CN109143236B - 适用于复杂飞行轨迹的双基聚束sar大场景成像方法 - Google Patents

适用于复杂飞行轨迹的双基聚束sar大场景成像方法 Download PDF

Info

Publication number
CN109143236B
CN109143236B CN201811007730.9A CN201811007730A CN109143236B CN 109143236 B CN109143236 B CN 109143236B CN 201811007730 A CN201811007730 A CN 201811007730A CN 109143236 B CN109143236 B CN 109143236B
Authority
CN
China
Prior art keywords
distance
dimensional
bistatic
imaging
phase compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811007730.9A
Other languages
English (en)
Other versions
CN109143236A (zh
Inventor
武俊杰
缪昱宣
王雯璟
陈天夫
李易
李中余
杨建宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201811007730.9A priority Critical patent/CN109143236B/zh
Publication of CN109143236A publication Critical patent/CN109143236A/zh
Application granted granted Critical
Publication of CN109143236B publication Critical patent/CN109143236B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9058Bistatic or multistatic SAR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9052Spotlight mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种适用于复杂飞行轨迹的双基聚束SAR大场景成像方法,其包括成像系统参数初始化,对回波数据进行基于点目标参考函数的一致压缩,对一致压缩后的距离频域数据做波数谱一致化变换,高阶空变相位补偿成像。本发明采用基于线性空变假设的波数谱一致化方法实现复杂飞行轨迹下的SAR回波一致聚焦,并通过高阶空变相位补偿提高有效聚焦景深,实现了复杂飞行轨迹下的双基SAR大场景成像处理,可以在较大的成像场景范围内,实现高分辨率的成像处理,使搭载双基SAR系统的飞行器在战场侦察监视、物资空投和地震灾害救援等领域发挥更好的性能。

Description

适用于复杂飞行轨迹的双基聚束SAR大场景成像方法
技术领域
本发明属于雷达信号处理技术领域,具体涉及一种适用于复杂飞行轨迹的双基聚束SAR大场景成像方法。
背景技术
作为一种主动的航空、航天遥感手段,微波成像技术具有全天时、全天候工作的特点,在地质测绘、灾害监测、军事侦察等领域有着广泛的应用,目前已成为高分辨率对地观测和全球资源管理最重要手段之一。但是由于本身工作体制的限制,现有的合成孔径雷达(SAR,Synthetic Aperture Radar)并不能实现前视区域方位向高分辨成像,从而使SAR在飞行器前视对地、自主着陆、物资空投、导弹末制导等方面不能充分的发挥作用。
双基地合成孔径雷达(BSAR,bistatic SAR)是一种SAR体制推广到双基地雷达的微波成像技术,不仅具有几何构型灵活、隐蔽性强等优势,还能够克服单基地SAR存在前视盲区的问题。在雷达平台运动过程中,发射站天线对成像区域进行照射、接收站天线接收成像区域中的目标散射回波;利用发射信号的大带宽形成距离向高分辨,通过成像处理算法补偿方位向信号的多普勒相位以实现方位向孔径合成进而形成方位向高分辨,从而实现成像区域内的两维高分辨成像。
目前的双基SAR成像方法主要存在两方面缺陷。一方面,SAR成像处理往往采用参考点目标的频谱函数(Point Target Reference Spectrum,PTRS)对回波信号进行一致压缩。而随着成像场景增大,场景中远处的目标回波的特性参数相对于参考点的差异增大,导致其方位向信号的相干叠加效果恶化,进而限制了双基地SAR的有效成像场景尺寸。在大场景范围内实现高分辨雷达成像,可以让飞行器在战场侦察监视、物资空投和地震灾害救援等方面发挥更好的性能。文献“Wu,J.,Li,Z.,Huang,Y.,Yang,J.,&Liu,Q.H.A generalizedomega-k algorithm to process translationally variant bistatic-sar data basedon two-dimensional stolt mapping.IEEE Transactions on Geoscience&RemoteSensing,52(10),6597-6614,2014”将回波信号频谱参数的空间变化规律近似建模为线性,一定程度上提高了一致聚焦的有效场景范围,但当场景尺寸进一步增大,线性近似仍然无法满足高精度成像的要求。另一方面,关于SAR成像方法的理论研究往往将雷达平台的飞行建模为匀速直线运动,而实际工作中平台飞行往往存在一定的机动,运动轨迹的高阶分量将带来显著的相位误差,进一步限制有效的成像场景尺寸。目前关于双基聚束SAR成像方法的研究结果中,还没有一种方法能够在保证算法效率的前提下,同时解决复杂飞行轨迹和大场景一致聚焦两大问题。
发明内容
本发明的发明目的是:为了解决现有技术在双基地聚束SAR成像处理中的缺陷,本发明提出了一种适用于复杂飞行轨迹的双基聚束SAR大场景成像方法。
本发明的技术方案是:一种适用于复杂飞行轨迹的双基聚束SAR大场景成像方法,包括以下步骤:
A、成像系统参数初始化
所述成像系统参数包括参考点位置、发射站三维轨迹[xT(t),yT(t),zT(t)]、接收站三维轨迹[xR(t),yR(t),zR(t)]、发射信号载波频率fc、脉冲宽度Tp、距离向采样频率Fs、距离向采样点数Nr、脉冲重复间隔PRI、方位时间向量t、距离时间向量τ、距离频率向量fτ、场景中点目标(xp,yp)的距离历史Rb(t;xp,yp);
B、对回波数据进行基于点目标参考函数的一致压缩
根据参考点目标的回波数据构造点目标参考函数,利用距离频域和方位时域对回波数据进行一致压缩,得到一致压缩后的距离频域数据;
C、对一致压缩后的距离频域数据做波数谱一致化变换
将差分距离史对空间坐标二维泰勒展开,根据双平台轨迹信息构造映射关系,通过二维插值将一致压缩后的数据变换到二维波数域,得到波数谱一致化的数据;
D、高阶空变相位补偿
将粗成像结果划分为多个子图像,构造空变相位补偿因子,计算每个子图像对应的相位补偿因子并进行相位补偿,将所有相位补偿后的子图像进行拼接得到成像结果。
进一步地,所述步骤B中,点目标参考函数表示为
Figure GDA0002443708400000021
其中,So(fτ,t)表示点目标参考函数,Kr为发射信号调频率,c为光速。
进一步地,所述步骤B中,利用距离频域、方位时域的共轭相乘,对回波数据进行一致压缩,一致压缩后的距离频域数据表示为
Figure GDA0002443708400000022
其中,FFTr{·}表示距离向FFT,sr(τ,t;xp,yp)表示目标回波数据,So *(fτ,t)表示对一致压缩参考信号So(fτ,t)取共轭,ΔRp(t;xp,yp)表示差分距离史,wr[·]表示距离向时域窗函数,wa[·]表示方位向时域窗函数,Ta表示合成孔径时间。
进一步地,所述步骤C中,将差分距离史对空间坐标二维泰勒展开,表示为
Figure GDA0002443708400000031
其中,Rcur(t,xp,yp)表示距离误差。
进一步地,所述步骤D中,首先计算补偿前的有效场景尺寸,计算公式为
Figure GDA0002443708400000032
其中,Qi和Ti均为雷达平台运动轨迹相关系数,λ表示载波波长;
再根据有效场景尺寸将粗成像结果hcur(x,y)划分为多个子图像hi(x,y)。
进一步地,所述步骤D中,构造空变相位补偿因子,表示为
Hc(kx,ky;xp,yp)=exp{jkr(kx,ky)Rcur[t(kx,ky);xp,yp]}
其中,kx和ky分别为x和y方向上的波数,kr(kx,ky)表示由kx和ky来表示kr的二维函数映射,t(kx,ky)表示由kx和ky来表示t的二维函数映射。
进一步地,所述步骤D中,对每个子图像hi(x,y),先确定其几何中心位置(xi,yi),将子图像进行二维快速傅里叶变换,得到其波数谱Hi(kx,ky);再计算出对应的相位补偿因子Hc(kx,ky;xi,yi),与子图像波数谱相乘后再求解乘积结果的二维逆向快速傅里叶变换,得到补偿后的子图像。
进一步地,所述步骤D中,补偿后的子图像表示为
h′i(x,y)=IFFT2{FFT2{hi(x,y)}·Hc(kx,ky;xi,yi)}。
本发明的有益效果是:本发明采用基于线性空变假设的波数谱一致化方法实现复杂飞行轨迹下的SAR回波一致聚焦,并通过高阶空变相位补偿提高有效聚焦景深,通过这两种处理技术的结合实现了复杂飞行轨迹下的双基SAR大场景成像处理;本发明不仅克服了现有SAR成像算法对复杂轨迹适应性差的缺陷,而且能够以高的运算效率实现聚束模式的大场景高分辨率一致聚焦,可以在较大的成像场景范围内,实现高分辨率的成像处理,使搭载双基SAR系统的飞行器在战场侦察监视、物资空投和地震灾害救援等领域发挥更好的性能。
附图说明
图1是本发明的适用于复杂飞行轨迹的双基聚束SAR大场景成像方法的流程示意图;
图2是本发明实施例中采用的双基SAR成像系统几何示意图;
图3是本发明实施例中采用的目标场景布置图;
图4是本发明实施例中对目标场景的成像仿真结果示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
为了方便描述本发明的内容,首先对以下术语进行解释:
术语1:双基地合成孔径雷达(Bistatic Synthetic Aperture Radar,BiSAR)
双基地合成孔径雷达是指在雷达平台运动过程中,发射站天线对成像区域进行照射、接收站天线接收成像区域中的目标散射回波;利用发射信号的大带宽形成距离向高分辨,通过成像处理算法补偿方位向信号的多普勒相位以实现方位向孔径合成进而形成方位向高分辨,从而实现成像区域内的两维高分辨成像。
术语2:点目标参考函数(Point Target Reference Function)
点目标参考函数是指对回波数据进行一致压缩时采用的参考点的信号函数。参考函数可以是时域的,也可以是频域的,如在某个域生成了参考函数,成像处理时则将回波信号与参考函数在该域上共轭相乘,再变换到时频对应的另一个域上实现压缩。参考函数一般只包含相位项,不包含包络项。
术语3:有效成像场景尺寸
有效场景尺寸是指对某个特定的成像方法,在保证场景内所有位置目标回波的聚焦效果良好时可以允许的最大成像场景两维尺寸。SAR成像处理中,聚焦效果一般在场景边缘最差,散焦效应往往由在成像方法中被忽略的方位时间的二次相位误差(QuadraticPhase Error,QPE)导致,因此有效场景尺寸一般可以通过对QPE的数值加以限制来求出。
如图1所示,为本发明的适用于复杂飞行轨迹的双基聚束SAR大场景成像方法的流程示意图。一种适用于复杂飞行轨迹的双基聚束SAR大场景成像方法,包括以下步骤:
A、成像系统参数初始化
所述成像系统参数包括参考点位置、发射站三维轨迹[xT(t),yT(t),zT(t)]、接收站三维轨迹[xR(t),yR(t),zR(t)]、发射信号载波频率fc、脉冲宽度Tp、距离向采样频率Fs、距离向采样点数Nr、脉冲重复间隔PRI、方位时间向量t、距离时间向量τ、距离频率向量fτ、场景中点目标(xp,yp)的距离历史Rb(t;xp,yp);
B、对回波数据进行基于点目标参考函数的一致压缩
根据参考点目标的回波数据构造点目标参考函数,利用距离频域和方位时域对回波数据进行一致压缩,得到一致压缩后的距离频域数据;
C、对一致压缩后的距离频域数据做波数谱一致化变换
将差分距离史对空间坐标二维泰勒展开,根据双平台轨迹信息构造映射关系,通过二维插值将一致压缩后的数据变换到二维波数域,得到波数谱一致化的数据;
D、高阶空变相位补偿
将粗成像结果划分为多个子图像,构造空变相位补偿因子,计算每个子图像对应的相位补偿因子并进行相位补偿,将所有相位补偿后的子图像进行拼接得到成像结果。
在本发明的一个可选实施例中,上述步骤A初始化成像系统参数,包括参考点位置,定义为(0,0,0);发射站三维轨迹,记为[xT(t),yT(t),zT(t)];接收站三维轨迹,记为[xR(t),yR(t),zR(t)];发射信号载波频率,记为fc;脉冲宽度,记为Tp;距离向采样频率,记为Fs;距离向采样点数,记为Nr;脉冲重复间隔,记为PRI;方位时间向量,记为t=[-PRI·Na/2,-PRI·(Na/2-1),···,PRI·(Na/2-1)],距离时间向量,记为τ=[-1/Fs·Nr/2,-1/Fs·(Nr/2-1),···,1/Fs·(Nr/2-1)];距离频率向量,记为fτ=[-Fs/2,-Fs·(Nr/2-1)/Nr,···,Fs·(Nr/2-1)/Nr];
场景中点目标(xp,yp)的距离历史为:
Rb(t;xp,yp)=RT(t;xp,yp)+RR(t;xp,yp)
其中,
Figure GDA0002443708400000051
RT(t;xp,yp)表示发射站(T)的距离历史,
Figure GDA0002443708400000052
表示发射站(T)的轨迹矢量,
Figure GDA0002443708400000053
RR(t;xp,yp)表示接收站(R)的距离历史,
Figure GDA0002443708400000054
表示接收站(R)的轨迹矢量。
如图2所示,为本发明实施例中采用的双基SAR成像系统几何示意图。系统坐标系以雷达双站波束中心所指的地表点为坐标原点,平台沿弯曲轨迹运动。成像系统参数如表1所示。
表1、成像系统参数
Figure GDA0002443708400000061
如图3所示,为本发明实施例中采用的目标场景布置图;图中的圆点为布置于地面上7×7共49个点目标。这49个点沿x和y方向的间隔均为400m。场景中任一点的位置坐标记为P(x,y)。
构造方位时间向量t=[-PRI·Na/2,-PRI·(Na/2-1),···,PRI·(Na/2-1)],其中,PRI为脉冲重复时间,Na为目标回波方位向采样点数。距离时间向量,记为τ=[-1/Fs·Nr/2,-1/Fs·(Nr/2-1),···,1/Fs·(Nr/2-1)],其中,Fs为距离向采样率,Nr为目标回波距离向采样点数。
在本发明的一个可选实施例中,上述步骤B按照步骤A中初始化的雷达平台飞行轨迹和点目标坐标位置,利用MATLAB仿真出点目标回波数据sr(τ,t;xp,yp),表示为
Figure GDA0002443708400000062
其中,σp(xp,yp)表示目标散射截面积(RCS);wr[·]表示距离向时域窗函数,代表发射脉冲信号的包络,窗宽度为Tp;wa[·]表示方位向时域窗函数,代表天线方向图的调制效应,窗宽度为合成孔径时间Ta;Kr为发射信号调频率;c为光速;λ为载波波长。
根据参考点目标的回波数据,构造一致压缩参考信号,表示为
Figure GDA0002443708400000071
其中,So(fτ,t)表示点目标参考函数,So *(fτ,t)表示对一致压缩参考信号So(fτ,t)取共轭,ΔRb(t;xp,yp)表示差分距离史,。
再利用距离频域和方位时域将回波信号与参考信号进行共轭点乘,对回波数据进行一致压缩,压缩后的距离频域数据表示为:
Figure GDA0002443708400000072
其中,FFTr{·}表示距离向FFT,So *(fτ,t)表示对一致压缩参考信号So(fτ,t)取共轭,
Figure GDA0002443708400000073
其中,下角标0表示点目标位于中心点,Δ表示差分,ΔRT(t;xp,yp)表示发射站差分距离历史,ΔRR(t;xp,yp)表示接收站的差分距离历史。
在本发明的一个可选实施例中,上述步骤C将差分距离史ΔRb(t;xp,yp)对空间坐标(xp,yp)二维泰勒展开并将展开式分成线性项及高阶项,可以得到:
Figure GDA0002443708400000074
其中RT(t)=||rT(t)||2,RR(t)=||rR(t)||2;ΔRcur(t,xp,yp)一般保留至三阶,即:
Figure GDA0002443708400000075
再利用平台轨迹数据构造映射关系
Figure GDA0002443708400000076
Figure GDA0002443708400000077
其中,kx和ky分别为x和y方向上的波数。
根据映射关系,通过二维插值将一致压缩后的数据Sd(fτ,t;xp,yp)变换到由kx,ky定义的二维波数域,得到波数谱一致化的数据,表示为
Figure GDA0002443708400000081
其中,Wk(kx,ky)为
Figure GDA0002443708400000082
经上述二维变换后的波数谱包络;
Figure GDA0002443708400000083
经二维变换后的波数域高阶空变相位;数据映射后的二维波数kx,ky分别为
Figure GDA0002443708400000084
Figure GDA0002443708400000085
其中,kxmin,kymin分别为x方向波数和y方向波数的最小值,kxmax,kymax分别为x方向波数和y方向波数的最大值,均可根据上文给出的波数映射关系求出;Dx,Dy分别为成像场景的x方向尺寸和y方向尺寸。
将整个场景中所有目标的回波信号进行处理后的的结果为
Figure GDA0002443708400000086
然后对该结果做二维逆向快速傅里叶变换,得到波数谱一致化的粗成像结果hcur(x,y)。
在本发明的一个可选实施例中,上述步骤D首先计算补偿前的有效场景尺寸,计算公式为
Figure GDA0002443708400000087
其中,Qi和Ti均为雷达平台运动轨迹相关系数,表示为:
Figure GDA0002443708400000088
Figure GDA0002443708400000091
Figure GDA0002443708400000092
Figure GDA0002443708400000093
Figure GDA0002443708400000094
Figure GDA0002443708400000095
Figure GDA0002443708400000096
Figure GDA0002443708400000097
Figure GDA0002443708400000098
求得关于xp和yp的取值范围后,将粗成像结果hcur(x,y)划分为若干尺寸由该取值范围确定的子图像hi(x,y)。
然后,根据每一个子图像的中心位置(xi,yi)构造空变相位补偿因子,表示为
Hc(kx,ky;xp,yp)=exp{jkr(kx,ky)Rcur[t(kx,ky);xp,yp]}
其中,kx和ky分别为x和y方向上的波数,kr(kx,ky)表示由kx和ky来表示kr的二维函数映射,t(kx,ky)表示由kx和ky来表示t的二维函数映射,Rcur表示距离误差。
t(kx,ky)定义为如下方程的解:
Figure GDA0002443708400000099
令系数A0,A1,A2,A3,...的求取公式为
A0=f(0)
A1=f'(0)
Figure GDA0002443708400000101
Figure GDA0002443708400000102
利用平台轨迹数据计算出上述数据向量并进行多项式拟合,得到系数A0,A1,A2,A3,...的值,再通过级数反演得到:
Figure GDA0002443708400000103
而kr(kx,ky)定义为:
Figure GDA0002443708400000104
对每个子图像hi(x,y),先确定其几何中心位置(xi,yi),将子图像进行二维快速傅里叶变换,得到其波数谱Hi(kx,ky);再计算出对应的相位补偿因子Hc(kx,ky;xi,yi),与子图像波数谱相乘后再求解乘积结果的二维逆向快速傅里叶变换,得到补偿后的子图像,表示为
h′i(x,y)=IFFT2{FFT2{hi(x,y)}·Hc(kx,ky;xi,yi)}。
所有子图像完成相位补偿后,将所有相位补偿后的子图像按照几何关系进行图像拼接,得到大场景一致聚焦的成像结果h′(x,y)。
如图4所示,为本发明实施例中对目标场景的成像仿真结果示意图;可以看出,本发明在较大的成像场景范围内,实现了高分辨率一致聚焦的成像处理。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (8)

1.一种适用于复杂飞行轨迹的双基聚束SAR大场景成像方法,其特征在于,包括以下步骤:
A、成像系统参数初始化
所述成像系统参数包括参考点位置、发射站三维轨迹[xT(t),yT(t),zT(t)]、接收站三维轨迹[xR(t),yR(t),zR(t)]、发射信号载波频率fc、脉冲宽度Tp、距离向采样频率Fs、距离向采样点数Nr、脉冲重复间隔PRI、方位时间向量t、距离时间向量τ、距离频率向量fτ、场景中点目标(xp,yp)的距离历史Rb(t;xp,yp);
B、对回波数据进行基于点目标参考函数的一致压缩
根据参考点目标的回波数据构造点目标参考函数,利用距离频域和方位时域对回波数据进行一致压缩,得到一致压缩后的距离频域数据;
C、对一致压缩后的距离频域数据做波数谱一致化变换
将差分距离史对空间坐标二维泰勒展开,根据双平台轨迹信息构造映射关系,通过二维插值将一致压缩后的数据变换到二维波数域,得到波数谱一致化的数据;
D、高阶空变相位补偿
将粗成像结果划分为多个子图像,构造空变相位补偿因子,计算每个子图像对应的相位补偿因子并进行相位补偿,将所有相位补偿后的子图像进行拼接得到成像结果。
2.如权利要求1所述的适用于复杂飞行轨迹的双基聚束SAR大场景成像方法,其特征在于,所述步骤B中,点目标参考函数表示为
Figure FDA0002561741930000011
其中,So(fτ,t)表示点目标参考函数,Kr为发射信号调频率,c为光速。
3.如权利要求2所述的适用于复杂飞行轨迹的双基聚束SAR大场景成像方法,其特征在于,所述步骤B中,利用距离频域、方位时域的共轭相乘,对回波数据进行一致压缩,一致压缩后的距离频域数据表示为
Figure FDA0002561741930000012
其中,FFTr{·}表示距离向FFT,sr(τ,t;xp,yp)表示目标回波数据,So *(fτ,t)表示对一致压缩参考信号So(fτ,t)取共轭,σp(xp,yp)表示目标散射截面积,△Rb(t;xp,yp)表示差分距离史,wr[·]表示距离向时域窗函数,wa[·]表示方位向时域窗函数,Ta表示合成孔径时间。
4.如权利要求3所述的适用于复杂飞行轨迹的双基聚束SAR大场景成像方法,其特征在于,所述步骤C中,将差分距离史对空间坐标二维泰勒展开,表示为
Figure FDA0002561741930000021
其中,Rcur(t,xp,yp)表示距离误差,
Figure FDA0002561741930000022
Figure FDA0002561741930000023
表示发射站(T)的轨迹矢量,
Figure FDA0002561741930000024
表示接收站(R)的轨迹矢量。
5.如权利要求4所述的适用于复杂飞行轨迹的双基聚束SAR大场景成像方法,其特征在于,所述步骤D中,首先计算补偿前的有效场景尺寸,计算公式为
Figure FDA0002561741930000025
其中,Qi和Ti均为雷达平台运动轨迹相关系数,λ表示载波波长;
再根据有效场景尺寸将粗成像结果hcur(x,y)划分为多个子图像hi(x,y)。
6.如权利要求5所述的适用于复杂飞行轨迹的双基聚束SAR大场景成像方法,其特征在于,所述步骤D中,构造空变相位补偿因子,表示为
Hc(kx,ky;xp,yp)=exp{jkr(kx,ky)Rcur[t(kx,ky);xp,yp]}
其中,kx和ky分别为x和y方向上的波数,kr(kx,ky)表示由kx和ky来表示kr的二维函数映射,t(kx,ky)表示由kx和ky来表示t的二维函数映射。
7.如权利要求6所述的适用于复杂飞行轨迹的双基聚束SAR大场景成像方法,其特征在于,所述步骤D中,对每个子图像hi(x,y),先确定其几何中心位置(xi,yi),将子图像进行二维快速傅里叶变换,得到其波数谱Hi(kx,ky);再计算出对应的相位补偿因子Hc(kx,ky;xi,yi),与子图像波数谱相乘后再求解乘积结果的二维逆向快速傅里叶变换,得到补偿后的子图像。
8.如权利要求7所述的适用于复杂飞行轨迹的双基聚束SAR大场景成像方法,其特征在于,所述步骤D中,补偿后的子图像表示为
h′i(x,y)=IFFT2{FFT2{hi(x,y)}·Hc(kx,ky;xi,yi)};
其中,FFT2表示二维快速傅里叶变换;函数IFFT2表示二维快速逆傅里叶变换。
CN201811007730.9A 2018-08-31 2018-08-31 适用于复杂飞行轨迹的双基聚束sar大场景成像方法 Active CN109143236B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811007730.9A CN109143236B (zh) 2018-08-31 2018-08-31 适用于复杂飞行轨迹的双基聚束sar大场景成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811007730.9A CN109143236B (zh) 2018-08-31 2018-08-31 适用于复杂飞行轨迹的双基聚束sar大场景成像方法

Publications (2)

Publication Number Publication Date
CN109143236A CN109143236A (zh) 2019-01-04
CN109143236B true CN109143236B (zh) 2020-09-08

Family

ID=64825787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811007730.9A Active CN109143236B (zh) 2018-08-31 2018-08-31 适用于复杂飞行轨迹的双基聚束sar大场景成像方法

Country Status (1)

Country Link
CN (1) CN109143236B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109959932B (zh) * 2019-04-08 2023-06-30 西安电子科技大学 基于下降段曲线轨迹的雷达前视三维成像方法
CN114325705B (zh) * 2021-12-31 2023-09-22 电子科技大学 一种高低轨双基地合成孔径雷达频域快速成像方法
CN116930956B (zh) * 2023-09-19 2023-11-17 南京隼眼电子科技有限公司 基于目标尺寸的目标轨迹拼接方法、装置及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106054190B (zh) * 2016-07-21 2018-07-27 电子科技大学 基于频谱优化建模的双基地前视sar频域成像方法
CN106990396B (zh) * 2017-05-25 2021-03-16 电子科技大学 一种双基地合成孔径雷达定位误差计算方法
CN108051809B (zh) * 2017-11-14 2019-12-24 石家庄铁道大学 基于Radon变换的运动目标成像方法、装置及电子设备
CN108459321B (zh) * 2018-02-07 2021-01-19 杭州电子科技大学 基于距离-方位圆模型的大斜视高分辨率sar成像方法

Also Published As

Publication number Publication date
CN109143236A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
Li et al. A frequency-domain imaging algorithm for highly squinted SAR mounted on maneuvering platforms with nonlinear trajectory
CN102967859B (zh) 一种前视扫描雷达成像方法
CN109143237B (zh) 适用于任意平台轨迹的双基聚束sar的pfa波前弯曲校正方法
CN102393518B (zh) 一种适用于大斜视角的机载sar成像方法
Park et al. Cross-range scaling algorithm for ISAR images using 2-D Fourier transform and polar mapping
Antoniou et al. Results of a space-surface bistatic SAR image formation algorithm
Xin et al. Signal processing for digital beamforming FMCW SAR
CN108427115B (zh) 合成孔径雷达对运动目标参数的快速估计方法
CN109143236B (zh) 适用于复杂飞行轨迹的双基聚束sar大场景成像方法
Li et al. A coarse-to-fine autofocus approach for very high-resolution airborne stripmap SAR imagery
CN102004250A (zh) 基于频域展开的星机联合双基地合成孔径雷达成像方法
CN109031299B (zh) 低信噪比条件下基于相位差分的isar平动补偿方法
Qiu et al. Bistatic SAR data processing algorithms
Jao et al. Multichannel synthetic aperture radar signatures and imaging of a moving target
CN109188436B (zh) 适用于任意平台轨迹的高效双基sar回波生成方法
Rahman Focusing moving targets using range migration algorithm in ultra wideband low frequency synthetic aperture radar
CN103091682A (zh) 基于时频分析InISAR多动目标成像和运动轨迹重建法
CN114325704A (zh) 一种基于波数谱拼接的合成孔径雷达快速时域成像方法
Xu et al. A variable PRF imaging method for high squint diving SAR
Saeedi et al. Improved navigation-based motion compensation for LFMCW synthetic aperture radar imaging
Zhang et al. A new SAR–GMTI high-accuracy focusing and relocation method using instantaneous interferometry
CN113238229B (zh) 一种geo星机双基sar无模糊成像方法
Bączyk et al. Moving target imaging in multistatic passive radar
CN111638516B (zh) 基于双频共轭处理技术的太赫兹频段sar运动补偿算法
Zhou et al. Azimuth ambiguities suppression using group sparsity and nonconvex regularization for sliding spotlight mode: Results on QILU-1 SAR data

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant