CN109134343B - 一种吲哚c-2位置烯基化的方法 - Google Patents

一种吲哚c-2位置烯基化的方法 Download PDF

Info

Publication number
CN109134343B
CN109134343B CN201811193563.1A CN201811193563A CN109134343B CN 109134343 B CN109134343 B CN 109134343B CN 201811193563 A CN201811193563 A CN 201811193563A CN 109134343 B CN109134343 B CN 109134343B
Authority
CN
China
Prior art keywords
reaction
mmol
nmr
mhz
cdcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811193563.1A
Other languages
English (en)
Other versions
CN109134343A (zh
Inventor
刘会
宋键
迟晓晨
孟龙
史亚菲
王新源
梁文静
姚树志
刘青
董云会
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201811193563.1A priority Critical patent/CN109134343B/zh
Publication of CN109134343A publication Critical patent/CN109134343A/zh
Application granted granted Critical
Publication of CN109134343B publication Critical patent/CN109134343B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/12Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

一种吲哚C‑2位置烯基化的新方法,属于官能团化化学方法合成领域。其中,本方法的主要特征在于:(1)采用过渡金属元素进行催化;(2)采用偕二溴苯乙烯和腙作为合成的原材料;(3)反应温度在较低的温度下即可反应;(4)反应步骤一步完成;(5)催化剂可以全部进行回收重新利用;(6)所生成产物以2‑乙烯基吲哚为主体结构(7)所生成产物物理、化学性质在常温及高温环境中不会产生变化:(8)所生成产物的产率≥95%wt(9)所生成的副产物易于采用常规方法去除。

Description

一种吲哚C-2位置烯基化的方法
技术领域
一种吲哚C-2位置烯基化的新方法,属于有机化合物工艺应用技术领域。
背景技术
吲哚是一种重要的精细化工原料,广泛应用于医药、农药、香料、食品饲料添加剂、染料等领域,并且新的应用领域仍在不断被开发出来,其应用研究一直经久不衰。虽然人们开发出许多种吲哚衍生物的化学合成方法,但是用吲哚在其C-2位置烯基化的一步反应普适的方法生成2-(1-苯基乙烯基)-1-甲苯磺酰基-吲哚至今却鲜有进行过报道。其中,有C-2位置先引入酮后对其进行还原实现烯基化的(Tetrahedron, 1984, 40, 4837-4842);也有在C-2位置在正丁基锂的作用下引入异丙醇基,随后在三氟乙酸的条件下实现烯基化的(J. Heterocyclic. Chem., 1989, 26, 1869-1873),这些方法不但步骤繁琐,而且反应条件要求高,产率低,使用的叔丁基锂和三氟乙酸利用率不高,造成了原料的浪费违背了原子经济,不经济也不环保,无法实现方法的普适性;还有直接在吲哚C2位置烯基化的方法,但是需要区域诱导基团(Angew. Chem., Int. Ed. 2009, 121, 6633-6637; 121, 6633-6637;Angew. Chem., Int. Ed.2005, 44, 3125-3129;Chem. Commun.2005, 1854-1856;Angew. Chem., Int. Ed. 2009, 48, 6511-6515;Angew. Chem., Int. Ed. 2012, 51, 1265-1269.)才能实现;也有在没有氮诱导基团的条件下以偕二溴苯乙烯做原料合成1,2-取代的乙烯基吲哚(Org. Lett.2006, 8, 4203-4206.)。本方法只需一定当量的偕二溴苯乙烯和腙在一定条件下短时间反应,不需要区域诱导基团参与即可一步在吲哚C-2位置实现烯基化,生成1,1-取代的乙烯基吲哚,本方法产率高,区域选择性好。
发明内容
本发明克服现有技术的缺陷,首次创新地提出了一种简单高效的反应制备2-乙烯基吲哚类化合物的新方法,通过使用金属钯催化剂,可以高效地实现反应的转化。
Figure 755437DEST_PATH_IMAGE001
式(I)
如以上式(I)所示,本发明利用偕二溴苯乙烯衍生物(底物1)和腙的衍生物(底物2)作为起始原料。在金属钯催化剂和叔丁醇锂作为碱的作用下,在反应溶剂中进行反应,合成2-乙烯基化吲哚类化合物。
本发明中,R1可以是H、F、Cl、Br、芳基。
优选地,R1是H、F、Cl、Br、芳基。
本发明中,R1包括但不仅仅局限与上述基团,例如,R1还可以是甲酸甲酯基等。
本发明中,R2可以是Ts、Ns、Boc基团。
优选地,R2是Ts、Ns基团。
本发明中,R3可以是H、F、Cl、Br、甲氧基、氰基、硝基、甲氧基基团。
优选地,R3是H、F、Cl、Br、甲氧基、氰基、硝基。
本发明中,R4可以是甲基、乙基、丁基、苄基基团。
优选地,R4是甲基,乙基。
本发明中,R5可以是H、甲基、乙基、苯基基团。
优选地,R5是H、甲基、乙基。
本发明中,所述起始原料偕二溴苯乙烯衍生物和腙的衍生物的用量比例是1当量:1.5-2.0当量。
优选地,两者用量比例为1当量:2.0当量。
本发明中,所述钯催化剂是PdCl2(OAc)2、Pd(OAc)2、Pd(TFA)2
优选地,所述钯催化剂是PdCl2(OAc)2
本发明中,所述钯催化剂的用量为底物1的5-10 mol%。
优选地,所述钯催化剂的用量为底物1的10 mol%。
本发明中,所述的碱性化合物是叔丁醇锂、碳酸铯。
优选地,所述的碱性化合物是叔丁醇锂。
本发明中,所述化合物的用量为2-4 当量。
优选地,所述化合物的用量是3 当量。
本发明中,所述的溶剂是二氧六环、四氢呋喃。
优选地,所述的溶剂是二氧六环。
本发明中,所述的反应温度是100-115℃。
优选地,所述反应温度是110℃。
本发明中,所述的反应时间是0.5-1小时。
优选地,所述反应时间是1小时。
具体地,本发明合成反应是在反应管中,1)按当量份偕二溴苯乙烯类有机物1当量、具有腙的衍生物2.0当量、叔丁醇锂3.0当量、催化剂PdCl2(PPh3)2 10% mol当量的比例进行混合。混合均匀后溶解在一定比例的溶剂二氧六环当中。恒温加热,保持温度110℃。恒温搅拌反应1小时后,萃取2-3次,水洗1-2次,取有机相,旋蒸浓缩,过15cm层析柱,得产物2-乙烯基吲哚类化合物,产率≥95%wt。回收无机相中的过渡金属化合物。
本发明合成方法所使用的各原料非常简单,均为工业化商品,简单易得,来源广泛,并且性能非常稳定,不需要特殊保存条件。本发明所用的各种金属催化剂和添加剂也都是常用的商品化试剂,非常稳定,而且具有成本低、产率高、工艺简、污染少的特色,完全可适用于大规模生产。
具体实施方式
结合以下具体实施例,对本发明作进一步的详细说明,本发明的保护内容不局限于以下实施例。在不背离发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在本发明中,并且以所附的权利要求书为保护范围。实施本发明的过程、条件、试剂、实验方法等,除以下专门提及的内容之外,均为本领域的普遍知识和公知常识,本发明没有特别限制内容。以下实施例所给出的数据包括具体操作和反应条件及产物。产物纯度通过核磁鉴定。
实施例1
图2;
在25 mL的管式反应器中,将底物1a (0.3mmol, 135 mg), 2a (0.6 mmol, 174mg),PdCl2(PPh3)2 (0.03 mmol, 22 mg),叔丁醇锂 (0.9 mmol, 75 mg),依次称量,加入反应管,并滴加入二氧六环 (共4 mL)。将反应体系加热至110℃,反应1小时。TLC检测反应结束后,将体系冷却至室温。加入30ml水和30ml乙酸乙酯萃取2次,再用30ml水水洗一次,加入无水硫酸钠干燥,用旋转蒸发仪浓缩后,直接加硅胶,旋干柱层析,得到淡黄色固体 3aa(88%)。1H NMR (400 MHz, CDCl3, δ ppm): δ 8.17 (d, J = 8.3 Hz, 1H), 7.51 – 7.47(m, 3H), 7.36 – 7.26 (m, 7H), 7.06 (d, J = 8.1 Hz, 2H), 6.68 (s, 1H), 5.82(s, 1H), 5.45 (s, 1H), 2.29 (s, 3H). 13C NMR (100 MHz, CDCl3, δ ppm):δ 144.53,142.23, 140.69, 140.13, 137.55, 135.24, 129.98, 129.39, 128.26, 127.89,126.79, 126.60, 124.91, 123.92, 120.92, 117.73, 115.62, 113.89, 21.55. MS(EI) m/z 373 (M+); HRMS (ESI) Calcd for C23H19NO2S+H 374.4780, Found 374.4781。
实施例2
图3;
在25 mL的管式反应器中,将底物1a (0.3mmol, 135 mg), 2b (0.6 mmol, 192mg),PdCl2(PPh3)2 (0.03 mmol, 22 mg),叔丁醇锂 (0.9 mmol, 75 mg),依次称量,加入反应管,并滴加入二氧六环 (共4 mL)。将反应体系加热至110℃,反应1小时。TLC检测反应结束后,将体系冷却至室温。加入30ml水和30ml乙酸乙酯萃取2次,再用30ml水水洗一次,加入无水硫酸钠干燥,用旋转蒸发仪浓缩后,直接加硅胶,旋干柱层析,得到白色固体 3ab(92%)。1H NMR (400 MHz, CDCl3, δ ppm): δ 8.10 (d, J = 8.3 Hz, 1H), 7.40 (d, J =8.5 Hz, 3H), 7.30 – 7.22 (m, 1H), 7.21 – 7.09 (m, 2H), 6.98 (d, J = 8.1 Hz,2H), 6.84 (d, J = 7.7 Hz, 1H), 6.74 (d, J = 6.2 Hz, 2H), 6.59 (s, 1H), 5.75(s, 1H), 5.37 (s, 1H), 3.65 (s, 3H), 2.20 (s, 3H). 13C NMR (100 MHz, CDCl3, δppm): δ 159.49, 144.49, 141.99, 141.53, 140.52, 137.53, 135.29, 129.90,129.36, 129.21, 126.76, 124.90, 123.88, 120.93, 119.31, 118.07, 115.58,113.82, 113.10, 112.58, 55.19, 21.54. MS (EI) m/z 403 (M+); HRMS (ESI) Calcdfor C24H21NO3S+H 404.5040, Found 404.5043。
实施例3
图4;
在25 mL的管式反应器中,将底物1a (0.3mmol, 135 mg), 2c (0.6 mmol, 192mg),PdCl2(PPh3)2 (0.03 mmol, 22 mg),叔丁醇锂 (0.9 mmol, 75 mg),依次称量,加入反应管,并滴加入二氧六环 (共4 mL)。将反应体系加热至110℃,反应1小时。TLC检测反应结束后,将体系冷却至室温。加入30ml水和30ml乙酸乙酯萃取2次,再用30ml水水洗一次,加入无水硫酸钠干燥,用旋转蒸发仪浓缩后,直接加硅胶,旋干柱层析,得到白色固体 3ac(95%)。1H NMR (400 MHz, CDCl3, δ ppm): δ 8.18 (d, J = 8.4 Hz, 1H), 7.49 (t, J =8.6 Hz, 3H), 7.37 – 7.28 (m, 1H), 7.29 – 7.19 (m, 3H), 7.05 (d, J = 8.0 Hz,2H), 6.79 (d, J = 8.7 Hz, 2H), 6.66 (s, 1H), 5.72 (s, 1H), 5.34 (s, 1H), 3.77(s, 3H), 2.27 (s, 3H). 13C NMR (100 MHz, CDCl3, δ ppm): δ 159.43, 144.49,141.57, 141.06, 137.60, 135.29, 132.90, 130.01, 129.37, 127.78, 126.77,124.87, 123.92, 120.92, 116.00, 115.63, 113.70, 113.61, 55.27, 21.56. MS (EI)m/z 403 (M+); HRMS (ESI) Calcd for C24H21NO3S+H 404.5040, Found 404.5043。
实施例4
图5;
在25 mL的管式反应器中,将底物1a (0.3mmol, 135 mg), 2d (0.6 mmol, 186mg),PdCl2(PPh3)2 (0.03 mmol, 22 mg),叔丁醇锂 (0.9 mmol, 75 mg),依次称量,加入反应管,并滴加入二氧六环 (共4 mL)。将反应体系加热至110℃,反应1小时。TLC检测反应结束后,将体系冷却至室温。加入30ml水和30ml乙酸乙酯萃取2次,再用30ml水水洗一次,加入无水硫酸钠干燥,用旋转蒸发仪浓缩后,直接加硅胶,旋干柱层析,得到白色固体 3ad(85%)。1H NMR (400 MHz, CDCl3, δ ppm): δ 8.18 (d, J = 8.3 Hz, 1H), 7.49 (d, J =8.4 Hz, 3H), 7.37 – 7.32 (m, 1H), 7.30 – 7.22 (m, 3H), 7.08 (d, J = 8.2 Hz,2H), 6.99 – 6.90 (m, 2H), 6.69 (s, 1H), 5.75 (s, 1H), 5.43 (s, 1H), 2.29 (s,3H). 13C NMR (100 MHz, CDCl3, δ ppm): δ 162.57 (d, J = 246.9 Hz), 144.64,141.28, 140.45, 137.62, 136.32 (d, J = 3.3 Hz), 135.15, 129.90, 129.40,128.25 (d, J = 8.1 Hz), 126.69, 125.06, 124.01, 120.98, 117.43, 115.64,115.11 (d, J = 21.6 Hz), 114.03, 21.55. 19F{1H} NMR (376 MHz, CDCl3, δ ppm): δ-114.46. MS (EI) m/z 391 (M+); HRMS (ESI) Calcd for C23H18FNO2S+H 392.4684,Found 392.4687。
实施例5
图6;
在25 mL的管式反应器中,将底物1a (0.3mmol, 135 mg), 2e (0.6 mmol, 195mg),PdCl2(PPh3)2 (0.03 mmol, 22 mg),叔丁醇锂 (0.9 mmol, 75 mg),依次称量,加入反应管,并滴加入二氧六环 (共4 mL)。将反应体系加热至110℃,反应1小时。TLC检测反应结束后,将体系冷却至室温。加入30ml水和30ml乙酸乙酯萃取2次,再用30ml水水洗一次,加入无水硫酸钠干燥,用旋转蒸发仪浓缩后,直接加硅胶,旋干柱层析,得到白色固体 3ae(74%)。1H NMR (400 MHz, CDCl3, δ ppm): δ 8.18 (d, J = 8.3 Hz, 1H), 7.48 (t, J =7.9 Hz, 3H), 7.39 – 7.30 (m, 1H), 7.30 – 7.21 (m, 1H), 7.20 (s, 4H), 7.06 (d,J = 7.8 Hz, 2H), 6.68 (s, 1H), 5.77 (s, 1H), 5.46 (s, 1H), 2.29 (s, 3H). 13CNMR (100 MHz, CDCl3, δ ppm): δ 144.69, 141.23, 140.14, 138.65, 137.65,135.19, 133.73, 129.84, 129.43, 128.39, 127.92, 126.62, 125.14, 124.04,121.04, 118.02, 115.62, 114.09, 21.57. MS (EI) m/z 408 (M+); HRMS (ESI) Calcdfor C23H18ClNO2S+H 408.9200, Found 408.9202。
实施例6
图7;
在25 mL的管式反应器中,将底物1a (0.3mmol, 135 mg), 2f (0.6 mmol, 222mg),PdCl2(PPh3)2 (0.03 mmol, 22 mg),叔丁醇锂 (0.9 mmol, 75 mg),依次称量,加入反应管,并滴加入二氧六环 (共4 mL)。将反应体系加热至110℃,反应1小时。TLC检测反应结束后,将体系冷却至室温。加入30ml水和30ml乙酸乙酯萃取2次,再用30ml水水洗一次,加入无水硫酸钠干燥,用旋转蒸发仪浓缩后,直接加硅胶,旋干柱层析,得到白色固体 3af(91%)。1H NMR (400 MHz, CDCl3, δ ppm): δ 8.10 (d, J = 8.3 Hz, 1H), 7.43 – 7.36(m, 3H), 7.31 – 7.22 (m, 3H), 7.22 – 7.14 (m, 1H), 7.05 (d, J = 8.5 Hz, 2H),6.98 (d, J = 8.1 Hz, 2H), 6.60 (s, 1H), 5.70 (s, 1H), 5.39 (s, 1H), 2.21 (s,3H). 13C NMR (100 MHz, CDCl3, δ ppm): δ 144.68, 141.28, 140.04, 139.08,137.65, 135.21, 131.32, 129.81, 129.44, 128.25, 126.59, 125.15, 124.03,122.01, 121.04, 118.10, 115.60, 114.07, 21.60. MS (EI) m/z 452 (M+); HRMS(ESI) Calcd for C23H18BrNO2S+H 453.3740, Found 453.3738.
实施例7
图8;
在25 mL的管式反应器中,将底物1a (0.3mmol, 135 mg), 2g (0.6 mmol, 222mg),PdCl2(PPh3)2 (0.03 mmol, 22 mg),叔丁醇锂 (0.9 mmol, 75 mg),依次称量,加入反应管,并滴加入二氧六环 (共4 mL)。将反应体系加热至110℃,反应1小时。TLC检测反应结束后,将体系冷却至室温。加入30ml水和30ml乙酸乙酯萃取2次,再用30ml水水洗一次,加入无水硫酸钠干燥,用旋转蒸发仪浓缩后,直接加硅胶,旋干柱层析,得到白色固体 3ag(80%)。1H NMR (400 MHz, CDCl3, δ ppm): δ 8.11 (d, J = 8.4 Hz, 1H), 7.45 – 7.35(m, 3H), 7.32 – 7.23 (m, 3H), 7.23 – 7.13 (m, 2H), 7.05 (t, J = 7.8 Hz, 1H),6.98 (d, J = 8.1 Hz, 2H), 6.59 (s, 1H), 5.72 (s, 1H), 5.40 (s, 1H), 2.20 (s,3H). 13C NMR (100 MHz, CDCl3, δ ppm): δ 144.74, 142.25, 140.95, 139.76,137.65, 135.14, 130.82, 129.82, 129.49, 126.62, 125.46, 125.17, 124.04,122.48, 121.06, 119.11, 115.65, 114.18, 21.60. MS (EI) m/z 452 (M+); HRMS(ESI) Calcd for C23H18BrNO2S+H 453.3740, Found 453.3738。
实施例8
图9;
在25 mL的管式反应器中,将底物1a (0.3mmol, 135 mg), 2h (0.6 mmol, 201mg),PdCl2(PPh3)2 (0.03 mmol, 22 mg),叔丁醇锂 (0.9 mmol, 75 mg),依次称量,加入反应管,并滴加入二氧六环 (共4 mL)。将反应体系加热至110℃,反应1小时。TLC检测反应结束后,将体系冷却至室温。加入30ml水和30ml乙酸乙酯萃取2次,再用30ml水水洗一次,加入无水硫酸钠干燥,用旋转蒸发仪浓缩后,直接加硅胶,旋干柱层析,得到白色固体 3ah(97%)。1H NMR (400 MHz, CDCl3, δ ppm): δ 8.18 (d, J = 8.4 Hz, 1H), 8.17 – 8.10(m, 2H), 7.56 – 7.47 (m, 3H), 7.47 – 7.43 (m, 2H), 7.40 – 7.36 (m, 1H), 7.32– 7.25 (m, 1H), 7.10 (d, J = 7.9 Hz, 2H), 6.76 (s, 1H), 5.94 (s, 1H), 5.65(s, 1H), 2.30 (s, 3H). 13C NMR (100 MHz, CDCl3, δ ppm): δ 146.54, 144.95,140.94, 139.12, 137.69, 134.90, 129.77, 129.49, 128.33, 127.31, 126.58,125.51, 124.28, 123.63, 121.17, 120.51, 115.69, 114.83, 21.56. MS (EI) m/z418 (M+); HRMS (ESI) Calcd for C23H18N2O4S+H 419.4750, Found 419.4754。
实施例9
图10;
在25 mL的管式反应器中,将底物1a (0.3mmol, 135 mg), 2i (0.6 mmol, 189mg),PdCl2(PPh3)2 (0.03 mmol, 22 mg),叔丁醇锂 (0.9 mmol, 75 mg),依次称量,加入反应管,并滴加入二氧六环 (共4 mL)。将反应体系加热至110℃,反应1小时。TLC检测反应结束后,将体系冷却至室温。加入30ml水和30ml乙酸乙酯萃取2次,再用30ml水水洗一次,加入无水硫酸钠干燥,用旋转蒸发仪浓缩后,直接加硅胶,旋干柱层析,得到白色固体 3ai(87%)。1H NMR (400 MHz, CDCl3, δ ppm): δ 8.08 (d, J = 8.4 Hz, 1H), 7.49 – 7.40(m, 5H), 7.34 – 7.24 (m, 3H), 7.19 (t, J = 7.9 Hz, 1H), 7.01 (d, J = 8.0 Hz,2H), 6.65 (s, 1H), 5.81 (s, 1H), 5.52 (s, 1H), 2.21 (s, 3H). 13C NMR (100 MHz,CDCl3, δ ppm): δ 144.95, 144.68, 141.18, 139.18, 137.65, 134.86, 132.12,129.83, 129.53, 127.18, 126.62, 125.45, 124.28, 121.18, 120.06, 118.98,115.67, 114.84, 111.26, 21.58. MS (EI) m/z 398 (M+); HRMS (ESI) Calcd forC24H18N2O2S+H 399.4880, Found 399.4883。
实施例10
图11;
在25 mL的管式反应器中,将底物1a (0.3mmol, 135 mg), 2j (0.6 mmol, 200mg),PdCl2(PPh3)2 (0.03 mmol, 22 mg),叔丁醇锂 (0.9 mmol, 75 mg),依次称量,加入反应管,并滴加入二氧六环 (共4 mL)。将反应体系加热至110℃,反应1小时。TLC检测反应结束后,将体系冷却至室温。加入30ml水和30ml乙酸乙酯萃取2次,再用30ml水水洗一次,加入无水硫酸钠干燥,用旋转蒸发仪浓缩后,直接加硅胶,旋干柱层析,得到白色固体 3aj(84%)。1H NMR (400 MHz, CDCl3, δ ppm): δ 8.18 (d, J = 8.4 Hz, 1H), 7.54 – 7.46(m, 3H), 7.33 (t, J = 7.8 Hz, 1H), 7.29 – 7.20 (m, 1H), 7.07 (d, J = 8.1 Hz,2H), 6.82 (s, 1H), 6.73 (d, J = 8.1 Hz, 1H), 6.70 – 6.64 (m, 2H), 5.92 (s,2H), 5.69 (s, 1H), 5.34 (s, 1H), 2.28 (s, 3H). 13C NMR (100 MHz, CDCl3, δppm): δ 147.70, 147.44, 144.56, 141.67, 140.74, 137.60, 135.27, 134.62,129.92, 129.36, 126.73, 124.97, 123.95, 120.95, 120.64, 116.50, 115.63,113.89, 107.97, 107.06, 101.15, 21.56. MS (EI) m/z 417 (M+); HRMS (ESI) Calcdfor C24H19NO4S+H 418.4870, Found 418.4873。
实施例11
图12;
在25 mL的管式反应器中,将底物1a (0.3mmol, 135 mg), 2k (0.6 mmol, 182mg),PdCl2(PPh3)2 (0.03 mmol, 22 mg),叔丁醇锂 (0.9 mmol, 75 mg),依次称量,加入反应管,并滴加入二氧六环 (共4 mL)。将反应体系加热至110℃,反应1小时。TLC检测反应结束后,将体系冷却至室温。加入30ml水和30ml乙酸乙酯萃取2次,再用30ml水水洗一次,加入无水硫酸钠干燥,用旋转蒸发仪浓缩后,直接加硅胶,旋干柱层析,得到白色固体 3ak(90%)。1H NMR (400 MHz, CDCl3, δ ppm): δ 8.15 (d, J = 8.3 Hz, 1H), 7.46 (d, J =7.1 Hz, 1H), 7.31 (d, J = 8.2 Hz, 2H), 7.31 – 7.22 (m, 1H), 7.19 (t, J = 7.5Hz, 1H), 7.17 – 7.08 (m, 5H), 6.90 (d, J = 8.1 Hz, 2H), 6.49 (s, 1H), 6.31(q, J = 7.0 Hz, 1H), 2.18 (s, 3H), 1.60 (d, J = 7.0 Hz, 3H). 13C NMR (100 MHz,CDCl3, δ ppm): δ 144.42, 141.10, 137.04, 136.91, 135.83, 134.24, 129.72,129.62, 129.37, 128.20, 126.90, 126.36, 124.52, 123.54, 120.76, 115.12,112.80, 21.53, 16.40. MS (EI) m/z 387 (M+); HRMS (ESI) Calcd for C24H21NO2S+H388.5050, Found 388.5047。
实施例12
图13;
在25 mL的管式反应器中,将底物1b (0.3mmol, 146 mg), 2a (0.6 mmol, 173mg),PdCl2(PPh3)2 (0.03 mmol, 22 mg),叔丁醇锂 (0.9 mmol, 75 mg),依次称量,加入反应管,并滴加入二氧六环 (共4 mL)。将反应体系加热至110℃,反应1小时。TLC检测反应结束后,将体系冷却至室温。加入30ml水和30ml乙酸乙酯萃取2次,再用30ml水水洗一次,加入无水硫酸钠干燥,用旋转蒸发仪浓缩后,直接加硅胶,旋干柱层析,得到白色固体 3ba(70%)。1H NMR (400 MHz, CDCl3, δ ppm): δ 7.97 (d, J = 8.2 Hz, 1H), 7.52 (dd, J= 16.5, 8.3 Hz, 3H), 7.29 (s, 5H), 7.21 – 7.11 (m, 1H), 7.08 (d, J = 7.7 Hz,2H), 6.71 (s, 1H), 5.87 (s, 1H), 5.47 (s, 1H), 3.97 (s, 3H), 2.30 (s, 3H). 13CNMR (100 MHz, CDCl3, δ ppm): δ 167.36, 144.89, 143.68, 141.77, 139.73,136.93, 135.01, 133.62, 129.55, 128.34, 128.06, 126.89, 126.54, 125.11,120.62, 118.36, 117.19, 113.31, 52.31, 21.57. MS (EI) m/z 432 (M+); HRMS(ESI) Calcd for C25H21NO4S+H 432.5140, Found 432.5144。
实施例13
图14;
在25 mL的管式反应器中,将底物1b (0.3mmol, 153 mg), 2a (0.6 mmol, 173mg),PdCl2(PPh3)2 (0.03 mmol, 22 mg),叔丁醇锂 (0.9 mmol, 75 mg),依次称量,加入反应管,并滴加入二氧六环 (共4 mL)。将反应体系加热至110℃,反应1小时。TLC检测反应结束后,将体系冷却至室温。加入30ml水和30ml乙酸乙酯萃取2次,再用30ml水水洗一次,加入无水硫酸钠干燥,用旋转蒸发仪浓缩后,直接加硅胶,旋干柱层析,得到白色固体 3ca(94%)。1H NMR (400 MHz, CDCl3, δppm): δ 8.05 (d, J = 8.8 Hz, 1H), 7.61 (d, J =2.0 Hz, 1H), 7.46 (d, J = 8.4 Hz, 2H), 7.42 (dd, J = 8.9, 2.0 Hz, 1H), 7.27(s, 5H), 7.07 (d, J = 8.1 Hz, 2H), 6.60 (s, 1H), 5.84 (s, 1H), 5.43 (s, 1H),2.28 (s, 3H). 13C NMR (100 MHz, CDCl3, δppm): δ 144.93, 141.98, 141.76,139.84, 136.25, 134.95, 131.71, 129.56, 128.34, 128.04, 127.74, 126.78,126.54, 123.60, 118.30, 117.38, 117.03, 112.85, 21.61. MS (EI) m/z 452 (M+);HRMS (ESI) Calcd for C23H18BrNO2S+H 453.3740, Found 453.3738。
实施例14
图15;
在25 mL的管式反应器中,将底物1d (0.3mmol, 135 mg), 2a (0.6 mmol, 173mg),PdCl2(PPh3)2 (0.03 mmol, 22 mg),叔丁醇锂 (0.9 mmol, 75 mg),依次称量,加入反应管,并滴加入二氧六环 (共4 mL)。将反应体系加热至110℃,反应1小时。TLC检测反应结束后,将体系冷却至室温。加入30ml水和30ml乙酸乙酯萃取2次,再用30ml水水洗一次,加入无水硫酸钠干燥,用旋转蒸发仪浓缩后,直接加硅胶,旋干柱层析,得到白色固体 3da(89%)。1H NMR (400 MHz, CDCl3, δ ppm): δ 7.92 (d, J = 10.3 Hz, 1H), 7.49 (d, J= 8.4 Hz, 2H), 7.40 (dd, J = 8.6, 5.4 Hz, 1H), 7.31 – 7.25 (m, 5H), 7.08 (d,J = 8.1 Hz, 2H), 7.01 (td, J = 8.8, 2.3 Hz, 1H), 6.63 (s, 1H), 5.81 (s, 1H),5.43 (s, 1H), 2.29 (s, 3H). 13C NMR (100 MHz, CDCl3, δ ppm): δ 161.00 (d, J =241.7 Hz), 144.87, 141.94, 141.06, 140.00, 137.81 (d, J = 12.4 Hz), 135.00,129.54, 128.30, 127.97, 126.82, 126.57, 126.18 (d, J = 1.5 Hz), 121.64 (d, J= 9.7 Hz), 117.99, 113.34, 112.31 (d, J = 24.2 Hz), 103.08 (d, J = 28.7 Hz),21.59. 19F{1H} NMR (376 MHz, CDCl3, δ ppm): δ -115.68. MS (EI) m/z 391 (M+);HRMS (ESI) Calcd for C23H18FNO2S+H 392.4684, Found 392.4687。
实施例15
图16;
在25 mL的管式反应器中,将底物1e (0.3mmol, 138 mg), 2a (0.6 mmol, 173mg),PdCl2(PPh3)2 (0.03 mmol, 22 mg),叔丁醇锂 (0.9 mmol, 75 mg),依次称量,加入反应管,并滴加入二氧六环 (共4 mL)。将反应体系加热至110℃,反应1小时。TLC检测反应结束后,将体系冷却至室温。加入30ml水和30ml乙酸乙酯萃取2次,再用30ml水水洗一次,加入无水硫酸钠干燥,用旋转蒸发仪浓缩后,直接加硅胶,旋干柱层析,得到白色固体 3ea(87%)。1H NMR (400 MHz, CDCl3, δ ppm): δ 8.16 (d, J = 8.4 Hz, 1H), 8.07 (d, J =8.9 Hz, 2H), 7.71 (d, J = 8.9 Hz, 2H), 7.52 (d, J = 7.7 Hz, 1H), 7.43 – 7.34(m, 1H), 7.31 (d, J = 7.5 Hz, 1H), 7.30 – 7.21 (m, 5H), 6.75 (s, 1H), 5.83(s, 1H), 5.49 (s, 1H). 13C NMR (100 MHz, CDCl3, δ ppm): δ 150.30, 143.21,141.79, 140.44, 139.67, 137.38, 130.02,128.37, 128.20, 127.92, 126.70,125.59, 124.71, 123.98, 121.43, 118.41, 115.40, 114.96. MS (EI) m/z 404 (M+);HRMS (ESI) Calcd for C22H16N2O4S+H 405.4480, Found 405.4483。
实施例16
图17;
在25 mL的管式反应器中,将底物1f (0.3mmol, 152 mg), 2a (0.6 mmol, 173mg),PdCl2(PPh3)2 (0.03 mmol, 22 mg),叔丁醇锂 (0.9 mmol, 75 mg),依次称量,加入反应管,并滴加入二氧六环 (共4 mL)。将反应体系加热至110℃,反应1小时。TLC检测反应结束后,将体系冷却至室温。加入30ml水和30ml乙酸乙酯萃取2次,再用30ml水水洗一次,加入无水硫酸钠干燥,用旋转蒸发仪浓缩后,直接加硅胶,旋干柱层析,得到白色固体 3fa(82%)。1H NMR (400 MHz, CDCl3, δppm): δ 8.23 (d, J = 8.7 Hz, 1H), 7.68 (s, 1H),7.64 – 7.54 (m, 3H), 7.52 (d, J = 8.2 Hz, 2H), 7.43 (t, J = 7.7 Hz, 2H), 7.37– 7.29 (m, 3H), 7.29 – 7.25 (m, 3H), 7.06 (d, J = 8.1 Hz, 2H), 6.71 (s, 1H),5.83 (s, 1H), 5.45 (s, 1H), 2.27 (s, 3H). 13C NMR (100 MHz, CDCl3, δppm): δ144.67, 142.16, 141.32, 141.16, 140.10, 137.35, 136.96, 135.24, 130.55,129.50, 128.88, 128.33, 127.97, 127.35, 127.20, 126.86, 126.64, 124.46,119.32, 117.92, 115.83, 114.04, 21.60. MS (EI) m/z 450 (M+); HRMS (ESI) Calcdfor C29H23NO2S+H 450.5760, Found 450.5762。
实施例17
图18;
在25 mL的管式反应器中,将底物1g (0.3mmol, 156 mg), 2a (0.6 mmol, 173mg),PdCl2(PPh3)2 (0.03 mmol, 22 mg),叔丁醇锂 (0.9 mmol, 75 mg),依次称量,加入反应管,并滴加入二氧六环 (共4 mL)。将反应体系加热至110℃,反应1小时。TLC检测反应结束后,将体系冷却至室温。加入30ml水和30ml乙酸乙酯萃取2次,再用30ml水水洗一次,加入无水硫酸钠干燥,用旋转蒸发仪浓缩后,直接加硅胶,旋干柱层析,得到白色固体 3ga(95%)。1H NMR (400 MHz, CDCl3, δppm): δ 8.21 (d, J = 8.7 Hz, 1H), 7.66 (s, 1H),7.56 (d, J = 8.7 Hz, 1H), 7.51 (dd, J = 8.2, 3.5 Hz, 4H), 7.34 – 7.30 (m,2H), 7.29 – 7.22 (m, 5H), 7.06 (d, J = 8.0 Hz, 2H), 6.70 (s, 1H), 5.83 (s,1H), 5.45 (s, 1H), 2.39 (s, 3H), 2.27 (s, 3H). 13C NMR (100 MHz, CDCl3, δppm):δ 144.62, 142.19, 141.24, 140.11, 138.26, 137.29, 136.94, 136.80, 135.25,130.53, 129.60, 129.48, 128.31, 127.95, 127.17, 126.86, 126.63, 124.32,119.05, 117.86, 115.79, 114.07, 21.59, 21.17. MS (EI) m/z 464 (M+); HRMS(ESI) Calcd for C30H25NO2S+H 464.6030, Found 464.6034。
实施例18
图19;
在25 mL的管式反应器中,将底物1h (0.3mmol, 161 mg), 2a (0.6 mmol, 173mg),PdCl2(PPh3)2 (0.03 mmol, 22 mg),叔丁醇锂 (0.9 mmol, 75 mg),依次称量,加入反应管,并滴加入二氧六环 (共4 mL)。将反应体系加热至110℃,反应1小时。TLC检测反应结束后,将体系冷却至室温。加入30ml水和30ml乙酸乙酯萃取2次,再用30ml水水洗一次,加入无水硫酸钠干燥,用旋转蒸发仪浓缩后,直接加硅胶,旋干柱层析,得到白色固体 3ha(82%)。1H NMR (400 MHz, CDCl3, δppm): δ 8.20 (d, J = 8.7 Hz, 1H), 7.63 (d, J =1.8 Hz, 1H), 7.57 – 7.48 (m, 5H), 7.33 (dd, J = 6.9, 3.1 Hz, 2H), 7.32 – 7.24(m, 3H), 7.06 (d, J = 8.1 Hz, 2H), 7.01 – 6.93 (m, 2H), 6.70 (s, 1H), 5.83(s, 1H), 5.45 (s, 1H), 3.83 (s, 3H), 2.27 (s, 3H). 13C NMR (100 MHz, CDCl3, δppm): δ 159.07, 144.59, 142.17, 141.22, 140.09, 136.97, 136.58, 135.21,133.66, 130.54, 129.45, 128.30, 128.29, 127.92, 126.83, 126.60, 124.12,118.75, 117.81, 115.78, 114.28, 114.07, 55.39, 21.58. MS (EI) m/z 480 (M+);HRMS (ESI) Calcd for C30H25NO3S+H 480.6020, Found 480.6018。
实施例19
图20;
在25 mL的管式反应器中,将底物1i (0.3mmol, 169 mg), 2a (0.6 mmol, 173mg),PdCl2(PPh3)2 (0.03 mmol, 22 mg),叔丁醇锂 (0.9 mmol, 75 mg),依次称量,加入反应管,并滴加入二氧六环 (共4 mL)。将反应体系加热至110℃,反应1小时。TLC检测反应结束后,将体系冷却至室温。加入30ml水和30ml乙酸乙酯萃取2次,再用30ml水水洗一次,加入无水硫酸钠干燥,用旋转蒸发仪浓缩后,直接加硅胶,旋干柱层析,得到白色固体 3ia(89%)。1H NMR (400 MHz, CDCl3, δppm): δ 8.21 (d, J = 9.0 Hz, 1H), 7.67 (s, 1H),7.61 – 7.43 (m, 7H), 7.37 – 7.29 (m, 2H), 7.29 – 7.24 (m, 3H), 7.05 (d, J =8.2 Hz, 2H), 6.70 (s, 1H), 5.82 (s, 1H), 5.45 (s, 1H), 2.26 (s, 3H), 1.36 (s,9H). 13C NMR (100 MHz, CDCl3, δppm): δ 150.17, 144.59, 142.19, 141.24, 140.12,138.23, 137.20, 136.83, 135.29, 130.52, 129.46, 128.30, 127.94, 126.97,126.86, 126.65, 125.82, 124.38, 119.08, 117.86, 115.78, 114.06, 34.59, 31.46,21.58. MS (EI) m/z 506 (M+); HRMS (ESI) Calcd for C33H31NO2S+H 506.6840, Found506.6844。
实施例20
图21;
在25 mL的管式反应器中,将底物1j (0.3mmol, 157 mg), 2a (0.6 mmol, 173mg),PdCl2(PPh3)2 (0.03 mmol, 22 mg),叔丁醇锂 (0.9 mmol, 75 mg),依次称量,加入反应管,并滴加入二氧六环 (共4 mL)。将反应体系加热至110℃,反应1小时。TLC检测反应结束后,将体系冷却至室温。加入30ml水和30ml乙酸乙酯萃取2次,再用30ml水水洗一次,加入无水硫酸钠干燥,用旋转蒸发仪浓缩后,直接加硅胶,旋干柱层析,得到白色固体 3ja(82%)。1H NMR (400 MHz, CDCl3, δppm): δ 8.13 (d, J = 8.7 Hz, 1H), 7.54 (s, 1H),7.45 (dd, J = 13.4, 5.6 Hz, 5H), 7.25 – 7.17 (m, 5H), 7.05 – 6.97 (m, 4H),6.62 (s, 1H), 5.75 (s, 1H), 5.37 (s, 1H), 2.20 (s, 3H). 13C NMR (100 MHz,CDCl3, δppm): δ 162.41 (d, J = 246.2 Hz), 144.67, 142.08, 141.43, 140.03,137.28 (d, J = 3.2 Hz), 136.88, 136.34, 135.24, 130.53, 129.48, 128.84 (d, J= 8.0 Hz), 128.30, 127.96, 126.84, 126.60, 124.25, 119.16, 117.95, 115.83 (d,J = 5.3 Hz), 115.59, 113.87, 21.57. 19F{1H} NMR (376 MHz, CDCl3, δ ppm): δ -115.90. MS (EI) m/z 468 (M+); HRMS (ESI) Calcd for C29H22FNO2S+H 468.5664,Found 468.5661。
实施例21
图22;
在25 mL的管式反应器中,将底物1k (0.3mmol, 163 mg), 2a (0.6 mmol, 173mg),PdCl2(PPh3)2 (0.03 mmol, 22 mg),叔丁醇锂 (0.9 mmol, 75 mg),依次称量,加入反应管,并滴加入二氧六环 (共4 mL)。将反应体系加热至110℃,反应1小时。TLC检测反应结束后,将体系冷却至室温。加入30ml水和30ml乙酸乙酯萃取2次,再用30ml水水洗一次,加入无水硫酸钠干燥,用旋转蒸发仪浓缩后,直接加硅胶,旋干柱层析,得到白色固体 3ka(82%)。1H NMR (400 MHz, CDCl3, δppm): δ 8.14 (d, J = 8.7 Hz, 1H), 7.55 (s, 1H),7.43 (d, J = 8.5 Hz, 5H), 7.30 (d, J = 8.5 Hz, 2H), 7.26 – 7.15 (m, 5H), 6.98(d, J = 8.1 Hz, 2H), 6.62 (s, 1H), 5.75 (s, 1H), 5.37 (s, 1H), 2.19 (s, 3H).13C NMR (100 MHz, CDCl3, δppm): δ 143.61, 140.94, 140.38, 138.90, 138.50,135.93, 134.92, 134.10, 132.14, 129.45, 128.40, 127.88, 127.44, 127.21,126.88, 125.73, 125.49, 123.05, 118.08, 116.91, 114.80, 112.74, 20.48. MS(EI) m/z 484 (M+); HRMS (ESI) Calcd for C29H22ClNO2S+H 485.0180, Found485.0183。
附图说明
图1是偕二溴苯乙烯与腙反应通式图;
图2是偕二溴苯乙烯与苯基腙反应图;
图3是偕二溴苯乙烯与3-甲氧基苯基腙反应图;
图4是偕二溴苯乙烯与4-甲氧基苯基腙反应图;
图5是偕二溴苯乙烯与4-氟苯基腙反应图;
图6是偕二溴苯乙烯与4-氯苯基腙反应图;
图7是偕二溴苯乙烯与4-溴苯基腙反应图;
图8是偕二溴苯乙烯与3-溴苯基腙反应图;
图9是偕二溴苯乙烯与4-硝基苯基腙反应图;
图10是偕二溴苯乙烯与4-氰基苯基腙反应图;
图11是偕二溴苯乙烯与二氧杂环苯基腙反应图;
图12是偕二溴苯乙烯与苯基乙基腙反应图;
图13是4-甲酸甲酯偕二溴苯乙烯与苯基腙反应图;
图14是5-溴偕二溴苯乙烯与苯基腙反应图;
图15是4-氟偕二溴苯乙烯与苯基腙反应图;
图16是Ns保护的偕二溴苯乙烯与苯基腙反应图;
图17是5-苯基偕二溴苯乙烯与苯基腙反应图;
图18是5-苯甲基偕二溴苯乙烯与苯基腙反应图;
图19是5-苯甲氧基偕二溴苯乙烯与苯基腙反应图;
图20是5-苯叔丁基偕二溴苯乙烯与苯基腙反应图;
图21是5-对氟苯基偕二溴苯乙烯与苯基腙反应图;
图22是5-对氯苯基偕二溴苯乙烯与苯基腙反应图;

Claims (3)

1.一种吲哚C-2位置烯基化的方法,其特征在于,在110℃ 下,化合物1与化合物2在碱性化合物叔丁醇锂和钯催化剂PdCl2(PPh3)2的作用下,在二氧六环溶剂中反应1小时得到化合物3,无需额外配体参与反应,反应方程式如下:
Figure 119335DEST_PATH_IMAGE001
;
其中, R1是H、F、Cl、Br、Ph、4-OMePh、4-MePh、4-tBuPh、4-FPh、4-ClPh;R2是Ts、Ns基团;R3是H、F、Cl、Br、甲氧基、氰基、硝基基团;R4是甲基、乙基、丁基、苄基基团。
2.根据权利要求1所述的一种吲哚C-2位置烯基化的方法,其特征在于:所述钯催化剂PdCl2(PPh3)2的用量为以化合物1为基准的5-10%mol。
3.根据权利要求1所述的一种吲哚C-2位置烯基化的方法,其特征在于:所述碱性化合物叔丁醇锂的用量为以化合物1为基准的3当量。
CN201811193563.1A 2018-10-15 2018-10-15 一种吲哚c-2位置烯基化的方法 Expired - Fee Related CN109134343B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811193563.1A CN109134343B (zh) 2018-10-15 2018-10-15 一种吲哚c-2位置烯基化的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811193563.1A CN109134343B (zh) 2018-10-15 2018-10-15 一种吲哚c-2位置烯基化的方法

Publications (2)

Publication Number Publication Date
CN109134343A CN109134343A (zh) 2019-01-04
CN109134343B true CN109134343B (zh) 2021-10-08

Family

ID=64811585

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811193563.1A Expired - Fee Related CN109134343B (zh) 2018-10-15 2018-10-15 一种吲哚c-2位置烯基化的方法

Country Status (1)

Country Link
CN (1) CN109134343B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110437126B (zh) * 2019-07-11 2020-11-13 香港科技大学深圳研究院 有机催化吲哚非活化sp3碳氢键不对称官能团化的方法与应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Copper-Catalyzed Dehydrogenative Diels−Alder Reaction;Bing Jiang等;《Org. Lett.》;20180523;第20卷;3215−3219 *
Diazo Compounds and N‑Tosylhydrazones: Novel Cross-Coupling Partners in Transition- Metal-Catalyzed Reactions;QING XIAO等;《ACCOUNTS OF CHEMICAL RESEARCH》;20120926;第46卷(第2期);236–247 *
Palladium-Catalyzed [5+1] Annulation of 2-(1-Arylvinyl) Anilines and α-Diazacarbonyl Compounds toward Multi-functionalized Quinolines;Jiawei Zhu等;《Adv. Synth. Catal.》;20170914;第359卷;3725-3728 *
Pd-Catalyzed Tandem C-N/C-C Coupling of gem-Dihalovinyl Systems: A Modular Synthesis of 2-Substituted Indoles;Yuan-Qing Fa等;《ORGANIC LETTERS》;20050709;第7卷(第16期);3549-3552 *
Synthesis of 2-Vinylic Indoles and Derivatives via a Pd-Catalyzed Tandem Coupling Reaction;Aude Fayol等;《ORGANIC LETTERS》;20060825;第8卷(第19期);4203-4206 *
基于钯催化烯烃与腙的交叉偶联反应研究;傅炜;《华南理工大学硕士学位论文》;20141231;1-50 *

Also Published As

Publication number Publication date
CN109134343A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
CN109988117B (zh) 一类3-甲基喹喔啉-2(1h)-酮类衍生物的制备方法
CN107501156B (zh) 一种多取代吡咯的三组分串联合成方法
CN108218672B (zh) 金属化物/钯化合物催化还原体系在脱烯丙基反应及氘代反应中的应用
CN109134343B (zh) 一种吲哚c-2位置烯基化的方法
CN111303020A (zh) 一种5-氯-2-(吡啶-3-基)吡啶-3-胺的合成方法
Siitonen et al. Total Synthesis of Stemoamide, 9a-epi-Stemoamide, and 9a, 10-epi-Stemoamide: Divergent Stereochemistry of the Final Methylation Steps
Mancuso et al. Palladium-catalyzed carbonylative synthesis of functionalized benzimidazopyrimidinones
CN105669441A (zh) α-酰氧基酮类化合物的制备方法
Miyamoto et al. Synthesis of 9, 10-diarylanthracenes via Mg (TMP) 2· 2LiCl-mediated benzyne generation/[4+ 2] cycloaddition and deoxygenation of 9, 10-epoxyanthracene intermediates
Xia et al. Platinum-catalyzed 1, 3-acyloxy migration/[1, 5]-hydride transfer/cycloaddition sequence: synthesis of ring-fused tetrahydroquinolines
CN109651271B (zh) 一种3-叔丁基-n-甲基喹喔啉-2(1h)-酮化合物的合成方法
CN111574444A (zh) 一种贝达喹啉的制备方法
CN106966922B (zh) 一种功能化取代的二氰基乙烯类化合物的合成方法
Wang et al. Towards a biomimetic synthesis of schischkiniin: assembling the bis-dihydropyrazinone cycloaddition precursor
CN101113138A (zh) 二茂铁亚胺环钯配合物催化下芳基腈类衍生物的合成方法
CN111362935B (zh) N-羟基托烷司琼的合成方法
KR102231872B1 (ko) 포스포늄일리드를 이용한 디아진-n-옥사이드의 위치선택적 알킬화 방법
CN108976198B (zh) 一种3-(4-吡啶)吲哚类化合物的合成方法
CN110003133B (zh) 一种手性樟脑磺酰肼双功能催化剂及其制备方法与应用
CN111018795B (zh) 一种碱性条件下合成喹喔啉-3-酮的方法
Pedrosa et al. Synthesis of enantiopure mono-and disubstituted tetrahydroisoquinolines by 6-exo radical cyclizations
Majumdar et al. Palladium-mediated reductive Heck cyclization for the formation of dibenzoazepinone framework
CN108299466B (zh) 一种改进的度鲁特韦合成方法
CN107176965B (zh) 一种合成醋酸阿比特龙新方法
Sashida et al. Studies on tellurium-containing heterocycles. part 20. Reactions of 2-benzoselenopyrylium salts and 2-benzotelluropyrylium salts with nucleophiles: Formation of 1-functionalized 1H-isoselenochromenes and 1H-isotellurochromenes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211008