CN109148370B - Semiconductor structure and forming method thereof - Google Patents

Semiconductor structure and forming method thereof Download PDF

Info

Publication number
CN109148370B
CN109148370B CN201710442424.7A CN201710442424A CN109148370B CN 109148370 B CN109148370 B CN 109148370B CN 201710442424 A CN201710442424 A CN 201710442424A CN 109148370 B CN109148370 B CN 109148370B
Authority
CN
China
Prior art keywords
layer
forming
isolation layer
protective
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710442424.7A
Other languages
Chinese (zh)
Other versions
CN109148370A (en
Inventor
周飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201710442424.7A priority Critical patent/CN109148370B/en
Publication of CN109148370A publication Critical patent/CN109148370A/en
Application granted granted Critical
Publication of CN109148370B publication Critical patent/CN109148370B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0158Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including FinFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/03Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
    • H10D84/038Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/82Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
    • H10D84/83Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
    • H10D84/834Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET] comprising FinFETs

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A semiconductor structure and a method of forming the same, wherein the method comprises: providing a substrate, wherein the substrate is provided with a fin part, the fin part comprises a plurality of first areas and second areas positioned between the adjacent first areas, and openings are formed in the second areas of the fin part; forming an initial isolation layer on the substrate, on the side wall of the fin part and in the opening; forming a protection structure on the initial isolation layer and the first areas of the fin parts on two sides of the initial isolation layer, wherein the protection structure comprises: a first protective layer and a second protective layer positioned on the side wall of the first protective layer; and removing part of the initial isolation layer by adopting an etching process to form an isolation layer, wherein the surface of the isolation layer is lower than the top of the fin part and covers part of the side wall of the fin part, and the etching rate of the first protection layer is lower than that of the second protection layer in the process of etching and removing part of the initial isolation layer. The performance of the formed device is better.

Description

半导体结构及其形成方法Semiconductor structures and methods of forming them

技术领域technical field

本发明涉及半导体制造领域,尤其涉及一种半导体结构及其形成方法。The invention relates to the field of semiconductor manufacturing, in particular to a semiconductor structure and a forming method thereof.

背景技术Background technique

随着半导体器件集成度的提高,晶体管的关键尺寸不断缩小。然而,随着晶体管尺寸的急剧减小,栅介质层厚度与工作电压不能相应改变使抑制短沟道效应的难度加大,使晶体管的沟道漏电流增大。As the integration level of semiconductor devices increases, the critical dimensions of transistors continue to shrink. However, as the size of the transistor decreases sharply, the thickness of the gate dielectric layer and the operating voltage cannot be changed accordingly, which makes it more difficult to suppress the short channel effect and increases the channel leakage current of the transistor.

鳍式场效应晶体管(Fin Field-Effect Transistor,FinFET)的栅极成类似鱼鳍的叉状3D架构。FinFET的沟道凸出衬底表面形成鳍部,栅极覆盖鳍部的顶面和侧壁,从而使反型层形成在沟道各侧上,可于鳍部的两侧控制电路的接通与断开。The gate of the Fin Field-Effect Transistor (FinFET) has a forked 3D structure similar to a fish fin. The channel of the FinFET protrudes from the surface of the substrate to form a fin, and the gate covers the top surface and sidewall of the fin, so that the inversion layer is formed on each side of the channel, and the connection of the circuit can be controlled on both sides of the fin. with disconnect.

为了进一步提高半导体器件的集成度,一种方法是在鳍部内形成隔离结构,后续在所述隔离结构上形成替代栅极结构。In order to further improve the integration of semiconductor devices, one method is to form an isolation structure in the fin, and subsequently form a replacement gate structure on the isolation structure.

然而,形成所述替代栅极结构的难度较大。However, it is very difficult to form the replacement gate structure.

发明内容Contents of the invention

本发明解决的技术问题是提供一种半导体结构的形成方法,以降低形成替代栅极结构的难度。The technical problem solved by the present invention is to provide a method for forming a semiconductor structure to reduce the difficulty of forming a replacement gate structure.

为解决上述技术问题,本发明实施例提供一种半导体结构的形成方法,包括:提供基底,所述基底上具有鳍部,所述鳍部包括若干第一区和位于相邻第一区之间的第二区,所述鳍部第二区内具有开口;在所述基底上、鳍部的侧壁和开口内形成初始隔离层;在所述初始隔离层和初始隔离层两侧鳍部部分第一区上形成保护结构,所述保护结构包括:第一保护层和位于第一保护层侧壁的第二保护层;采用刻蚀工艺去除部分初始隔离层,形成隔离层,所述隔离层的顶部表面低于鳍部的顶部表面,且覆盖鳍部的部分侧壁,在所述刻蚀去除部分初始隔离层的过程中,刻蚀第一保护层的速率小于刻蚀第二保护层的速率。In order to solve the above-mentioned technical problems, an embodiment of the present invention provides a method for forming a semiconductor structure, including: providing a substrate, the substrate has fins, and the fins include several first regions and are located between adjacent first regions The second region of the fin has an opening in the second region of the fin; an initial isolation layer is formed on the base, the sidewall of the fin and in the opening; the fin portion on both sides of the initial isolation layer and the initial isolation layer A protective structure is formed on the first region, and the protective structure includes: a first protective layer and a second protective layer located on the sidewall of the first protective layer; an etching process is used to remove part of the initial isolation layer to form an isolation layer, and the isolation layer The top surface of the fin is lower than the top surface of the fin and covers part of the sidewall of the fin. During the process of removing part of the initial isolation layer by etching, the rate of etching the first protection layer is lower than the rate of etching the second protection layer. rate.

可选的,所述初始隔离层的材料包括:氧化硅。Optionally, the material of the initial isolation layer includes: silicon oxide.

可选的,在形成所述隔离层的过程中,部分保护结构的顶部也被去除。Optionally, during the process of forming the isolation layer, part of the top of the protection structure is also removed.

可选的,形成隔离层的工艺包括:湿法刻蚀工艺;所述湿法刻蚀工艺的参数包括:刻蚀剂包括氢氟酸溶液,刻蚀剂的质量百分比浓度为0.1%~1%。Optionally, the process of forming the isolation layer includes: a wet etching process; the parameters of the wet etching process include: the etchant includes a hydrofluoric acid solution, and the mass percentage concentration of the etchant is 0.1% to 1%. .

可选的,在形成所述隔离层的过程中,第一保护层和第二保护层的刻蚀选择比为:10:1~200:1。Optionally, during the process of forming the isolation layer, the etching selectivity ratio of the first protection layer and the second protection layer is: 10:1˜200:1.

可选的,所述第一保护层厚度为:2纳米~30纳米。Optionally, the thickness of the first protective layer is 2 nanometers to 30 nanometers.

可选的,所述保护结构的形成步骤包括:在所述初始隔离层和鳍部的顶部表面形成掩膜层,所述掩膜层具有掩膜开口,所述掩膜开口的底部暴露出初始隔离层和与初始隔离层两侧的鳍部部分第一区的顶部表面;在所述掩膜开口内形成所述保护结构。Optionally, the step of forming the protective structure includes: forming a mask layer on the top surface of the initial isolation layer and the fin, the mask layer has a mask opening, and the bottom of the mask opening exposes the initial The isolation layer and the top surface of the first region of the fin portion on both sides of the initial isolation layer; the protective structure is formed in the mask opening.

可选的,沿鳍部延伸方向上,所述掩膜开口的尺寸为:32纳米~80纳米。Optionally, along the extending direction of the fin, the size of the mask opening is 32 nm to 80 nm.

可选的,所述掩膜层的材料包括:非晶硅、氮化钛或者氮化硅。Optionally, the material of the mask layer includes: amorphous silicon, titanium nitride or silicon nitride.

可选的,所述掩膜层的材料包括非晶硅或者氮化钛时,所述第一保护层的材料包括:氮化硅、氮氧化硅、碳氮化硅或者氮硼化硅;所述第二保护层的材料包括:氧化硅。Optionally, when the material of the mask layer includes amorphous silicon or titanium nitride, the material of the first protective layer includes: silicon nitride, silicon oxynitride, silicon carbonitride or silicon boride; The material of the second protection layer includes: silicon oxide.

可选的,所述掩膜层的材料为氮化硅时,所述第一保护层的材料包括氧化硅,所述第一保护层中具有掺杂离子,所述掺杂离子包括硅离子或者氮离子;所述第二保护层的材料包括氧化硅。Optionally, when the material of the mask layer is silicon nitride, the material of the first protective layer includes silicon oxide, and there are dopant ions in the first protective layer, and the dopant ions include silicon ions or Nitrogen ions; the material of the second protective layer includes silicon oxide.

可选的,所述掺杂离子为硅离子时,所述第一保护层中掺杂离子的原子百分比浓度为:34%~50%。Optionally, when the dopant ions are silicon ions, the atomic percentage concentration of the dopant ions in the first protection layer is: 34%˜50%.

可选的,所述掺杂离子为氮离子时,所述第一保护层中掺杂离子的原子百分比浓度为:10%~25%。Optionally, when the dopant ions are nitrogen ions, the atomic percentage concentration of the dopant ions in the first protective layer is: 10%-25%.

可选的,所述第一保护层中掺入所述掺杂离子的工艺包括:离子注入工艺。Optionally, the process of doping the dopant ions in the first protection layer includes: an ion implantation process.

可选的,所述离子注入工艺的参数包括:所述掺杂离子为硅时,注入能量为1千电子伏~20千电子伏,注入剂量为1.0E14atm/cm2~1.0E20atm/cm2,注入角度为0度~45度。Optionally, the parameters of the ion implantation process include: when the dopant ions are silicon, the implantation energy is 1 keV to 20 keV, and the implantation dose is 1.0E14atm/cm 2 to 1.0E20atm/cm 2 , The injection angle ranges from 0° to 45°.

可选的,形成所述第一保护层的过程中,所述离子注入工艺之后,还包括:对所述第一保护层进行退火处理。Optionally, during the process of forming the first protection layer, after the ion implantation process, the method further includes: annealing the first protection layer.

可选的,所述退火处理工艺的参数包括:温度为800摄氏度~1100摄氏度,时间为0秒~100秒。Optionally, the parameters of the annealing process include: a temperature of 800°C to 1100°C, and a time of 0 seconds to 100 seconds.

可选的,形成所述隔离层之后,还包括:在所述保护结构上形成替代栅极结构;形成横跨部分所述鳍部第一区的栅极结构;形成所述栅极结构和替代栅极结构之后,在所述栅极结构两侧邻接的鳍部第一区内形成外延层,所述外延层覆盖部分替代栅极结构的侧壁。Optionally, after forming the isolation layer, it further includes: forming a replacement gate structure on the protection structure; forming a gate structure spanning part of the first region of the fin; forming the gate structure and the replacement gate structure. After the gate structure, an epitaxial layer is formed in the first region of the fin adjacent to both sides of the gate structure, and the epitaxial layer covers a part of the sidewall of the replacement gate structure.

可选的,所述外延层的形成步骤包括:以所述栅极结构和替代栅极结构为掩膜,在所述栅极结构两侧的鳍部第一区内形成源漏开口,所述源漏开口的侧壁和底部均暴露出基底;在所述源漏开口内形成所述外延层;所述基底的材料包括:硅所述外延层的形成工艺包括外延生长工艺。Optionally, the step of forming the epitaxial layer includes: using the gate structure and the replacement gate structure as a mask, forming source and drain openings in the first regions of the fins on both sides of the gate structure, the Both the sidewall and the bottom of the source and drain opening expose the base; the epitaxial layer is formed in the source and drain opening; the material of the base includes: silicon, and the forming process of the epitaxial layer includes an epitaxial growth process.

相应的,本发明还提供一种采用上述方法形成的一种半导体结构,包括:基底,所述基底上具有鳍部,所述鳍部包括若干第一区和位于相邻第一区之间的第二区,所述鳍部的第二区内具有开口;所述开口内具有初始隔离层,所述初始隔离层上具有保护结构,所述保护结构包括:第一保护层和位于第一保护层侧壁的第二保护;所述基底上具有隔离层,所述隔离层的顶部表面低于鳍部的顶部表面,且覆盖鳍部的部分侧壁。Correspondingly, the present invention also provides a semiconductor structure formed by the above-mentioned method, including: a substrate having fins on the substrate, the fins including several first regions and adjacent first regions In the second area, there is an opening in the second area of the fin; there is an initial isolation layer in the opening, and a protective structure is provided on the initial isolation layer, and the protective structure includes: a first protective layer and a protective structure located on the first protective layer. A second protection layer for sidewalls; an isolation layer is provided on the substrate, the top surface of the isolation layer is lower than the top surface of the fin and covers part of the sidewall of the fin.

与现有技术相比,本发明实施例的技术方案具有以下有益效果:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following beneficial effects:

本发明技术方案提供的半导体结构的形成方法中,去除部分初始隔离层,形成所述隔离层。在去除部分初始隔离层的过程中,部分所述保护结构的顶部也被去除。由于所述保护结构包括:第一保护层和位于第一保护层侧壁的第二保护层,因此,在去除部分所述初始隔离层的过程中,所述第一保护层的顶部和部分侧壁均被刻蚀,而所述第二保护层仅顶部表面被刻蚀。在去除部分初始隔离层的过程中,由于第一保护层的去除速率小于第二保护层的去除速率,因此,第一保护层能够缩小保护结构顶部边缘区域的去除速率与保护结构中间区域的去除速率的差异,使得形成所述隔离层之后,所述保护结构的顶部表面相对平整,使得后续在所述保护结构上形成的替代栅极结构不易发生倾倒。In the method for forming a semiconductor structure provided by the technical solution of the present invention, part of the initial isolation layer is removed to form the isolation layer. During the removal of part of the initial isolation layer, part of the top of the protective structure is also removed. Since the protection structure includes: a first protection layer and a second protection layer located on the sidewall of the first protection layer, during the process of removing part of the initial isolation layer, the top and part of the sides of the first protection layer Both walls are etched, while only the top surface of the second protective layer is etched. In the process of removing part of the initial isolation layer, since the removal rate of the first protection layer is lower than that of the second protection layer, the first protection layer can reduce the removal rate of the top edge region of the protection structure and the removal rate of the middle region of the protection structure. The difference in speed makes the top surface of the protection structure relatively flat after the formation of the isolation layer, so that the subsequent replacement gate structure formed on the protection structure is not easy to fall.

进一步,替代栅极结构位于初始隔离层和初始隔离层两侧的鳍部部分第一区上。后续于栅极结构两侧的鳍部第一区内形成所述外延层时,所述替代栅极结构用于限制所述外延层的生长空间,避免相邻外延层桥接。Further, the replacement gate structure is located on the initial isolation layer and the first region of the fin portion on both sides of the initial isolation layer. When the epitaxial layer is subsequently formed in the first region of the fin portion on both sides of the gate structure, the replacement gate structure is used to limit the growth space of the epitaxial layer and avoid bridging between adjacent epitaxial layers.

附图说明Description of drawings

图1至图3是一种半导体结构的形成过程的结构示意图;1 to 3 are structural schematic diagrams of the formation process of a semiconductor structure;

图4至图15是本发明第一实施例中半导体结构的形成过程的结构示意图。4 to 15 are structural schematic diagrams of the formation process of the semiconductor structure in the first embodiment of the present invention.

具体实施方式Detailed ways

半导体结构的形成方法存在诸多问题,例如:形成替代栅极结构的难度较大。There are many problems in the method of forming the semiconductor structure, for example, it is difficult to form the replacement gate structure.

现结合一种半导体结构的形成方法,分析所述形成方法形成的形成替代栅极结构的难度较大的原因:In combination with a method for forming a semiconductor structure, the reason why it is difficult to form a replacement gate structure formed by the method is analyzed:

图1至图3是一种半导体结构的形成方法各步骤的结构示意图。1 to 3 are structural schematic diagrams of steps in a method for forming a semiconductor structure.

请参考图1,提供基底(图中未示出),所述基底上具有鳍部100,所述鳍部100包括若干第一区A和位于相邻第一区A之间的第二区B,所述鳍部100第二区B内具有开口(图中未标出);在所述基底、鳍部100的侧壁和开口内形成初始隔离层101,所述初始隔离层101的顶部表面暴露出鳍部100的顶部表面;在所述初始隔离层101上形成掩膜层102,所述掩膜层102具有掩膜开口103,所述掩膜开口103的底部暴露出初始隔离层101和初始隔离层101两侧鳍部100的部分第一区A的顶部表面。Referring to FIG. 1 , a base (not shown) is provided on which a fin 100 is provided, and the fin 100 includes a plurality of first regions A and second regions B between adjacent first regions A. , there is an opening (not shown in the figure) in the second region B of the fin portion 100; an initial isolation layer 101 is formed in the base, the sidewall of the fin portion 100, and the opening, and the top surface of the initial isolation layer 101 Exposing the top surface of the fin portion 100; forming a mask layer 102 on the initial isolation layer 101, the mask layer 102 has a mask opening 103, and the bottom of the mask opening 103 exposes the initial isolation layer 101 and Part of the top surface of the first region A of the fin portion 100 on both sides of the initial isolation layer 101 .

请参考图2,在所述掩膜开口103(见图1)内形成初始保护结构104;形成初始保护结构104之后,去除掩膜层102,暴露出鳍部100部分第一区A的顶部表面以及部分所述初始隔离层101的顶部表面。Please refer to FIG. 2 , an initial protection structure 104 is formed in the mask opening 103 (see FIG. 1 ); after the initial protection structure 104 is formed, the mask layer 102 is removed to expose the top surface of the first region A of the fin portion 100 And part of the top surface of the initial isolation layer 101 .

请参考图3,去除所述掩膜层102之后,去除部分初始隔离层101,形成隔离层105,所述隔离层105的顶部表面低于鳍部100的顶部表面,且覆盖鳍部100的部分侧壁。Please refer to FIG. 3 , after removing the mask layer 102 , remove part of the initial isolation layer 101 to form an isolation layer 105 , the top surface of the isolation layer 105 is lower than the top surface of the fin 100 and covers part of the fin 100 side wall.

然而,采用上述方法制备的半导体器件的性能较差,原因在于:However, the performance of semiconductor devices prepared by the above method is poor because of:

上述方法中,所述初始隔离层101的材料包括:氧化硅,所述隔离层105的形成工艺包括:湿法刻蚀工艺,所述湿法刻蚀工艺的参数包括:刻蚀剂包括氢氟酸溶液。由于所述保护结构104的材料包括:氧化硅,因此,采用湿法刻蚀工艺去除部分初始隔离层101的过程中,所述初始保护结构104的部分顶部也被去除。In the above method, the material of the initial isolation layer 101 includes: silicon oxide, the formation process of the isolation layer 105 includes: a wet etching process, and the parameters of the wet etching process include: the etchant includes hydrogen fluoride acid solution. Since the material of the protection structure 104 includes silicon oxide, part of the top of the initial protection structure 104 is also removed during the process of removing part of the initial isolation layer 101 by using a wet etching process.

具体的,在去除部分初始隔离层101的过程中,所述初始保护结构104顶部被去除的部分包括:初始保护结构104的顶部边缘区域1和初始保护结构104的顶部中间区域2。所述初始保护结构104的顶部边缘区域1的去除速率包括:初始保护结构104顶部边缘区域1侧壁的第一刻蚀速率和初始保护结构104顶部边缘区域1顶部的第二刻蚀速率,而所述初始保护结构104的顶部中间区域2仅具有第三刻蚀速率。由于所述初始保护结构104为单层结构,所述初始保护结构104的材料包括:氧化硅,因此,第一刻蚀速率、第二刻蚀速率和第三刻蚀速率均相同,使得所述初始保护结构104顶部边缘区域1的刻蚀速率大于初始保护结构104顶部的中间区域2,随着刻蚀时间的累积,使得初始保护结构104的顶部边缘区域1的去除量大于初始保护结构104的顶部中间区域2的去除量。即:形成所述隔离层105之后,所形成的保护结构106的顶部表面呈凸型。Specifically, during the process of removing part of the initial isolation layer 101 , the removed top portion of the initial protection structure 104 includes: the top edge region 1 of the initial protection structure 104 and the top middle region 2 of the initial protection structure 104 . The removal rate of the top edge region 1 of the initial protection structure 104 includes: the first etching rate of the sidewall of the top edge region 1 of the initial protection structure 104 and the second etching rate of the top of the top edge region 1 of the initial protection structure 104, and The top middle region 2 of the initial protection structure 104 has only the third etch rate. Since the initial protection structure 104 is a single-layer structure, the material of the initial protection structure 104 includes: silicon oxide, therefore, the first etching rate, the second etching rate and the third etching rate are all the same, so that the The etching rate of the top edge region 1 of the initial protection structure 104 is greater than that of the middle region 2 at the top of the initial protection structure 104. With the accumulation of etching time, the removal amount of the top edge region 1 of the initial protection structure 104 is greater than that of the initial protection structure 104. Removal of top middle zone 2. That is: after the isolation layer 105 is formed, the top surface of the formed protection structure 106 is convex.

形成所述隔离层105之后,在保护结构106的顶部表面形成替代栅极结构。由于所述刻蚀剂使得保护结构106的顶部表面呈凸型,因此,在保护结构106上形成的替代栅极结构易向栅极结构106顶部的凹陷处发生倾倒,使得所述替代栅极结构的底部表面无法覆盖初始隔离层101两侧的鳍部100部分第一区A的顶部表面。After the isolation layer 105 is formed, a replacement gate structure is formed on the top surface of the protection structure 106 . Since the etchant makes the top surface of the protection structure 106 convex, the replacement gate structure formed on the protection structure 106 tends to fall to the depression at the top of the gate structure 106, so that the replacement gate structure The bottom surface of the fin portion 100 on both sides of the initial isolation layer 101 cannot cover the top surface of the first region A of the fin portion 100 .

后续形成横跨鳍部100第一区A的栅极结构。以栅极结构和替代栅极结构为掩膜,在栅极结构两侧的鳍部100第一区A内形成外延层。所述外延层的形成步骤包括:以栅极结构和替代栅极结构为掩膜,在栅极结构两侧的鳍部100第一区A内形成源漏开口;在所述源漏开口内外延生长形成外延层。由于替代栅极结构的底部表面无法覆盖初始隔离层101两侧的鳍部100部分第一区A的顶部表面,使得以栅极结构和替代栅极结构为掩膜,在栅极结构两侧的鳍部100第一区A内形成的源漏开口的侧壁暴露出开口内的初始隔离层101的侧壁,所述初始隔离层101不能为后续外延生长形成外延层提供硅源,使得所形成的外延层的形貌较差,不利于提高半导体器件的性能。A gate structure is subsequently formed across the first region A of the fin portion 100 . Using the gate structure and the replacement gate structure as a mask, an epitaxial layer is formed in the first region A of the fin portion 100 on both sides of the gate structure. The step of forming the epitaxial layer includes: using the gate structure and the replacement gate structure as a mask, forming source and drain openings in the first region A of the fin portion 100 on both sides of the gate structure; grow to form an epitaxial layer. Since the bottom surface of the replacement gate structure cannot cover the top surface of the first region A of the fin 100 on both sides of the initial isolation layer 101, using the gate structure and the replacement gate structure as a mask, the two sides of the gate structure The sidewalls of the source and drain openings formed in the first region A of the fin portion 100 expose the sidewalls of the initial isolation layer 101 in the opening, and the initial isolation layer 101 cannot provide a silicon source for the subsequent epitaxial growth to form an epitaxial layer, so that the formed The morphology of the epitaxial layer is poor, which is not conducive to improving the performance of semiconductor devices.

为解决所述技术问题,本发明提供了一种半导体结构的形成方法,通过在所述初始隔离层和初始隔离层两侧的鳍部部分第一区上形成保护结构,所述保护结构包括:第一保护层和位于第一保护层侧壁的第二保护层,所述第一保护层中具有掺杂离子;在形成所述隔离层的刻蚀过程中,第一保护层的去除速率小于第二保护层的去除速率。所述方法使得后续在保护结构上形成的替代栅极结构不易发生倾倒。To solve the technical problem, the present invention provides a method for forming a semiconductor structure, by forming a protective structure on the initial isolation layer and the first region of the fin part on both sides of the initial isolation layer, the protective structure comprising: The first protective layer and the second protective layer positioned at the sidewall of the first protective layer, the first protective layer has dopant ions; in the etching process for forming the isolation layer, the removal rate of the first protective layer is less than The removal rate of the second protective layer. The method makes the subsequent replacement gate structure formed on the protection structure less prone to tipping.

为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and beneficial effects of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

图4至图15是本发明半导体结构的形成方法一实施例各步骤的结构示意图。4 to 15 are structural schematic diagrams of each step of an embodiment of a method for forming a semiconductor structure of the present invention.

请参考图4,提供初始基底200,所述初始基底200上具有第一氧化层201,所述第一氧化层201上具有第一掩膜层202。Referring to FIG. 4 , an initial substrate 200 is provided, the initial substrate 200 has a first oxide layer 201 thereon, and the first oxide layer 201 has a first mask layer 202 thereon.

在本实施例中,所述初始基底200的材料为硅。在其他实施例中,所述初始基底的材料包括:锗、硅锗、绝缘体上硅或绝缘体上锗。In this embodiment, the material of the initial substrate 200 is silicon. In other embodiments, the material of the initial substrate includes: germanium, silicon germanium, silicon-on-insulator, or germanium-on-insulator.

在本实施例中,所述第一氧化层201的材料包括:氧化硅,所述第一氧化层201的形成工艺包括:流体化学气相沉积工艺。所述第一氧化层201用于作为初始基底200与后续在第一氧化层201上形成的第一掩膜层之间的缓冲层。在其他实施例中,所述初始基底上仅具有第一掩膜层。In this embodiment, the material of the first oxide layer 201 includes silicon oxide, and the formation process of the first oxide layer 201 includes: a fluid chemical vapor deposition process. The first oxide layer 201 is used as a buffer layer between the initial substrate 200 and the first mask layer subsequently formed on the first oxide layer 201 . In other embodiments, only the first masking layer is present on the initial substrate.

所述第一掩膜层202的材料包括:氮化硅、非晶硅或者氮化钛,所述第一掩膜层202用于后续形成基底和鳍部时作为掩膜。The material of the first mask layer 202 includes: silicon nitride, amorphous silicon or titanium nitride, and the first mask layer 202 is used as a mask for subsequent formation of the base and fins.

请参考图5和图6,图6为图5沿AA1的剖面结构示意图,图5为图6沿BB1线的剖面示意图,图形化所述第一掩膜层202;以图形化第一掩膜层202为掩膜,刻蚀所述初始基底200,形成基底203和位于基底203上的鳍部204,所述鳍部204包括若干第一区Ⅰ和位于相邻第一区Ⅰ之间的第二区Ⅱ,所述鳍部204内具有贯穿第二区Ⅱ的开口205(图中未示出);在基底203上、鳍部204的侧壁和顶部表面以及开口205内形成第二氧化层223。Please refer to FIG. 5 and FIG. 6, FIG. 6 is a schematic cross-sectional view of FIG. 5 along AA1, and FIG. 5 is a schematic cross-sectional view of FIG. 6 along line BB1, patterning the first mask layer 202; The layer 202 is a mask, and the initial substrate 200 is etched to form a substrate 203 and a fin 204 on the substrate 203. The fin 204 includes a plurality of first regions I and a first region I between adjacent first regions I. Second region II, the fin portion 204 has an opening 205 (not shown) that runs through the second region II; a second oxide layer is formed on the substrate 203, the sidewall and top surface of the fin portion 204, and the opening 205 223.

在本实施例中,所述初始基底200的材料为硅。相应的,所述基底203的材料为硅,所述鳍部204的材料为硅。在其他实施例中,所述基底的材料包括:锗基底、硅锗基底、绝缘体上硅或绝缘体上锗。所述鳍部的材料包括:锗基底、硅锗基底、绝缘体上硅或绝缘体上锗。In this embodiment, the material of the initial substrate 200 is silicon. Correspondingly, the material of the base 203 is silicon, and the material of the fins 204 is silicon. In other embodiments, the material of the substrate includes: germanium substrate, silicon germanium substrate, silicon-on-insulator or germanium-on-insulator. The material of the fin includes: germanium substrate, silicon germanium substrate, silicon on insulator or germanium on insulator.

所述基底203上具有多个鳍部204,多个鳍部204沿垂直于所述鳍部204延伸的方向上排列。在本实施例中,所述鳍部204的个数为:4个,在其他实施例中,所述鳍部的个数为1个~3个;或者,所述鳍部的个数为:4个以上。The base 203 has a plurality of fins 204 arranged along a direction perpendicular to the extension of the fins 204 . In this embodiment, the number of the fins 204 is: 4, and in other embodiments, the number of the fins is 1-3; or, the number of the fins is: 4 or more.

后续形成横跨所述鳍部204第一区Ⅰ的栅极结构。A gate structure across the first region I of the fin portion 204 is subsequently formed.

所述开口205用于后续容纳初始隔离层。The opening 205 is used for subsequent accommodation of the initial isolation layer.

后续在初始隔离层和初始隔离层两侧的鳍部204部分第一区Ⅰ的顶部表面形成替代栅极结构。Subsequently, a replacement gate structure is formed on the initial isolation layer and the top surface of the first region I of the fin portion 204 on both sides of the initial isolation layer.

沿鳍部204延伸方向上,所述开口205的尺寸为:20纳米~50纳米。Along the extending direction of the fin portion 204 , the size of the opening 205 is 20 nm˜50 nm.

所述鳍部204的顶部表面具有部分第一氧化层201和位于第一氧化层201上的第一掩膜层202。The top surface of the fin portion 204 has a portion of the first oxide layer 201 and a first mask layer 202 on the first oxide layer 201 .

所述第二氧化层223的材料包括:氧化硅,所述第二氧化层223的形成工艺包括:流体化学气相沉积工艺。The material of the second oxide layer 223 includes: silicon oxide, and the formation process of the second oxide layer 223 includes: a fluid chemical vapor deposition process.

所述第二氧化层223用于后续形成初始隔离材料膜时,保护所述基底203以及鳍部204。The second oxide layer 223 is used to protect the base 203 and the fins 204 when an initial isolation material film is subsequently formed.

在其他实施例中,形成所述基底和鳍部之后,不形成第二氧化层。In other embodiments, the second oxide layer is not formed after the base and the fins are formed.

请参考图7,在所述第二氧化层223上形成初始隔离材料膜206。Referring to FIG. 7 , an initial isolation material film 206 is formed on the second oxide layer 223 .

需要说明的是,图7是图6基础上的结构示意图。It should be noted that FIG. 7 is a schematic structural diagram based on FIG. 6 .

所述初始隔离材料膜206用于后续形成隔离层。The initial isolation material film 206 is used for subsequent formation of an isolation layer.

所述初始隔离材料膜206位于基底203上、鳍部204的侧壁和顶部表面以及开口205(见图6)内。The initial isolation material film 206 is located on the base 203 , the sidewalls and top surfaces of the fins 204 and within the opening 205 (see FIG. 6 ).

在本实施例中,所述初始隔离材料膜206的材料为氧化硅。在其他实施例中,所述初始隔离材料膜的材料包括:氮氧化硅。In this embodiment, the material of the initial isolation material film 206 is silicon oxide. In other embodiments, the material of the initial isolation material film includes: silicon oxynitride.

在本实施例中,所述初始隔离材料膜206的形成工艺包括:流体化学气相沉积工艺。In this embodiment, the forming process of the initial isolation material film 206 includes: a fluid chemical vapor deposition process.

采用流体化学气相沉积工艺形成的初始隔离材料膜206对开口205以及相邻鳍部204之间的间隙的填充能力较强,形成的初始隔离材料膜206的隔离性能好。The initial isolation material film 206 formed by the fluid chemical vapor deposition process has a strong ability to fill the opening 205 and the gap between adjacent fins 204 , and the formed initial isolation material film 206 has good isolation performance.

在形成初始隔离材料膜206的过程中,所述第二氧化层223保护所述基底203和鳍部204,使得所述基底203和鳍部204受到的损伤较小,有利于提高半导体器件的性能。In the process of forming the initial isolation material film 206, the second oxide layer 223 protects the base 203 and the fins 204, so that the damage to the base 203 and the fins 204 is small, which is beneficial to improve the performance of the semiconductor device .

请参考图8,去除部分初始隔离材料膜206、以及位于鳍部204上的第二氧化层223(见图7)、第一掩膜层202(见图7)以及第一氧化层201(见图7),直至暴露出鳍部204的顶部表面,形成初始隔离层207。Referring to FIG. 8, part of the initial isolation material film 206, the second oxide layer 223 (see FIG. 7), the first mask layer 202 (see FIG. 7) and the first oxide layer 201 (see FIG. 7 ), until the top surface of the fin portion 204 is exposed, an initial isolation layer 207 is formed.

去除部分初始隔离材料膜206、以及位于鳍部204上的第二氧化层、第一掩膜层202以及第一氧化层201的工艺包括:化学机械研磨工艺。The process of removing part of the initial isolation material film 206 , the second oxide layer on the fin portion 204 , the first mask layer 202 and the first oxide layer 201 includes: a chemical mechanical polishing process.

所述初始隔离层207用于后续形成隔离层。The initial isolation layer 207 is used for subsequent formation of isolation layers.

在本实施例中,形成所述初始隔离层207之后,在所述初始隔离层207和鳍部204的顶部表面形成第三氧化层。具体请参考图9。In this embodiment, after the initial isolation layer 207 is formed, a third oxide layer is formed on the initial isolation layer 207 and the top surfaces of the fins 204 . Please refer to Figure 9 for details.

在其他实施例中,形成所述初始隔离层之后,不形成所述第三氧化层。In other embodiments, the third oxide layer is not formed after the initial isolation layer is formed.

请参考图9,在所述初始隔离层207和鳍部204的顶部表面形成第三氧化层208。Referring to FIG. 9 , a third oxide layer 208 is formed on the initial isolation layer 207 and the top surfaces of the fins 204 .

所述第三氧化层208的材料包括:氧化硅,所述第三氧化层208的形成工艺包括:流体化学气相沉积工艺。The material of the third oxide layer 208 includes: silicon oxide, and the formation process of the third oxide layer 208 includes: a fluid chemical vapor deposition process.

所述第三氧化层208作为初始隔离层207、以及鳍部204与后续在初始隔离层207和鳍部204上形成的掩膜层之间的缓冲层。The third oxide layer 208 serves as a buffer layer between the initial isolation layer 207 , the fin portion 204 and the subsequent mask layer formed on the initial isolation layer 207 and the fin portion 204 .

形成所述初始隔离层207之后,在所述初始隔离层207和初始隔离层207两侧鳍部204部分第一区Ⅰ上形成保护结构,形成所述保护结构之前,还包括:在所述第三氧化层208上形成掩膜层,具体请参考图10。After forming the initial isolation layer 207, a protective structure is formed on the initial isolation layer 207 and the first region I of the fins 204 on both sides of the initial isolation layer 207. Before forming the protective structure, it also includes: A mask layer is formed on the trioxide layer 208 , please refer to FIG. 10 for details.

请参考图10,在所述第三氧化层208上形成掩膜层209,所述掩膜层209具有掩膜开口210,所述掩膜开口210的底部暴露出开口205(如图6所示)内初始隔离层207和开口205内初始隔离层207两侧邻接的鳍部204的部分第一区Ⅰ上的第三氧化层208的顶部表面。Referring to FIG. 10, a mask layer 209 is formed on the third oxide layer 208, the mask layer 209 has a mask opening 210, and the bottom of the mask opening 210 exposes the opening 205 (as shown in FIG. 6 ) the initial isolation layer 207 and the top surface of the third oxide layer 208 on the part of the first region I of the fin portion 204 adjacent to the initial isolation layer 207 on both sides of the opening 205 .

在本实施例中,所述掩膜层209的材料包括:氮化硅。在其他实施例中,所述掩膜层的材料包括:非晶硅或者氮化钛。In this embodiment, the material of the mask layer 209 includes: silicon nitride. In other embodiments, the material of the mask layer includes: amorphous silicon or titanium nitride.

所述掩膜开口210用于后续容纳保护结构。The mask opening 210 is used for subsequently accommodating protective structures.

所述掩膜开口210沿鳍部204延伸方向上的尺寸为:32纳米~80纳米。选择所述掩膜开口210沿鳍部204延伸方向上的尺寸的意义在于:若所述掩膜开口210沿鳍部204延伸方向上的尺寸小于32纳米,使得后续在掩膜开口210内形成的保护结构沿鳍部204延伸方向上的尺寸过小,使得保护结构底部沿鳍部204延伸方向上覆盖开口205内初始隔离层207两侧的鳍部204部分第一区Ⅰ上的第三氧化层208的尺寸过小,不利于后续形成形貌良好的外延层;若所述掩膜开口210沿鳍部204延伸方向上的尺寸大于80纳米,使得后续在掩膜开口210内形成的保护结构沿鳍部204延伸方向上的尺寸过大,不利于提高器件的集成度。The size of the mask opening 210 along the extending direction of the fin portion 204 is: 32 nm˜80 nm. The significance of selecting the size of the mask opening 210 along the extending direction of the fin portion 204 is: if the size of the mask opening 210 along the extending direction of the fin portion 204 is smaller than 32 nanometers, so that the subsequently formed mask opening 210 The size of the protective structure along the extending direction of the fin 204 is too small, so that the bottom of the protective structure covers the third oxide layer on the first region I of the fin 204 on both sides of the initial isolation layer 207 in the opening 205 along the extending direction of the fin 204 The size of 208 is too small, which is not conducive to the subsequent formation of an epitaxial layer with good morphology; The size in the extending direction of the fin portion 204 is too large, which is not conducive to improving the integration of the device.

所述掩膜开口210的底部暴露出开口205内初始隔离层207上的第三氧化层208的顶部表面的意义在于:使得后续在掩膜开口210内形成的保护结构位于开口205内的初始隔离层207上,使得后续去除部分初始隔离层207时,保护结构能够保护开口205内的初始隔离层207不被去除。The bottom of the mask opening 210 exposes the top surface of the third oxide layer 208 on the initial isolation layer 207 in the opening 205. layer 207, so that when part of the initial isolation layer 207 is subsequently removed, the protection structure can protect the initial isolation layer 207 in the opening 205 from being removed.

而所述掩膜开口210的底部暴露出开口205内初始隔离层207两侧鳍部204的部分第一区Ⅰ上的第三掩膜层208的顶部表面的意义在于:使得后续在掩膜开口210内形成的保护结构还位于开口205内初始隔离层207两侧鳍部204部分第一区Ⅰ上,有利于后续形成形貌良好的外延层。The bottom of the mask opening 210 exposes the top surface of the third mask layer 208 on part of the first region I of the fins 204 on both sides of the initial isolation layer 207 in the opening 205. The protection structure formed in 210 is also located on the first region I of the fin portion 204 on both sides of the initial isolation layer 207 in the opening 205, which is conducive to the subsequent formation of an epitaxial layer with good morphology.

后续在掩膜开口210内形成保护结构,所述保护结构包括:第一保护层和位于第一保护层侧壁的第二保护层。由于形成所述保护结构之后,需去除掩膜层209,因此,所述掩膜层209的材料与第一保护层不相同,以保证去除所述掩膜层209时,所述第一保护层不被去除。所述第一保护层用于减缓保护结构顶部边缘区域的去除速率与保护结构中间区域的去除速率的差异,从而使得后续形成隔离层后,所述保护结构的顶部表面仍平整,有利于后续在保护结构上形成替代栅极结构。Subsequently, a protective structure is formed in the mask opening 210 , the protective structure includes: a first protective layer and a second protective layer located on a sidewall of the first protective layer. Since the mask layer 209 needs to be removed after the protective structure is formed, the material of the mask layer 209 is different from that of the first protective layer, so that when the mask layer 209 is removed, the first protective layer are not removed. The first protection layer is used to slow down the difference between the removal rate of the top edge region of the protection structure and the removal rate of the middle region of the protection structure, so that after the subsequent formation of the isolation layer, the top surface of the protection structure is still flat, which is conducive to subsequent A replacement gate structure is formed on the protection structure.

请参考图11,在所述掩膜层209上、掩膜开口210的侧壁和底部表面,形成第一保护膜211。Referring to FIG. 11 , a first protective film 211 is formed on the mask layer 209 , on the sidewall and bottom surface of the mask opening 210 .

在本实施中,所述掩膜层209的材料为氮化硅,所述第一保护膜211材料为氧化硅时,能够使第一保护膜211相对于掩膜层209具有较高的刻蚀选择性,使得后续去除掩膜层209时,第一保护层211不被去除。在其它实施例中,所述掩膜层的材料包括:非晶硅或者氮化钛,所述第一保护膜的材料包括:氮化硅、氮氧化硅、碳氮化硅或者氮硼化硅时,能够使第一保护膜相对于掩膜层具有较高的刻蚀选择比,使得后续去除掩膜层时,第一保护层不被去除。In this implementation, the material of the mask layer 209 is silicon nitride, and when the material of the first protective film 211 is silicon oxide, the first protective film 211 can have a higher etching rate than the mask layer 209. Selectivity, so that when the mask layer 209 is subsequently removed, the first protection layer 211 is not removed. In other embodiments, the material of the mask layer includes: amorphous silicon or titanium nitride, and the material of the first protective film includes: silicon nitride, silicon oxynitride, silicon carbonitride, or silicon boride When , it is possible to make the first protective film have a higher etching selectivity ratio relative to the mask layer, so that when the mask layer is subsequently removed, the first protective layer will not be removed.

在本实施例中,所述第一保护膜211的形成工艺包括:化学气相沉积工艺,所述化学气相沉积工艺的参数包括:反应物包括硅源和氧源气体,硅源包括正硅酸乙酯,氧源气体包括氧气,氧源气体的流量为100标准毫升/每分钟~8000标准毫升/每分钟,温度为300摄氏度~500摄氏度,压强为3托~200托,时间为20秒~10000秒。In this embodiment, the formation process of the first protective film 211 includes: a chemical vapor deposition process, the parameters of the chemical vapor deposition process include: the reactants include a silicon source and an oxygen source gas, and the silicon source includes ethyl orthosilicate Esters, the oxygen source gas includes oxygen, the flow rate of the oxygen source gas is 100 standard milliliters per minute to 8000 standard milliliters per minute, the temperature is 300 degrees Celsius to 500 degrees Celsius, the pressure is 3 Torr to 200 Torr, and the time is 20 seconds to 10000 Second.

在其他实施例中,所述第一保护膜的形成工艺包括:原子层沉积工艺;所述原子层沉积工艺的参数包括:反应物包括:硅前驱体和氧前驱体,温度为80摄氏度~300摄氏度,压强为5毫托~20托,循环次数为5次~500次。In other embodiments, the formation process of the first protective film includes: an atomic layer deposition process; the parameters of the atomic layer deposition process include: reactants include: silicon precursors and oxygen precursors, and the temperature is 80 degrees Celsius to 300 degrees Celsius Celsius, the pressure is 5 mTorr to 20 Torr, and the number of cycles is 5 to 500 times.

所述第一保护膜211厚度为:2纳米~30纳米。选择所述第一保护膜211的厚度的意义在于:若所述第一保护膜211的厚度小于2纳米,使得后续形成的第一保护层厚度小于2纳米,使得后续形成隔离层时,第一保护层用于减缓保护结构顶部边缘区域的去除速率的能力不够,使得形成所述隔离层之后,保护结构的顶部表面仍呈凸型,后续在保护结构上形成替代栅极结构易发生倾倒;若所述第一保护膜211的厚度大于30纳米,后续为了避免保护结构的顶部表面呈凸型,需增大后续离子注入工艺的注入能量,增加工艺难度。The thickness of the first protection film 211 is: 2 nanometers to 30 nanometers. The significance of selecting the thickness of the first protective film 211 is: if the thickness of the first protective film 211 is less than 2 nanometers, the thickness of the first protective layer formed subsequently is less than 2 nanometers, so that when the isolation layer is formed subsequently, the first The ability of the protection layer to slow down the removal rate of the top edge region of the protection structure is insufficient, so that after the formation of the isolation layer, the top surface of the protection structure is still convex, and the subsequent formation of a replacement gate structure on the protection structure is prone to dumping; if The thickness of the first protection film 211 is greater than 30 nanometers. In order to prevent the top surface of the protection structure from being convex, it is necessary to increase the implantation energy of the subsequent ion implantation process, which increases the difficulty of the process.

请参考图12,对所述第一保护膜211表面进行离子注入工艺,形成第一保护层212,所述第一保护层212中具有掺杂离子。Referring to FIG. 12 , an ion implantation process is performed on the surface of the first protection film 211 to form a first protection layer 212 with dopant ions in the first protection layer 212 .

在本实施例中,所述离子注入工艺的参数包括:所述掺杂离子为硅离子,注入能量为1千电子伏~20千电子伏,注入剂量为1.0E14atm/cm2~1.0E20atm/cm2,注入角度为0度~45度。In this embodiment, the parameters of the ion implantation process include: the dopant ions are silicon ions, the implantation energy is 1 keV to 20 keV, and the implantation dose is 1.0E14atm/cm 2 to 1.0E20atm/cm 2. The injection angle is from 0° to 45°.

选择所述注入剂量的意义在于:若所述注入剂量小于1.0E14atm/cm2,使得在后续形成隔离层的过程中,所述第一保护层212用于减弱保护结构顶部边缘区域的去除速率的能力较弱,使得形成所述隔离层之后,保护结构的顶部表面出现凸型,后续在保护结构上形成的替代栅极结构易发生倾倒;若所述注入剂量大于1.0E20atm/cm2,使得在后续形成隔离层的过程中,所述第一保护层212沿鳍部204的延伸方向上的去除速率过慢,使得形成隔离层后,保护结构的顶部表面仍不平整,使得后续在保护结构上形成的替代栅极结构也易发生倾倒现象。The significance of selecting the implant dose is: if the implant dose is less than 1.0E14 atm/cm 2 , in the subsequent process of forming the isolation layer, the first protective layer 212 is used to weaken the removal rate of the top edge region of the protective structure. The ability is weak, so that after the formation of the isolation layer, the top surface of the protection structure is convex, and the subsequent replacement gate structure formed on the protection structure is prone to dumping; if the implantation dose is greater than 1.0E20atm/cm 2 , the In the subsequent process of forming the isolation layer, the removal rate of the first protection layer 212 along the extending direction of the fin 204 is too slow, so that after the isolation layer is formed, the top surface of the protection structure is still uneven, so that the subsequent protection structure on the protection structure The formed replacement gate structure is also prone to dumping.

在本实施例中,所述掺杂离子为:硅离子时,所述第一保护层212中掺杂离子的原子百分比浓度为:34%~50%,选择所述第一保护层212中掺杂离子的原子百分比浓度的意义在于:若所述第一保护层212中掺杂离子的原子百分比浓度小于34%,使得后续在形成隔离层时,所述第一保护层212能够降低保护结构顶部边缘区域的去除速率的能力较弱,使得所述保护结构顶部边缘区域的去除速率仍大于保护结构顶部中间区域的去除速率,使得形成隔离层之后,保护结构的顶部呈凸型,不利于后续在保护结构上形成替代栅极结构;若所述第一保护层212中掺杂离子的原子百分比浓度大于50%,使得在第一保护层中掺杂离子的难度较大。In this embodiment, when the dopant ions are: silicon ions, the atomic percentage concentration of the dopant ions in the first protective layer 212 is: 34% to 50%. The significance of the atomic percentage concentration of hetero ions is: if the atomic percentage concentration of the dopant ions in the first protective layer 212 is less than 34%, the first protective layer 212 can reduce the top of the protective structure when the isolation layer is subsequently formed. The ability of the removal rate of the edge region is weak, so that the removal rate of the edge region of the top of the protection structure is still greater than the removal rate of the middle region of the top of the protection structure, so that after the isolation layer is formed, the top of the protection structure is convex, which is not conducive to subsequent A replacement gate structure is formed on the protection structure; if the atomic percent concentration of dopant ions in the first protection layer 212 is greater than 50%, it is difficult to dope ions in the first protection layer 212 .

在其他实施例中,所述掺杂离子为氮离子时,所述第一保护层中掺杂离子的原子百分比浓度为:10%~25%。In other embodiments, when the dopant ions are nitrogen ions, the atomic percentage concentration of the dopant ions in the first protection layer is: 10%˜25%.

在本实施例中,所述离子注入工艺之后,对所述第一保护膜211进行退火工艺处理。在其他实施例中,所述离子注入工艺之后,不对第一保护膜进行退火处理。In this embodiment, after the ion implantation process, an annealing process is performed on the first protective film 211 . In other embodiments, after the ion implantation process, the first protection film is not annealed.

在本实施例中,对所述第一保护膜211进行退火工艺处理的意义在于,使得掺杂离子扩散至第一保护膜211内。所述退火工艺的参数包括:温度为800摄氏度~1100摄氏度,时间为0秒~100秒。In this embodiment, the meaning of annealing the first protective film 211 is to diffuse dopant ions into the first protective film 211 . The parameters of the annealing process include: the temperature is 800 degrees Celsius to 1100 degrees Celsius, and the time is 0 seconds to 100 seconds.

后续在第一保护层212的侧壁形成第二保护层。在本实施例中,所述第二保护层的材料为氧化硅,第一保护层212的材料为氧化硅,所述第一保护层212中具有掺杂离子,使得后续在去除部分初始隔离层时,第一保护层212的去除速率小于第二保护层的去除速率。在其它实施例中,所述第二保护层的材料为氧化硅,所述第一保护膜的材料为氮化硅、氮氧化硅、碳氮化硅或者氮硼化硅,后续在去除部分初始隔离层时,第一保护膜的去除速率小于第二保护层的去除速率,因此,无需对第一保护膜进行离子注入工艺,所述第一保护膜即为第一保护层。Subsequently, a second protection layer is formed on the sidewall of the first protection layer 212 . In this embodiment, the material of the second protective layer is silicon oxide, the material of the first protective layer 212 is silicon oxide, and the first protective layer 212 has dopant ions, so that the subsequent removal of part of the initial isolation layer When , the removal rate of the first protection layer 212 is smaller than the removal rate of the second protection layer. In other embodiments, the material of the second protective layer is silicon oxide, the material of the first protective film is silicon nitride, silicon oxynitride, silicon carbonitride or silicon boride, and then the removal part is initially When the isolation layer is used, the removal rate of the first protective film is lower than that of the second protective layer. Therefore, there is no need to perform an ion implantation process on the first protective film, and the first protective film is the first protective layer.

所述第一保护层212和后续形成的第二保护层用于作为保护结构。The first protection layer 212 and the subsequently formed second protection layer are used as protection structures.

请参考图13,在所述第一保护层212上形成第二保护膜213。Referring to FIG. 13 , a second protection film 213 is formed on the first protection layer 212 .

所述第二保护膜213的材料包括:氧化硅。The material of the second protective film 213 includes silicon oxide.

在本实施例中,所述第二保护膜213的形成工艺包括:流体化学气相沉积工艺,所述流体化学气相沉积工艺的参数包括:反应物包括硅源气体和氧源气体,硅源气体包括N(SIH3)3,氧源气体包括氧气,硅源气体的流量为20标准毫升/每分钟~10000标准毫升/每分钟,催化气体包括氨气,温度为30摄氏度~90摄氏度,压强为0.01托~10托。在其他实施例中,所述第二保护膜的形成工艺包括:等离子体化学气相沉积工艺。In this embodiment, the formation process of the second protective film 213 includes: a fluid chemical vapor deposition process, the parameters of the fluid chemical vapor deposition process include: the reactants include a silicon source gas and an oxygen source gas, and the silicon source gas includes N(SIH 3 ) 3 , the oxygen source gas includes oxygen, the flow rate of the silicon source gas is 20 standard ml/min to 10,000 standard ml/min, the catalytic gas includes ammonia, the temperature is 30 degrees Celsius to 90 degrees Celsius, and the pressure is 0.01 Support ~ 10 support. In other embodiments, the forming process of the second protective film includes: a plasma chemical vapor deposition process.

所述第二保护膜213用于后续形成第二保护层。The second protection film 213 is used for subsequent formation of a second protection layer.

请参考图14,平坦化所述第二保护膜213,直至暴露出掩膜层209(见图13)的顶部表面,在所述掩膜开口210(见图10)内形成第二保护层214;形成所述第二保护层214之后,去除第二掩膜层209,暴露出鳍部204第一区Ⅰ和初始隔离层207上的第三氧化层208的顶部表面。Referring to FIG. 14, the second protective film 213 is planarized until the top surface of the mask layer 209 (see FIG. 13) is exposed, and a second protective layer 214 is formed in the mask opening 210 (see FIG. 10). After forming the second protective layer 214, remove the second mask layer 209, exposing the top surface of the third oxide layer 208 on the first region I of the fin portion 204 and the initial isolation layer 207.

所述平坦化所述第二保护膜213的工艺包括:化学机械研磨工艺。The process of planarizing the second protection film 213 includes: a chemical mechanical polishing process.

形成第二保护层214的过程中,位于掩膜层209顶部表面的第一保护层212和第二保护膜213均被去除。During the process of forming the second protection layer 214 , both the first protection layer 212 and the second protection film 213 located on the top surface of the mask layer 209 are removed.

去除第二掩膜层209的工艺包括:干法刻蚀工艺或者湿法刻蚀工艺。The process of removing the second mask layer 209 includes: a dry etching process or a wet etching process.

所述保护结构包括:位于掩膜开口210(见图10)侧壁和底部的第一保护层212以及位于第一保护层212上的第二保护层214。The protection structure includes: a first protection layer 212 located on the sidewall and bottom of the mask opening 210 (see FIG. 10 ), and a second protection layer 214 located on the first protection layer 212 .

所述保护结构用于保护开口205内的初始隔离层207。The protection structure is used to protect the initial isolation layer 207 inside the opening 205 .

后续在保护结构上形成替代栅极结构。A replacement gate structure is subsequently formed on the protection structure.

请参考图15,去除鳍部204第一区Ⅰ和初始隔离层207上的第三氧化层208;去除所述第三氧化层208之后,去除部分所述初始隔离层207,形成隔离层215,所述隔离层215的顶部表面低于鳍部204的顶部表面,且覆盖鳍部204的部分侧壁。Referring to FIG. 15 , the third oxide layer 208 on the first region I of the fin portion 204 and the initial isolation layer 207 is removed; after removing the third oxide layer 208 , part of the initial isolation layer 207 is removed to form an isolation layer 215 , The top surface of the isolation layer 215 is lower than the top surface of the fin 204 and covers part of the sidewall of the fin 204 .

形成隔离层215的工艺包括:湿法刻蚀工艺;所述湿法刻蚀工艺的参数包括:刻蚀剂包括氢氟酸溶液,刻蚀剂的质量百分比浓度为0.1%~1%。The process of forming the isolation layer 215 includes: a wet etching process; the parameters of the wet etching process include: the etchant includes hydrofluoric acid solution, and the mass percentage concentration of the etchant is 0.1%˜1%.

在形成隔离层215的过程中,保护结构的部分顶部也被所述刻蚀剂去除。所述保护结构包括:第一保护层212和位于第一保护层212侧壁的第二保护层214。During the formation of the isolation layer 215, part of the top of the protective structure is also removed by the etchant. The protection structure includes: a first protection layer 212 and a second protection layer 214 located on a sidewall of the first protection layer 212 .

在本实施例中,所述第一保护层212的材料为氧化硅,所述第二保护层214的材料为氧化硅,而所述第一保护层212中具有掺杂离子,使得第一保护层212中氧的原子百分比浓度较第二保护层214中氧的原子百分比浓度少,使得在去除部分初始隔离层207的过程中,第一保护层212的耐腐蚀性较第二保护层214的耐腐蚀性强,即:所述第一保护层212和第二保护层214具有不同的刻蚀选择比,且所述第一保护层212的去除速率小于第二保护层214的去除速率。In this embodiment, the material of the first protective layer 212 is silicon oxide, the material of the second protective layer 214 is silicon oxide, and the first protective layer 212 contains dopant ions, so that the first protective layer The atomic percentage concentration of oxygen in the layer 212 is less than the atomic percentage concentration of oxygen in the second protective layer 214, so that in the process of removing part of the initial isolation layer 207, the corrosion resistance of the first protective layer 212 is lower than that of the second protective layer 214. Strong corrosion resistance, that is, the first protection layer 212 and the second protection layer 214 have different etching selectivity ratios, and the removal rate of the first protection layer 212 is lower than the removal rate of the second protection layer 214 .

在本实施例中,在形成隔离层215的过程中,所述第一保护层212和第二保护层的刻蚀选择比为:10:1~200:1。In this embodiment, during the process of forming the isolation layer 215 , the etching selectivity ratio between the first protection layer 212 and the second protection layer is: 10:1˜200:1.

选择所述第一保护层212和第二保护层214的刻蚀选择比的意义在于:若所述第一保护层212和第二保护层的刻蚀选择比小于10:1,使得在形成隔离层215的过程中,所述第一保护层212用于减弱保护结构顶部边缘区域的去除速率的能力过小,使得在形成隔离层215的过程中,所述保护结构顶部边缘区域的去除速率仍大于保护结构中间区域的去除速率,使得形成隔离层215之后,保护结构的顶部呈凸型,使得后续在保护结构上形成替代栅极结构易发生倾倒;若所述第一保护层212和第二保护层的刻蚀选择比大于200:1,使得在形成隔离层215的过程中,第一保护层212被去除的难度较大,使得形成隔离层215之后,保护结构的顶部仍不平整,使得后续在保护结构上形成替代栅极结构易发生倾倒。The meaning of selecting the etching selectivity ratio of the first protection layer 212 and the second protection layer 214 is: if the etching selectivity ratio of the first protection layer 212 and the second protection layer is less than 10:1, so that when forming the isolation In the process of forming the isolation layer 215, the ability of the first protection layer 212 to weaken the removal rate of the top edge region of the protection structure is too small, so that in the process of forming the isolation layer 215, the removal rate of the top edge region of the protection structure is still Greater than the removal rate of the middle region of the protective structure, so that after the formation of the isolation layer 215, the top of the protective structure is convex, so that the subsequent formation of a replacement gate structure on the protective structure is prone to dumping; if the first protective layer 212 and the second The etch selectivity ratio of the protective layer is greater than 200:1, so that in the process of forming the isolation layer 215, the first protective layer 212 is more difficult to be removed, so that after the isolation layer 215 is formed, the top of the protective structure is still uneven, so that Subsequent formation of a replacement gate structure on the protection structure is prone to tipping.

所述保护结构包括:第一保护层212和位于第一保护层212侧壁的第二保护层214,因此,在去除部分初始隔离层207的过程中,所述第一保护层212的侧壁和顶部均被刻蚀,而所述第二保护层214仅顶部表面被刻蚀。在去除部分初始隔离层207的过程中,由于第一保护层212的去除速率小于第二保护层214的去除速率,因此,第一保护层212能够缩小保护结构顶部边缘区域11的去除速率与保护结构顶部中间区域12的去除速率的差异,使得形成所述隔离层215之后,所述保护结构的顶部表面相对平整,使得后续在所述保护结构上形成的替代栅极结构不易发生倾倒。The protective structure includes: a first protective layer 212 and a second protective layer 214 located on the sidewall of the first protective layer 212, therefore, during the process of removing part of the initial isolation layer 207, the sidewall of the first protective layer 212 and the top are etched, while only the top surface of the second protection layer 214 is etched. In the process of removing part of the initial isolation layer 207, since the removal rate of the first protection layer 212 is lower than the removal rate of the second protection layer 214, the first protection layer 212 can reduce the removal rate and protection of the top edge region 11 of the protection structure. The difference in the removal rate of the middle region 12 on the top of the structure makes the top surface of the protection structure relatively flat after the formation of the isolation layer 215 , so that the subsequent replacement gate structure formed on the protection structure is not prone to tipping.

形成所述隔离层215之后,还包括:在所述保护结构上形成替代栅极结构,所述替代栅极结构位于开口205内初始隔离层207和开口205内初始隔离层207两侧邻接的鳍部204部分第一区Ⅰ上;形成横跨部分所述鳍部204第一区Ⅰ的栅极结构;形成所述栅极结构和替代栅极结构之后,在所述栅极结构两侧的鳍部204第一区Ⅰ内形成外延层,所述外延层覆盖部分替代栅极结构的侧壁。After forming the isolation layer 215, it also includes: forming a replacement gate structure on the protection structure, the replacement gate structure is located in the initial isolation layer 207 in the opening 205 and the fins on both sides of the initial isolation layer 207 in the opening 205 Part 204 part of the first region I; form a gate structure across part of the first region I of the fin part 204; after forming the gate structure and the replacement gate structure, the fins on both sides of the gate structure An epitaxial layer is formed in the first region I of the portion 204, and the epitaxial layer covers part of the sidewall of the replacement gate structure.

所述外延层的形成步骤包括:以所述栅极结构和替代栅极结构为掩膜,在所述栅极结构两侧的鳍部204第一区Ⅰ内形成源漏开口;在所述源漏开口内形成所述外延层.The step of forming the epitaxial layer includes: using the gate structure and the replacement gate structure as a mask, forming source and drain openings in the first region I of the fin portion 204 on both sides of the gate structure; The epitaxial layer is formed in the drain opening.

所述外延层的形成工艺包括外延生长工艺。The forming process of the epitaxial layer includes an epitaxial growth process.

在形成外延层时,所述替代栅极结构用于限制所述外延层的生长空间,避免相邻外延层桥接。相应的,本发明还提供一种采用上述方法所形成的半导体结构。When forming the epitaxial layer, the replacement gate structure is used to limit the growth space of the epitaxial layer and avoid bridging between adjacent epitaxial layers. Correspondingly, the present invention also provides a semiconductor structure formed by the above method.

相应的,本发明实施例还提供一种采用上述方法所形成的半导体结构,请参考图15,包括:Correspondingly, an embodiment of the present invention also provides a semiconductor structure formed by the above method, please refer to FIG. 15 , including:

基底203,所述基底203上具有鳍部204,所述鳍部204包括若干第一区Ⅰ和位于相邻第一区Ⅰ之间的第二区Ⅱ,所述鳍部204的第二区Ⅱ内具有开口205(见图6);A base 203 with a fin 204 on the base 203, the fin 204 includes several first regions I and second regions II located between adjacent first regions I, the second region II of the fin 204 There is an opening 205 inside (see Figure 6);

所述开口205内具有初始隔离层207(见图8),所述初始隔离层207上具有保护结构,所述保护结构包括:第一保护层212和位于第一保护层212侧壁的第二保护214;The opening 205 has an initial isolation layer 207 (see FIG. 8 ), and the initial isolation layer 207 has a protection structure on it, and the protection structure includes: a first protection layer 212 and a second protection layer located on the side wall of the first protection layer 212 protect 214;

所述基底203上具有隔离层215,所述隔离层215的顶部表面低于鳍部204的顶部表面,且覆盖鳍部204的部分侧壁。An isolation layer 215 is formed on the base 203 . The top surface of the isolation layer 215 is lower than the top surface of the fin portion 204 and covers part of the sidewall of the fin portion 204 .

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.

Claims (20)

1. A method of forming a semiconductor structure, comprising:
providing a substrate, wherein the substrate is provided with a fin part, the fin part comprises a plurality of first areas and second areas positioned between the adjacent first areas, and the second areas of the fin part are provided with openings;
forming an initial isolation layer on the substrate, on the side wall of the fin part and in the opening;
forming a protection structure on the initial isolation layer and the first areas of fin parts on two sides of the initial isolation layer, wherein the protection structure comprises: the first protective layer and the second protective layer are positioned on the side wall of the first protective layer; the first protective layer is positioned at the top edge area of the protective structure, and the second protective layer is positioned at the top middle area of the protective structure; the protection structure covers the opening and the junction of the opening and the fin part;
and removing part of the initial isolation layer by adopting an etching process to form an isolation layer, wherein the top surface of the isolation layer is lower than the top surface of the fin part and covers part of the side wall of the fin part, and the etching rate of the first protection layer is lower than the etching rate of the second protection layer in the process of removing part of the initial isolation layer by etching.
2. The method of forming a semiconductor structure of claim 1, wherein the material of the initial isolation layer comprises: and (3) silicon oxide.
3. The method of forming a semiconductor structure of claim 1, wherein a portion of the top of the guard structure is removed during etching to remove a portion of the initial isolation layer.
4. The method of forming a semiconductor structure of claim 2, wherein the process of forming the isolation layer comprises: wet etching process; the parameters of the wet etching process include: the etchant comprises hydrofluoric acid solution, and the mass percentage concentration of the etchant is 0.1% -1%.
5. The method of forming a semiconductor structure of claim 1, wherein in forming said isolation layer, an etch selectivity of the first protective layer and the second protective layer is: 10:1 to 200:1.
6. the method of forming a semiconductor structure of claim 1, wherein the first protective layer has a thickness of: 2 nm-30 nm.
7. The method of forming a semiconductor structure of claim 1, wherein the step of forming a protective structure comprises: forming a mask layer on the initial isolation layer and the fin part, wherein the mask layer is provided with a mask opening, and the bottoms of the mask openings expose the top surfaces of the first areas of the fin part parts on two sides of the initial isolation layer and the initial isolation layer; and forming the protection structure in the mask opening.
8. The method of claim 7, wherein the mask opening has a dimension along the fin extension of: 32 nm-80 nm.
9. The method of forming a semiconductor structure of claim 7, wherein the material of the mask layer comprises: amorphous silicon, titanium nitride or silicon nitride.
10. The method of forming a semiconductor structure of claim 9, wherein when the material of the mask layer comprises amorphous silicon or titanium nitride, the material of the first protective layer comprises: silicon nitride, silicon oxynitride, silicon carbonitride or silicon nitride boride; the material of the second protective layer includes: and (3) silicon oxide.
11. The method of claim 9, wherein when the mask layer is silicon nitride, the first protective layer comprises silicon oxide, and the first protective layer has doped ions therein, wherein the doped ions comprise silicon ions or nitrogen ions; the material of the second protective layer includes silicon oxide.
12. The method of claim 11, wherein when the dopant ions are silicon ions, the concentration of the dopant ions in the first protective layer in atomic percent is: 34% -50%.
13. The method of claim 11, wherein when the dopant ions are nitrogen ions, the concentration of the dopant ions in the first protective layer is: 10% -25%.
14. The method of claim 11, wherein the process of doping the dopant ions into the first protective layer comprises: and (5) an ion implantation process.
15. The method of forming a semiconductor structure of claim 14, wherein the parameters of the ion implantation process comprise: when the doped ion is silicon, the implantation energy is 1 kiloelectron volt-20 kiloelectron volts, and the implantation dosage is 1.0E14atm/cm 2 ~1.0E20atm/cm 2 The injection angle is 0-45 degrees.
16. The method of forming a semiconductor structure of claim 14, wherein during forming said first protective layer, after said ion implantation process, further comprising: and annealing the first protective layer.
17. The method of forming a semiconductor structure of claim 16, wherein the parameters of the annealing process comprise: the temperature is 800-1100 ℃ and the time is 0-100 seconds.
18. The method of forming a semiconductor structure of claim 1, further comprising, after forming the isolation layer: forming a replacement gate structure on the protection structure, wherein the replacement gate structure is positioned on the initial isolation layer and the first areas of the fin parts at two sides of the initial isolation layer; forming a grid structure crossing part of the first region of the fin part; after the gate structure and the replacement gate structure are formed, an epitaxial layer is formed in the first region of the fin portions on two sides of the gate structure, and the epitaxial layer covers part of the side wall of the replacement gate structure.
19. The method of forming a semiconductor structure of claim 18, wherein the step of forming an epitaxial layer comprises: forming source and drain openings in the first areas of the fin parts at two sides of the gate structure by taking the gate structure and the replacement gate structure as masks, wherein the side walls and the bottoms of the source and drain openings are exposed out of the substrate; forming the epitaxial layer in the source drain opening; the material of the substrate comprises: silicon; the epitaxial layer forming process comprises an epitaxial growth process.
20. A semiconductor structure formed by the method of any of claims 1 to 19, comprising:
the substrate is provided with a fin part, the fin part comprises a plurality of first areas and second areas positioned between the adjacent first areas, and openings are formed in the second areas of the fin part;
the opening is internally provided with an initial isolation layer, the initial isolation layer is provided with a protection structure, and the protection structure comprises: the first protective layer and the second protective layer are positioned on the side wall of the first protective layer; the first protective layer is positioned at the top edge area of the protective structure, and the second protective layer is positioned at the top middle area of the protective structure; the protection structure covers the opening and the junction of the opening and the fin part;
the substrate is provided with an isolation layer, the top surface of the isolation layer is lower than the top surface of the fin portion, and part of the side wall of the fin portion is covered.
CN201710442424.7A 2017-06-13 2017-06-13 Semiconductor structure and forming method thereof Active CN109148370B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710442424.7A CN109148370B (en) 2017-06-13 2017-06-13 Semiconductor structure and forming method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710442424.7A CN109148370B (en) 2017-06-13 2017-06-13 Semiconductor structure and forming method thereof

Publications (2)

Publication Number Publication Date
CN109148370A CN109148370A (en) 2019-01-04
CN109148370B true CN109148370B (en) 2023-05-26

Family

ID=64829904

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710442424.7A Active CN109148370B (en) 2017-06-13 2017-06-13 Semiconductor structure and forming method thereof

Country Status (1)

Country Link
CN (1) CN109148370B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110491876B (en) * 2019-08-23 2024-04-05 福建省晋华集成电路有限公司 Method for manufacturing semiconductor memory element and semiconductor memory element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104347717A (en) * 2013-08-07 2015-02-11 三星电子株式会社 Semiconductor device and manufacturing method thereof
US9564369B1 (en) * 2015-10-21 2017-02-07 Samsung Electronics Co., Ltd. Methods of manufacturing semiconductor devices including device isolation processes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8956931B2 (en) * 2013-02-21 2015-02-17 Taiwan Semiconductor Manufacturing Company, Ltd. Method for fabricating a multi-gate device
KR102502885B1 (en) * 2015-10-06 2023-02-23 삼성전자주식회사 Semiconductor devices and methods of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104347717A (en) * 2013-08-07 2015-02-11 三星电子株式会社 Semiconductor device and manufacturing method thereof
US9564369B1 (en) * 2015-10-21 2017-02-07 Samsung Electronics Co., Ltd. Methods of manufacturing semiconductor devices including device isolation processes

Also Published As

Publication number Publication date
CN109148370A (en) 2019-01-04

Similar Documents

Publication Publication Date Title
CN107887264B (en) Forming doped regions in semiconductor strips
US10431671B2 (en) Fin field-effect transistor
CN103578988B (en) The formation method of fin, fin field effect pipe and fin and fin field effect pipe
CN101789395A (en) Manufacturing method of semiconductor device
CN112466945B (en) Semiconductor structure and forming method thereof
CN104733314B (en) Semiconductor structure and forming method thereof
CN108321090A (en) Semiconductor devices and forming method thereof
CN108962753A (en) Semiconductor structure and forming method thereof
CN106571339A (en) Method for forming fin field effect transistor
CN109980003B (en) Semiconductor device and method of forming the same
CN105097525B (en) The forming method of semiconductor devices
CN106449404B (en) Semiconductor structure and forming method thereof
CN109148370B (en) Semiconductor structure and forming method thereof
CN109309004A (en) Semiconductor structure and method of forming the same
CN104465486A (en) Method for forming semiconductor device
CN108122762B (en) Semiconductor structure and forming method thereof
CN106571298A (en) Formation method of semiconductor structure
CN107978525B (en) Semiconductor structure and method of forming the same
CN109148294B (en) Semiconductor structure and method of forming the same
CN112117192B (en) Method for forming semiconductor structure
CN104701262B (en) A kind of forming method of semiconductor devices
CN109003899A (en) The forming method of semiconductor structure and forming method thereof, fin formula field effect transistor
CN103515420B (en) Semiconductor device and forming method thereof
CN112151382A (en) Semiconductor structure and forming method thereof
CN110034069B (en) Semiconductor structure and method of forming the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant