conducive to obtaining high-contrast image information of the measured object;
本发明的分辨率达到0.85μm,实现物理分辨率进入亚微米成像的探测能力,满足高端工业检测机器视觉对高分辨率检测成像的需求。The resolution of the present invention reaches 0.85 μm, realizing the detection capability of sub-micron imaging with physical resolution, and meeting the needs of high-end industrial detection machine vision for high-resolution detection imaging.
附图说明Description of the drawings
图1为本发明光学系统的组成结构示意图;Figure 1 is a schematic diagram of the composition and structure of the optical system of the present invention;
图2为本发明光学系统在600lp/mm处光学传递函数曲线图;Figure 2 is a graph of the optical transfer function of the optical system of the present invention at 600lp/mm;
图3为本发明光学系统的畸变图。Figure 3 is a distortion diagram of the optical system of the present invention.
具体实施方式Detailed ways
为方便本领域普通技术人员更好地理解本发明的实质,下面结合附图对本发明的具体实施方式进行详细阐述。In order to facilitate those of ordinary skill in the art to better understand the essence of the present invention, the specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
结合图1、图2以及图3,一种大数值孔径近红外物像双侧远心光学系统,包括在光线沿像平面11到物平面12传播方向上依次排列的第一透镜1、第二透镜2、分光棱镜3、第三透镜4、第四透镜5、光阑6、第五透镜7、第六透镜8、第七透镜9、第八透镜10;With reference to Figures 1, 2 and 3, a large numerical aperture near-infrared object image bilateral telecentric optical system includes a first lens 1 and a second lens arranged sequentially in the direction of light propagation from the image plane 11 to the object plane 12. Lens 2, dichroic prism 3, third lens 4, fourth lens 5, diaphragm 6, fifth lens 7, sixth lens 8, seventh lens 9, eighth lens 10;
所述第一透镜1、第二透镜2构成前透镜组,所述第三透镜4、第四透镜5、第五透镜7、第六透镜8、第七透镜9以及第八透镜10构成后透镜组。The first lens 1 and the second lens 2 constitute a front lens group, and the third lens 4, fourth lens 5, fifth lens 7, sixth lens 8, seventh lens 9 and eighth lens 10 constitute a rear lens. Group.
近红外照明光源通过分光棱镜3进行照明光路与成像光学镜头的耦合。The near-infrared illumination light source couples the illumination light path and the imaging optical lens through the dichroic prism 3.
本优选实施例中,可在像平面11可放置CCD或CMOS相机,接收工业镜头系统放大的物面信号,从而获得清晰高倍率的物面信息。In this preferred embodiment, a CCD or CMOS camera can be placed on the image plane 11 to receive the object plane signal amplified by the industrial lens system, thereby obtaining clear and high-magnification object plane information.
所述前透镜组的光焦度设为φA,所述后透镜组的光焦度设为φC,所述系统的光焦度设为φ,The optical power of the front lens group is set to φA, the optical power of the rear lens group is set to φC, and the optical power of the system is set to φ,
则φA与φ的比值满足如下条件:Then the ratio of φA to φ satisfies the following conditions:
1.8≤φA/φ≤2.2;1.8≤φA/φ≤2.2;
则φC与φ的比值满足如下条件:Then the ratio of φC to φ satisfies the following conditions:
9.1≤φC/φ≤10.5。9.1≤φC/φ≤10.5.
本实施例中,各个透镜尺寸如下:所述第一透镜1前表面曲率半径为32.863mm,后表面曲率半径为-55.462mm,中心厚度4.2mm,透镜通光口径为φ16.8mm;所述第二透镜2前表面曲率半径为-24.588mm,后表面曲率半径为14.602mm,中心厚度为2.5mm,透镜通光口径为φ12.2mm;所述第三透镜4前表面曲率半径为-468.981mm,后表面曲率半径为-52.485mm,中心厚度为8.7mm,透镜通光口径为φ52.3mm;所述第四透镜5前表面曲率半径为140.698mm,后表面曲率半径为-162.111mm,中心厚度为6.7mm,透镜通光口径为φ50.2mm;所述第五透镜7前表面曲率半径为-66.202mm,后表面曲率半径为39.859mm,中心厚度为2.5mm,透镜通光口径为φ48.2mm;所述第六透镜8前表面曲率半径为39.859mm,后表面曲率半径为-185.774mm,中心厚度为11.9mm,透镜通光口径为φ48.2mm;所述第七透镜9前表面曲率半径为50.225mm,后表面曲率半径为-578.471,中心厚度为9.6mm,透镜通光口径为φ49.1mm;所述第八透镜10前表面曲率半径为23.513mm,后表面曲率半径为35.756mm,中心厚度为5.1mm,透镜通光口径为φ29.2mmIn this embodiment, the dimensions of each lens are as follows: the front surface curvature radius of the first lens 1 is 32.863mm, the rear surface curvature radius is -55.462mm, the center thickness is 4.2mm, and the lens clear aperture is φ16.8mm; The front surface curvature radius of the second lens 2 is -24.588mm, the rear surface curvature radius is 14.602mm, the center thickness is 2.5mm, and the lens clear aperture is φ12.2mm; the front surface curvature radius of the third lens 4 is -468.981mm. The rear surface curvature radius is -52.485mm, the center thickness is 8.7mm, and the lens clear aperture is φ52.3mm; the front surface curvature radius of the fourth lens 5 is 140.698mm, the rear surface curvature radius is -162.111mm, and the center thickness is 6.7mm, the lens clear aperture is φ50.2mm; the front surface curvature radius of the fifth lens 7 is -66.202mm, the rear surface curvature radius is 39.859mm, the center thickness is 2.5mm, and the lens clear aperture is φ48.2mm; The front surface curvature radius of the sixth lens 8 is 39.859mm, the rear surface curvature radius is -185.774mm, the center thickness is 11.9mm, and the lens clear aperture is φ48.2mm; the front surface curvature radius of the seventh lens 9 is 50.225 mm, the rear surface curvature radius is -578.471, the center thickness is 9.6mm, and the lens clear aperture is φ49.1mm; the front surface curvature radius of the eighth lens 10 is 23.513mm, the rear surface curvature radius is 35.756mm, and the center thickness is 5.1mm, lens clear aperture is φ29.2mm
所述第五透镜7与所述第六透镜8组成双胶合透镜。The fifth lens 7 and the sixth lens 8 form a double cemented lens.
本实施例中,各个透镜制作材料如下:所述第一透镜1采用重镧火石玻璃材料制成、所述第二透镜2采用火石玻璃材料制成、所述第三透镜4采用重冕玻璃材料制成、所述第四透镜5采用冕牌玻璃材料制成、所述第五透镜7采用火石玻璃材料制成、所述第六透镜8采用澜冕玻璃材料制成、所述第七透镜9采用重冕玻璃材料制成、所述第八透镜10采用重镧火石玻璃材料制成。In this embodiment, the materials for each lens are as follows: the first lens 1 is made of heavy lanthanum flint glass material, the second lens 2 is made of flint glass material, and the third lens 4 is made of heavy crown glass material. The fourth lens 5 is made of crown glass material, the fifth lens 7 is made of flint glass material, the sixth lens 8 is made of crown glass material, and the seventh lens 9 The eighth lens 10 is made of heavy crown glass material. The eighth lens 10 is made of heavy lanthanum flint glass material.
所述第一透镜1采用双凸正光焦度透镜、所述第二透镜2采用双凹负光焦度透镜、所述第三透镜4采用弯月正光焦度厚透镜、所述第四透镜5采用双凸正光焦度透镜、所述第五透镜7采用双凹负光焦度透镜、所述第六透镜8采用双凸正光焦度透镜、所述第七透镜9采用双凸正光焦度透镜、所述第八透镜10采用弯月形正光焦度透镜。The first lens 1 adopts a biconvex positive power lens, the second lens 2 adopts a biconcave negative power lens, the third lens 4 adopts a meniscus positive power thick lens, and the fourth lens 5 A biconvex positive power lens is used, the fifth lens 7 is a biconcave negative power lens, the sixth lens 8 is a biconvex positive power lens, and the seventh lens 9 is a biconvex positive power lens. The eighth lens 10 adopts a meniscus-shaped positive power lens.
本实施例中,各透镜摆放位置关系为:第一透镜1与第二透镜2的距离为11.2mm;第二透镜2与分光棱镜3的距离为11.7mm;分光棱镜3与第三透镜4的距离为61.7mm;第三透镜4与第四透镜5的距离为3.0mm;第四透镜5与光阑6的距离为1.2mm;光阑6与第五透镜7的距离为6.1mm;第六透镜8与第七透镜9的距离为0.5mm;第七透镜9与第八透镜10的距离为28.5mm;第八透镜10与物平面12的距离为25mm。In this embodiment, the position relationship between the lenses is: the distance between the first lens 1 and the second lens 2 is 11.2mm; the distance between the second lens 2 and the dichroic prism 3 is 11.7mm; the distance between the dichroic prism 3 and the third lens 4 The distance is 61.7mm; the distance between the third lens 4 and the fourth lens 5 is 3.0mm; the distance between the fourth lens 5 and the aperture 6 is 1.2mm; the distance between the aperture 6 and the fifth lens 7 is 6.1mm; The distance between the sixth lens 8 and the seventh lens 9 is 0.5 mm; the distance between the seventh lens 9 and the eighth lens 10 is 28.5 mm; and the distance between the eighth lens 10 and the object plane 12 is 25 mm.
本发明所述光学系统属于物像双侧远心光路,物方主光线与光轴的夹角不超过0.02°,像方主光线与光轴的夹角不超过0.05°。The optical system of the present invention belongs to the bilateral telecentric optical path of the object image. The angle between the principal ray on the object side and the optical axis does not exceed 0.02°, and the angle between the principal ray on the image side and the optical axis does not exceed 0.05°.
本发明的大数值孔径近红外物像双侧远心光学系统具体参数为:The specific parameters of the large numerical aperture near-infrared object image bilateral telecentric optical system of the present invention are:
物方数值孔径0.5;成像倍率4倍;物方工作距离25mm;相对畸变不超过0.015%;物方分辨率0.85μm;成像谱段800nm至850nm。The object-side numerical aperture is 0.5; the imaging magnification is 4 times; the object-side working distance is 25mm; the relative distortion does not exceed 0.015%; the object-side resolution is 0.85μm; the imaging spectrum ranges from 800nm to 850nm.
由图2可知,本光学系统所有视场的光学传递函数值在600lp/mm时接近0.4,达到了衍射极限像质,成像质量良好。As can be seen from Figure 2, the optical transfer function value of all fields of view of this optical system is close to 0.4 at 600lp/mm, reaching the diffraction limit image quality, and the imaging quality is good.
由图3可以看出,本发明在像方视场10mm范围内,畸变不超过0.015%,接近于零,有效避免了畸变引起的测量误差。It can be seen from Figure 3 that in the present invention, within the 10mm field of view of the image side, the distortion does not exceed 0.015%, which is close to zero, and effectively avoids measurement errors caused by distortion.
在本发明实例中,主要解决近红外谱段探测分辨率受限于波长较长不易提高的技术难题,实现衍射极限像质的大数值孔径光学系统设计。为了实现0.85μm的高分辨率,本光学系统的数值孔径达到0.5以上;本系统对物平面的收光角度达到60°,光学系统的主要像差为球差与彗差,除了三级像差以及五级像差外,还会产生七级以上像差。本发明实例为了解决该难题,采用复杂化的匹兹瓦光学结构型式,主要对物面一侧的透镜组进行复杂化设计,采用了近乎不晕透镜承担光焦度,该位置的球差处于极小值,能够有效降低系统的球差像差;采用双胶合透镜与单透镜组合校正色差;采用两个单透镜校正双胶合透镜凹面及胶合面产生的球差及彗差。从像差校正结果来看,本设计较完善的校正了球差、彗差、像散、场曲、畸变以及色差。最终获得了衍射极限的成像质量,在数值孔径达到0.5的条件下,成像分辨率优于0.85μm,这是市面上现有产品无法实现的。In the example of the present invention, it mainly solves the technical problem that the detection resolution in the near-infrared spectrum is limited by long wavelengths and cannot be easily improved, and realizes the design of a large numerical aperture optical system with diffraction-limited image quality. In order to achieve a high resolution of 0.85μm, the numerical aperture of this optical system reaches above 0.5; the light collection angle of this system to the object plane reaches 60°. The main aberrations of the optical system are spherical aberration and coma, except for third-order aberration. In addition to the fifth-order aberration, there will also be more than seven-order aberration. In order to solve this problem, the example of the present invention adopts a complex Petzval optical structure type, which mainly carries out complex design of the lens group on the object side, and adopts a nearly halo-free lens to bear the optical power. The spherical aberration at this position is at Minimum value, which can effectively reduce the spherical aberration of the system; use a combination of a doublet lens and a single lens to correct chromatic aberration; use two single lenses to correct spherical aberration and coma caused by the concave surface and the cemented surface of the doublet lens. Judging from the aberration correction results, this design completely corrects spherical aberration, coma, astigmatism, field curvature, distortion and chromatic aberration. Finally, diffraction-limited imaging quality was achieved. When the numerical aperture reaches 0.5, the imaging resolution is better than 0.85μm, which is unachievable with existing products on the market.
并且在本发明实例中,物方远心度不超过0.02°,物方远心设计可以有效解决透视图像失真的问题,可以获得无失真的高分辨率图像;像方远心度不超过0.05°,降低了CCD或CMOS相机与光学系统的调整精度。全视场畸变不超过0.015%,消除了畸变引起的测量误差,提高了光学系统的测量精度。由上述镜头的光学指标可以得知,本发明光学系统的总长仅195mm,且只采用了8片透镜达到衍射极限成像质量,具有体积小,重量轻,制造成本低的优点,有利于在市场上进行推广。And in the example of the present invention, the object-side telecentricity does not exceed 0.02°. The object-side telecentricity design can effectively solve the problem of perspective image distortion and obtain high-resolution images without distortion; the image-side telecentricity does not exceed 0.05°. , reducing the adjustment accuracy of the CCD or CMOS camera and optical system. The full field of view distortion does not exceed 0.015%, which eliminates measurement errors caused by distortion and improves the measurement accuracy of the optical system. It can be known from the optical indicators of the above lens that the total length of the optical system of the present invention is only 195mm, and only 8 lenses are used to achieve diffraction limit imaging quality. It has the advantages of small size, light weight and low manufacturing cost, which is beneficial to the market. To promote.
以上具体实施方式对本发明的实质进行了详细说明,但并不能以此来对本发明的保护范围进行限制。显而易见地,在本发明实质的启示下,本技术领域普通技术人员还可进行许多改进和修饰,需要注意的是,这些改进和修饰都落在本发明的权利要求保护范围之内。The above specific embodiments describe the essence of the present invention in detail, but they cannot be used to limit the scope of the present invention. Obviously, inspired by the essence of the present invention, those skilled in the art can also make many improvements and modifications. It should be noted that these improvements and modifications all fall within the scope of the claims of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811184809.9A CN109164559B (en) | 2018-10-11 | 2018-10-11 | Large-numerical aperture near-infrared object image bilateral telecentric optical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811184809.9A CN109164559B (en) | 2018-10-11 | 2018-10-11 | Large-numerical aperture near-infrared object image bilateral telecentric optical system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109164559A CN109164559A (en) | 2019-01-08 |
CN109164559B true CN109164559B (en) | 2023-11-28 |
Family
ID=64877834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811184809.9A Active CN109164559B (en) | 2018-10-11 | 2018-10-11 | Large-numerical aperture near-infrared object image bilateral telecentric optical system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109164559B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110007448B (en) * | 2019-04-16 | 2023-11-28 | 佛山科学技术学院 | Ultra-low distortion double telecentric optical system |
CN109975962B (en) * | 2019-04-16 | 2023-11-28 | 佛山科学技术学院 | Bilateral telecentric optical system with long working distance |
CN109975963B (en) * | 2019-04-16 | 2023-11-28 | 佛山科学技术学院 | Object space telecentric optical system with miniaturized long working distance |
CN109991724B (en) * | 2019-04-16 | 2023-11-28 | 佛山科学技术学院 | A bi-telecentric fixed-focus optical system |
CN110007440B (en) * | 2019-04-29 | 2023-11-28 | 佛山科学技术学院 | Full-color camera optical system for digital aviation mapping |
CN110007439B (en) * | 2019-04-29 | 2023-11-28 | 佛山科学技术学院 | Telecentric optical system of digital aviation mapping panchromatic camera |
CN110007441B (en) * | 2019-04-29 | 2023-11-28 | 佛山科学技术学院 | Digital aviation mapping color camera optical system |
CN110196487B (en) * | 2019-06-17 | 2021-01-12 | 上海帆声图像科技有限公司 | Telecentric lens |
CN110236484B (en) * | 2019-06-28 | 2024-02-13 | 佛山科学技术学院 | Large-view-field fundus high-resolution imaging system |
CN110456478B (en) * | 2019-08-02 | 2024-03-26 | 佛山科学技术学院 | 3mm focal length ultra-wide angle fisheye lens optical system |
CN110441891B (en) * | 2019-08-02 | 2024-02-13 | 佛山科学技术学院 | Compact ultra-wide angle fisheye lens optical system |
CN111458853B (en) * | 2020-04-13 | 2022-04-15 | 苏州科技大学 | Small depth of field high resolution bi-telecentric optical lens |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102486569A (en) * | 2010-12-01 | 2012-06-06 | 上海微电子装备有限公司 | Projection lens system |
CN102645730A (en) * | 2012-05-16 | 2012-08-22 | 北京理工大学 | An Experimental Immersion Projection Lithography Objective Lens |
CN103676096A (en) * | 2012-09-03 | 2014-03-26 | 上海微电子装备有限公司 | Projection-objective optical system |
CN104360465A (en) * | 2014-10-20 | 2015-02-18 | 东莞市普密斯精密仪器有限公司 | Zooming telecentric lens |
JP2015215459A (en) * | 2014-05-09 | 2015-12-03 | コニカミノルタ株式会社 | Bi-telecentric optical system |
CN206115116U (en) * | 2016-08-31 | 2017-04-19 | 佛山科学技术学院 | High definition imaging system of double -colored light simple lens |
CN107193115A (en) * | 2017-07-25 | 2017-09-22 | 埃卫达智能电子科技(苏州)有限公司 | A kind of image bilateral telecentric optical system of near ultraviolet band |
CN108020509A (en) * | 2017-12-12 | 2018-05-11 | 佛山科学技术学院 | The method and its device of a kind of optical projection tomography |
CN207516234U (en) * | 2017-12-12 | 2018-06-19 | 佛山科学技术学院 | A kind of device of optical projection tomography |
CN208937795U (en) * | 2018-10-11 | 2019-06-04 | 佛山科学技术学院 | A Large Numerical Aperture Near Infrared Object Image Bilateral Telecentric Optical System |
-
2018
- 2018-10-11 CN CN201811184809.9A patent/CN109164559B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102486569A (en) * | 2010-12-01 | 2012-06-06 | 上海微电子装备有限公司 | Projection lens system |
CN102645730A (en) * | 2012-05-16 | 2012-08-22 | 北京理工大学 | An Experimental Immersion Projection Lithography Objective Lens |
CN103676096A (en) * | 2012-09-03 | 2014-03-26 | 上海微电子装备有限公司 | Projection-objective optical system |
JP2015215459A (en) * | 2014-05-09 | 2015-12-03 | コニカミノルタ株式会社 | Bi-telecentric optical system |
CN104360465A (en) * | 2014-10-20 | 2015-02-18 | 东莞市普密斯精密仪器有限公司 | Zooming telecentric lens |
CN206115116U (en) * | 2016-08-31 | 2017-04-19 | 佛山科学技术学院 | High definition imaging system of double -colored light simple lens |
CN107193115A (en) * | 2017-07-25 | 2017-09-22 | 埃卫达智能电子科技(苏州)有限公司 | A kind of image bilateral telecentric optical system of near ultraviolet band |
CN108020509A (en) * | 2017-12-12 | 2018-05-11 | 佛山科学技术学院 | The method and its device of a kind of optical projection tomography |
CN207516234U (en) * | 2017-12-12 | 2018-06-19 | 佛山科学技术学院 | A kind of device of optical projection tomography |
CN208937795U (en) * | 2018-10-11 | 2019-06-04 | 佛山科学技术学院 | A Large Numerical Aperture Near Infrared Object Image Bilateral Telecentric Optical System |
Non-Patent Citations (2)
Title |
---|
全球面变焦距光刻系统设计;吕博;刘伟奇;康玉思;冯睿;柳华;魏忠伦;;光学学报(第06期);全文 * |
紫外-可见宽光谱显微成像光学系统的设计;陈姣;焦明印;常伟军;康文莉;;应用光学(第02期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN109164559A (en) | 2019-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109164559B (en) | Large-numerical aperture near-infrared object image bilateral telecentric optical system | |
CN109143548B (en) | A long working distance high-resolution object image bilateral telecentric optical system | |
CN109343199B (en) | A long working distance and high magnification object-direction telecentric microscope optical system | |
CN109164558B (en) | Miniaturized object image bilateral telecentric optical system | |
CN109581630B (en) | A large aperture and low distortion fixed focus line scan machine vision lens | |
CN208937795U (en) | A Large Numerical Aperture Near Infrared Object Image Bilateral Telecentric Optical System | |
WO2022032920A1 (en) | Projection lens | |
CN110018554B (en) | Wide-angle machine vision lens | |
CN115128782B (en) | A high-magnification long working distance coaxial illumination telecentric optical system and lens | |
CN111796402A (en) | a fixed focus lens | |
CN110007448B (en) | Ultra-low distortion double telecentric optical system | |
CN208937793U (en) | An object-side telecentric optical system with long working distance and high magnification | |
CN208937794U (en) | A small object image bilateral telecentric optical system | |
CN105403980A (en) | A CaF2-free superachromatic lens with large field of view for machine vision inspection | |
CN219302746U (en) | High-resolution low-distortion machine vision lens | |
CN109239892B (en) | Fixed-magnification optical image detection system and imaging method thereof | |
CN114326063B (en) | High-magnification telecentric lens | |
CN115248495B (en) | Projection lens | |
CN207408660U (en) | Optical lens system | |
CN112987232A (en) | Optical lens and electronic device | |
CN208937796U (en) | A long working distance high resolution object image bilateral telecentric optical system | |
CN211857044U (en) | Double-telecentric lens | |
CN209765150U (en) | Double telecentric optical system with ultralow distortion | |
CN209311770U (en) | A macro fixed-focus line-scanning machine vision lens with high resolution and large field of view | |
CN209417402U (en) | Optical lenses and smart wearable devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 528000 Foshan Institute of science and technology, Xianxi reservoir West Road, Shishan town, Nanhai District, Foshan City, Guangdong Province Patentee after: Foshan University Country or region after: China Address before: 528000 Foshan Institute of science and technology, Xianxi reservoir West Road, Shishan town, Nanhai District, Foshan City, Guangdong Province Patentee before: FOSHAN University Country or region before: China |
|
CP03 | Change of name, title or address |