CN109164096A - 大气中痕量砷的简易测定方法 - Google Patents

大气中痕量砷的简易测定方法 Download PDF

Info

Publication number
CN109164096A
CN109164096A CN201811042486.XA CN201811042486A CN109164096A CN 109164096 A CN109164096 A CN 109164096A CN 201811042486 A CN201811042486 A CN 201811042486A CN 109164096 A CN109164096 A CN 109164096A
Authority
CN
China
Prior art keywords
arsenic
piece
measuring
measuring method
glycerol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811042486.XA
Other languages
English (en)
Inventor
张巍
张勇
贾伟青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TIANJIN GUANGFU TECHNOLOGY DEVELOPMENT Co Ltd
Original Assignee
TIANJIN GUANGFU TECHNOLOGY DEVELOPMENT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TIANJIN GUANGFU TECHNOLOGY DEVELOPMENT Co Ltd filed Critical TIANJIN GUANGFU TECHNOLOGY DEVELOPMENT Co Ltd
Priority to CN201811042486.XA priority Critical patent/CN109164096A/zh
Publication of CN109164096A publication Critical patent/CN109164096A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/783Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2205Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling with filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7756Sensor type
    • G01N2021/7759Dipstick; Test strip

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明涉及一种大气中痕量砷的简易测定方法,包括以下步骤:⑴大气采样:采用Na2CO3‑甘油浸渍滤膜以100L/min流量,采集10‑15h;⑵消解:取下滤膜,放入定砷器中,加入HNO3‑H2SO4混酸,加热至50‑60℃,20min,停止加热后,冷却;⑶还原显色:将硼氢化钾片一片,放入上述定砷器中,迅速装好溴化汞试纸后,水平摇动,直到片剂完全溶解,再静置15min;⑷比色。本发明提供的测定方法在富集后,集样品消解、还原、测定多步骤为一体,省去了原来样品繁琐的消解,蒸发、赶酸、蒸干、溶解、过滤、定容等诸多操作环节,减少了二次污染,减少了对操作人员的危害。

Description

大气中痕量砷的简易测定方法
技术领域
本发明属于环境检测领域,尤其是一种大气中痕量砷的简易测定方法。
背景技术
目前不管是在食品卫生中,还是在坏境空气中,砷都被列为重点监督的有害元素。由于砷在工农业的广泛运用,导致水、土壤、空气中都广泛分布着不同浓度的砷。因此有必要建立一套简便、快捷、准确的方法来测定砷。
目前环境空气中砷的测定方法有原子吸收法、原子荧光法、极谱法、发射光谱法、砷试剂(二乙基二硫代氨基甲酸银)光度法等,由于环境空气中砷的含量甚微,2012年环保部新颁布的国标《环境空气质量标准》(GB3095-2012)中对砷的排放的参考浓度限值有了明确的要求,为0.006ug/m3,目前的检测方法的检出限均不能满足检测要求,而且不符合目前环境治理的快速预警要求。
按《空气与废气监测分析方法》大气采样的要求,砷富集采用聚乙烯氧化吡啶—甘油浸渍的中速定量滤纸,其主要缺点为:1、采样阻力大,长时采样,流量变小,体积偏小,影响采样准确度;2、试剂聚乙烯氧化吡啶价高货缺;3、在富集后的消解方法上,要经王水消解后,再将消解液依次进行蒸发、赶酸、蒸干、溶解、过滤、洗涤、定容诸多操作,手续烦杂,污染环境。
经过检索,与本申请相关的专利文献公开内容如下:
CN207215808U公开一种环保定砷器,采用先氯化亚锡预还原,后无砷锌粒再还原的方法,操作步骤多,产生的砷化氢易溢出,危害操作人员的身体健康。
CN107121481A公开一种复合材料修饰的工作电极检测微量砷及痕量砷和重金属的电化学方法,主要是利用常见碳材料与g-C3N4形成的复合材料来修饰工作电极,通过阳极溶出伏安法对微量及痕量砷和重金属离子进行定量分析测定。该发明的工作电极仅需要用石墨烯/g-C3N4复合材料涂覆在电极表面即可直接测试,添加微量nafion或者在待测溶液中加入铋离子,均可以明显提高砷和重金属离子的检测极限。
CN107121480A公开一种碳材料修饰的工作电极检测微量及痕量砷和重金属的电化学方法,工作电极的碳材料为石墨、炭黑、活性炭中的一种或者多种结合,所述工作电极的制备方法如下:石墨、炭黑、活性炭中的一种或者多种结合加入到乙醇、异丙醇或水等溶剂中超声分散,密封保存备用。
上述专利都没有解决现有技术这些缺陷,因此研究一种高灵敏度、快速、简易、安全测砷方法十分必要。
发明内容
针对目前环保对空气中痕量砷测定的技术要求及现状,本发明提出一种方便操作、灵敏度高、二次污染少的大气中痕量砷的简易测定方法。
本发明解决其技术问题是采取以下技术方案实现的:
一种大气中痕量砷的简易测定方法,包括以下步骤:
⑴大气采样:采用Na2CO3-甘油浸渍滤膜以100L/min流量,采集10-15h;
⑵消解:取下滤膜,放入定砷器中,加入HNO3-H2SO4混酸,加热至50-60℃,20min,停止加热后,冷却;
⑶还原显色:将硼氢化钾片一片,放入上述定砷器中,迅速装好溴化汞试纸后,水平摇动,直到片剂完全溶解,再静置15min;
⑷比色:取下显色的溴化汞试纸,与标准色板比色,确定所测试样的砷含量。
而且,所述硼氢化钾片剂制备方法如下:
按硼氢化钾:氯化钠=1:5质量比,将两种试剂混合均匀,在压片机上,以2-5t/cm2压力,压片,密封保存,备用。硼氢化钾片1.5g/片
而且,所述标准色板制备方法如下:
①配制砷标准液,浓度分别为1ug/L、2ug/L、3ug/L、4ug/L、5ug/L;
②上述标液各取5ml,分别加入Na2CO3-甘油浸渍滤膜,浸泡10-15h;
③分别取出滤膜,放入定砷器中,加入HNO3-H2SO4混酸,加热至50~60℃,20min,停止加热,冷却;
④分别将硼氢化钾片一片,放入上述定砷器中,装好溴化汞试纸,水平摇动,直到片剂完全溶解,再静置15min;
⑤分别取下显色的溴化汞试纸,在白色背景下照像,制成标准色板。
而且,所述Na2CO3-甘油浸渍滤膜的制备方法如下:
一、Na2CO3-甘油浸渍液制备
按25-29g Na2CO3,10-13ml甘油,适量水,搅拌溶解后用水定容为250ml。
二、滤膜制备
①将长条状醋酸纤维膜,在上述浸渍液,浸渍约1h;
②取出浸渍后的膜条,室温下晾干;
③压平,用切割器切成圆片,密封保存,备用。
本发明的优点和积极效果是:
1、本发明采用的方法不使用大型昂贵实验室设备,普通实验室及个人均可方便操作,便于推广普及,适用于大气重金属污染的预警测定。
2、本发明的测定方法中采用了砷富集新材料,由于其结构疏松均匀,对空气阻力小,可较长时间对空气进行富集,增加了测砷的灵敏度。
3、本发明提供的测定方法在富集后,集样品消解、还原、测定多步骤为一体,省去了原来样品繁琐的消解,蒸发、赶酸、蒸干、溶解、过滤、定容等诸多操作环节,减少了二次污染,减少了对操作人员的危害。
4、本发明采用新型还原剂直接还原,代替原二步还原法测砷,简化步骤加之新型还原剂预先制成片剂,不用称量,直接使用,方便快捷,防止了粉剂还原剂加入,砷化氢产生过快,大大减少了砷化氢溢出对操作人员的危害。
附图说明
图1为定砷器的结构示意图,其中:1瓶盖,2支瓶口,3硅胶垫圈,4溴化汞试纸,5反口胶塞,6主屏口。
具体实施方式
下面结合具体实施例对本申请的发明内容作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。
一种大气中痕量砷的简易测定方法,包括以下步骤:
⑴大气采样:采用Na2CO3-甘油浸渍滤膜以100L/min流量,采集10-15h;
⑵消解:取下滤膜,放入定砷器中,加入HNO3-H2SO4混酸,加热至50-60℃,20min,停止加热后,冷却,得液体10ml;
⑶还原显色:将硼氢化钾片一片,放入上述定砷器中,迅速装好溴化汞试纸后,水平摇动,直到片剂完全溶解,再静置15min;
⑷比色:取下显色的溴化汞试纸,与标准色板比色,确定所测试样的砷含量。
一、上述方法中硼氢化钾片剂制备方法如下:
按硼氢化钾:氯化钠=1:5(质量比),将两种试剂混合均匀,在压片机上,以2-5t/cm2压力,压片,密封保存,备用。硼氢化钾片1.5g/片。
二、上述方法中标准色板制备
①配制砷标准液,浓度分别为1,2,3,4,5ug/L。
②上述标液各取5ml,分别加入Na2CO3-甘油浸渍滤膜,浸泡10-15h。
③分别取出滤膜,放入定砷器中,加入HNO3-H2SO4混酸,加热至50~60℃,20min,停止加热,冷却。
④分别将硼氢化钾片一片,放入上述定砷器中,装好溴化汞试纸,水平摇动,直到片剂完全溶解,再静置15min。
⑤分别取下显色的溴化汞试纸,在白色背景下照像,制成标准色板。
三、上述方法中Na2CO3-甘油浸渍滤膜的制备方法如下:
1、Na2CO3-甘油浸渍液制备
按25-29g Na2CO3,10-13ml甘油,适量水,搅拌溶解后用水定容为250ml。
2、滤膜制备
①将长条状醋酸纤维膜,在上述浸渍液,浸渍约1h;
②取出浸渍后的膜条,室温下晾干;
③压平,用切割器切成圆片,密封保存,备用;
该滤膜采集气样(100L/min,10h),在定砷器中直接消解,再经还原后,即可进行砷斑法测定。

Claims (4)

1.一种大气中痕量砷的简易测定方法,其特征在于:包括以下步骤:
⑴大气采样:采用Na2CO3-甘油浸渍滤膜以100L/min流量,采集10-15h;
⑵消解:取下滤膜,放入定砷器中,加入HNO3-H2SO4混酸,加热至50-60℃,20min,停止加热后,冷却;
⑶还原显色:将硼氢化钾片一片,放入上述定砷器中,迅速装好溴化汞试纸后,水平摇动,直到片剂完全溶解,再静置15min;
⑷比色:取下显色的溴化汞试纸,与标准色板比色,确定所测试样的砷含量。
2.根据权利要求1所述的大气中痕量砷的简易测定方法,其特征在于:所述硼氢化钾片剂制备方法如下:
按硼氢化钾:氯化钠=1:5质量比,将两种试剂混合均匀,在压片机上,以2-5t/cm2压力,压片,密封保存,备用。
3.根据权利要求1所述的大气中痕量砷的简易测定方法,其特征在于:所述标准色板制备方法如下:
①配制砷标准液,浓度分别为1ug/L、2ug/L、3ug/L、4ug/L、5ug/L;
②上述标液各取5ml,分别加入Na2CO3-甘油浸渍滤膜,浸泡10-15h;
③分别取出滤膜,放入定砷器中,加入HNO3-H2SO4混酸,加热至50~60℃,20min,停止加热,冷却;
④分别将硼氢化钾片一片,放入上述定砷器中,装好溴化汞试纸,水平摇动,直到片剂完全溶解,再静置15min;
⑤分别取下显色的溴化汞试纸,在白色背景下照像,制成标准色板。
4.根据权利要求1所述的大气中痕量砷的简易测定方法,其特征在于:所述Na2CO3-甘油浸渍滤膜的制备方法如下:
一、Na2CO3-甘油浸渍液制备
按25-29g Na2CO3,10-13ml甘油,适量水,搅拌溶解后用水定容为250ml。
二、滤膜制备
①将长条状醋酸纤维膜,在上述浸渍液,浸渍约1h;
②取出浸渍后的膜条,室温下晾干;
③压平,用切割器切成圆片,密封保存,备用。
CN201811042486.XA 2018-09-07 2018-09-07 大气中痕量砷的简易测定方法 Pending CN109164096A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811042486.XA CN109164096A (zh) 2018-09-07 2018-09-07 大气中痕量砷的简易测定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811042486.XA CN109164096A (zh) 2018-09-07 2018-09-07 大气中痕量砷的简易测定方法

Publications (1)

Publication Number Publication Date
CN109164096A true CN109164096A (zh) 2019-01-08

Family

ID=64894627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811042486.XA Pending CN109164096A (zh) 2018-09-07 2018-09-07 大气中痕量砷的简易测定方法

Country Status (1)

Country Link
CN (1) CN109164096A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116046879A (zh) * 2023-02-17 2023-05-02 山东省产品质量检验研究院 一种空气或废气颗粒物中重金属元素的检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201811921U (zh) * 2010-03-02 2011-04-27 静海县环境保护监测站 便携式水体中砷的快速测定装置
CN203758918U (zh) * 2014-04-15 2014-08-06 安徽新华学院 一种化妆品中三种重金属离子联合检测装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201811921U (zh) * 2010-03-02 2011-04-27 静海县环境保护监测站 便携式水体中砷的快速测定装置
CN203758918U (zh) * 2014-04-15 2014-08-06 安徽新华学院 一种化妆品中三种重金属离子联合检测装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郎雅娣: "微波消解-原子荧光法测定环境空气中的砷", 《环境监控与预警》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116046879A (zh) * 2023-02-17 2023-05-02 山东省产品质量检验研究院 一种空气或废气颗粒物中重金属元素的检测方法

Similar Documents

Publication Publication Date Title
CN103267736B (zh) 冶炼物料中金元素的分析检测方法
CN104931557B (zh) 一种电化学甲醛传感器及其电极的制作方法
CN103399002A (zh) 一种痕量二恶英的快速检测方法
CN109030528A (zh) 一种x射线荧光光谱分析冶炼烟尘中氟氯的方法
CN103278471A (zh) 荧光废水中化学需氧量的监测方法
CN109164096A (zh) 大气中痕量砷的简易测定方法
CN104931491B (zh) 一种用于重金属残留快速检测的6合1试纸
CN110243814B (zh) 铅离子检测指示剂及其应用
CN103575794A (zh) 一种基于石墨烯/dna/银纳米复合材料对碘离子的检测方法
CN101750442A (zh) 单分散性双金属Au/Pt纳米颗粒修饰的检测水中汞的电极及其制备方法
CN104316523A (zh) 一种快速检测固体废弃物中镉含量的方法
CN109709161A (zh) 一种金/钯合金颗粒修饰的氧化锡复合材料及其制备方法与应用
CN103525413A (zh) 一种双色纳米复合物与基于该复合物的可视化检测梯恩梯的纸质传感器及其制备方法
CN204903453U (zh) 一种电化学甲醛传感器
CN108254368A (zh) 一种基于dna调控的金纳米棒检测重金属离子的方法
CN117538314A (zh) 一种磷酸二氢铵快检装置及检测方法
CN104849335A (zh) 一种检测血样离子钙含量的方法
CN210584521U (zh) 配气装置
CN107478647A (zh) 一种基于贵金属纳米粒子快速现场检测溴氰菊酯的方法
CN106053684A (zh) 一种生物质中氯、氟含量测定中样品的预处理方法
CN1766553B (zh) 铜测定液及其比色测定管
CN103076326A (zh) 一种检测脂肪酶酶活的纳米金比色法
CN102062734B (zh) 一种覆盖剂中钠含量和钾含量的分析检测方法
CN109107397A (zh) 环境空气中痕量砷的富集新材料
CN104865175A (zh) 一种空气中pm2.5浓度检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190108

RJ01 Rejection of invention patent application after publication