CN109126833A - 一种制备AgFe3(SO4)2(OH)6可见光磁性催化剂的方法 - Google Patents

一种制备AgFe3(SO4)2(OH)6可见光磁性催化剂的方法 Download PDF

Info

Publication number
CN109126833A
CN109126833A CN201810979423.0A CN201810979423A CN109126833A CN 109126833 A CN109126833 A CN 109126833A CN 201810979423 A CN201810979423 A CN 201810979423A CN 109126833 A CN109126833 A CN 109126833A
Authority
CN
China
Prior art keywords
visible light
agfe
magnetic catalyst
feso
light magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810979423.0A
Other languages
English (en)
Inventor
韩成良
刘丽
徐泽忠
姚李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University
Hefei College
Original Assignee
Hefei College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei College filed Critical Hefei College
Priority to CN201810979423.0A priority Critical patent/CN109126833A/zh
Publication of CN109126833A publication Critical patent/CN109126833A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • B01J27/055Sulfates with alkali metals, copper, gold or silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种制备AgFe3(SO4)2(OH)6可见光磁性催化剂的方法,包括以下步骤:(1)将FeSO4.7H2O加入到去离子水中配成硫酸亚铁水溶液;(2)称取AgNO3加入到步骤(1)中所述的硫酸亚铁水溶液中,在常温常压下,通过快速还原反应得到Ag‑Fe2(SO4)3‑H2O反应体系;(3)再向步骤(2)中制得的Ag‑Fe2(SO4)3‑H2O反应体系中加入FeSO4.7H2O,在空气中快速搅拌反应多个小时后即得AgFe3(SO4)2(OH)6粉体。与现有技术相比,本发明的有益效果为:(1)实现了银铁矾可见光催化剂的简单合成,为铁矾的制备和应用开辟了新的领域。(2)本发明的方法具有实验操作简单、成本低廉,同时,获得的产物量大、产物可见光性能优异。

Description

一种制备AgFe3(SO4)2(OH)6可见光磁性催化剂的方法
技术领域
本发明涉及微纳米结构材料的制备技术领域,特别是一种制备AgFe3(SO4)2(OH)6可见光磁性催化剂的方法。
背景技术
光催化剂是指在光子的激发下能够起到催化作用的各类半导体材料。主要包括二氧化钛(TiO2)、氧化锌(ZnO)、氧化锡(SnO2)、二氧化锆(ZrO2)和硫化镉(CdS)等多种化合物半导体。光催化除污技术具有设备简单、操作条件易控制、非选择性的氧化有机污染物、运行费用低、无二次污染并且催化剂可回收利用等突出优点,在有机废水治理方面有着广阔的应用前景。光催化逐步向更高效利用日光,实用化方向发展,寻找能直接利用太阳光的催化剂是光催化领域的一个重要发展方向。
铁矾是指两种或两种以上金属的硫酸盐所组成的碱式硫酸盐的复盐,主要有:黄钾铁矾、草黄铁矾、黄铵铁矾、银铁矾、黄钠铁矾和铅铁矾六种,它们都是在酸性环境中形成的。铁矾一旦形成,就很稳定,不溶于酸,因此,铁矾的沉淀反应可用于从硫酸盐溶液中除铁。铁矾分子式可写成MFe3(SO4)2(OH)6,M为一价阳离子(主要包括Na、K、NH4 、Ag、Rb和0.5Pb2+等)。例如,钠铁矾[Na2Fe6(SO4)4(OH)12]、铅铁矾[Pb0.5Fe3(SO4)2(OH)6]和银铁矾[Ag2Fe6(OH)12(SO4)4]都是已知的铁矾。通常,铁矾可采用化学法和生物化学法来制备。铁矾本身一般具有解毒杀虫、敛疮等的功效,在医学领域应用广泛。同时,煅烧质量纯的铁矾可得到用于研磨的各类材料。
发明内容
本发明的目的是提供一种制备AgFe3(SO4)2(OH)6可见光磁性催化剂的方法,以解决现有技术中的不足,它能够在常温常压下成功得到了具有优异可见光催化性能的AgFe3(SO4)2(OH)6磁性催化剂,操作简单、成本低廉和环境友好。
本发明提供了一种制备AgFe3(SO4)2(OH)6可见光磁性催化剂的方法,包括以下步骤:
(1)将FeSO4.7H2O加入到去离子水中配成硫酸亚铁水溶液;
(2)称取AgNO3加入到步骤(1)中所述的硫酸亚铁水溶液中,在常温常压下,通过快速还原反应得到Ag-Fe2(SO4)3-H2O反应体系;
(3)再向步骤(2)中制得的Ag-Fe2(SO4)3-H2O反应体系中加入FeSO4.7H2O,在空气中快速搅拌反应多个小时后即得AgFe3(SO4)2(OH)6粉体。
优选的是,步骤(1)中所述硫酸亚铁水溶液的浓度为0.01-0.4mol/L。
优选的是,步骤(2)中所述AgNO3的质量为0.10-0.5g。
优选的是,步骤(3)中添加的FeSO4.7H2O的质量为1-3g。
优选的是,步骤(3)中在空气中快速搅拌的速率为100-200转/分钟。
优选的是,步骤(3)中在空气中快速搅拌反应时间超过12h。
与现有技术相比,本发明的有益效果为:(1)实现了银铁矾可见光催化剂的简单合成,为铁矾的制备和应用开辟了新的领域。(2)本发明的方法具有实验操作简单、成本低廉,同时,获得的产物量大、产物可见光性能优异。
附图说明
图1为实施例1中获得的产物的XRD谱图;
图2为实施例1中产物的形态和化学组成分析;
图3为实施例1中获得的产物的光学性能。
具体实施方式
下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
一种制备AgFe3(SO4)2(OH)6可见光磁性催化剂的方法,包括以下步骤:
(1)将FeSO4.7H2O加入到去离子水中配成硫酸亚铁水溶液;
(2)称取AgNO3加入到步骤(1)中所述的硫酸亚铁水溶液中,在常温常压下,通过快速还原反应得到Ag-Fe2(SO4)3-H2O反应体系;
(3)再向步骤(2)中制得的Ag-Fe2(SO4)3-H2O反应体系中加入FeSO4.7H2O,在空气中快速搅拌反应多个小时后即得AgFe3(SO4)2(OH)6粉体。
AgNO3、FeSO4.7H2O和Fe2(SO4)3以及空气中的O2之间具有相互配合、缺一不可的关系。
步骤(1)中所述硫酸亚铁水溶液的浓度为0.01-0.4mol/L。
步骤(2)中所述AgNO3的质量为0.10-0.5g。
步骤(3)中添加的FeSO4.7H2O的质量为1-3g。
步骤(3)中在空气中快速搅拌的速率为100-200转/分钟。
步骤(3)中在空气中快速搅拌反应时间超过12h。
本发明的实施例1:
取0.2g AgNO3加入到100mL浓度为0.2mol/L的FeSO4.7H2O水溶液中,反应30分钟后,再加入0.3g FeSO4.7H2O,超声溶液和反应若干时间后即可获得目标产物。首先,利用X-衍射手段对产物结构进行分析后表明,产物的XRD谱图与块体AgFe3(SO4)2(OH)6的标准XRD谱图(PDF#41-1398)对应完好(见图1),说明实验得到的粉体为菱方结构的AgFe3(SO4)2(OH)6。接着,采用SEM手段对产物的形态和化学组成进行了分析,其结果如图2所示。由图2a可以看出,产物的形态多为圆片状聚集体,尺寸较大。对单个圆片进行面扫描和线扫描能谱分析结果表明,单个圆片主要是由Ag、Fe、S和O四种元素构成(见图2b)。线扫描结果初步表明,Ag:Fe:S三者比例约为0.83:4.81:2.8,接近于1:3:2,也可以说明产物组成为AgFe3(SO4)2(OH)6(见图2c)。基于上述部分实验结果,可以认为AgFe3(SO4)2(OH)6的形成过程如下:首先,Ag+被Fe2+快速还原成Ag,之后Ag又被Fe3+缓慢氧化成Ag+,最后,在含有Ag+、Fe3+和高浓度的SO4 2-的酸性环境中形成了AgFe3(SO4)2(OH)6。反应过程可如下两个式子表示。
利用公式可以来计算AgFe3(SO4)2(OH)6光带隙,其中h为普朗克常量,是 光的频率,Eg为光带隙能量值,α为吸光度,n对于间接带隙型半导体取0.5, 对于直接带隙型半导体2。以(αhν)n为纵坐标,hν为横坐标作图,对其中线性 区段进行拟合,得到一个线性方程,它在x轴截距即是带隙能量的大小。
首先,测得了黄色AgFe3(SO4)2(OH)6粉体的紫外-可见吸收光谱图(见3a), 然后,利用上述方法得到(αhν)0.5-hν曲线(见3b),可以估算出AgFe3(SO4)2(OH)6粉体的带隙约为1.9eV。最后,将一定量粉体分散于水中,外加一定强度的磁 场,约10分钟后,分散的产物将完全富集到瓶壁上,说明实验产物具有良好 的磁性能。
以上依据图式所示的实施例详细说明了本发明的构造、特征及作用效果,以上所述仅为本发明的较佳实施例,但本发明不以图面所示限定实施范围,凡是依照本发明的构想所作的改变,或修改为等同变化的等效实施例,仍未超出说明书与图示所涵盖的精神时,均应在本发明的保护范围内。

Claims (6)

1.一种制备AgFe3(SO4)2(OH)6可见光磁性催化剂的方法,其特征在于:包括以下步骤:
(1)将FeSO4.7H2O加入到去离子水中配成硫酸亚铁水溶液;
(2)称取AgNO3加入到步骤(1)中所述的硫酸亚铁水溶液中,在常温常压下,通过快速还原反应得到Ag-Fe2(SO4)3-H2O反应体系;
(3)再向步骤(2)中制得的Ag-Fe2(SO4)3-H2O反应体系中加入FeSO4.7H2O,在空气中快速搅拌反应多个小时后即得AgFe3(SO4)2(OH)6粉体。
2.根据权利要求1所述的制备AgFe3(SO4)2(OH)6可见光磁性催化剂的方法,其特征在于:步骤(1)中所述硫酸亚铁水溶液的浓度为0.01-0.4mol/L。
3.根据权利要求1所述的制备AgFe3(SO4)2(OH)6可见光磁性催化剂的方法,其特征在于:步骤(2)中所述AgNO3的质量为0.10-0.5g。
4.根据权利要求1所述的制备AgFe3(SO4)2(OH)6可见光磁性催化剂的方法,其特征在于:步骤(3)中添加的FeSO4.7H2O的质量为1-3g。
5.根据权利要求1所述的制备AgFe3(SO4)2(OH)6可见光磁性催化剂的方法,其特征在于:步骤(3)中在空气中快速搅拌的速率为100-200转/分钟。
6.根据权利要求1所述的制备AgFe3(SO4)2(OH)6可见光磁性催化剂的方法,其特征在于:步骤(3)中在空气中快速搅拌反应时间超过12h。
CN201810979423.0A 2018-08-27 2018-08-27 一种制备AgFe3(SO4)2(OH)6可见光磁性催化剂的方法 Pending CN109126833A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810979423.0A CN109126833A (zh) 2018-08-27 2018-08-27 一种制备AgFe3(SO4)2(OH)6可见光磁性催化剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810979423.0A CN109126833A (zh) 2018-08-27 2018-08-27 一种制备AgFe3(SO4)2(OH)6可见光磁性催化剂的方法

Publications (1)

Publication Number Publication Date
CN109126833A true CN109126833A (zh) 2019-01-04

Family

ID=64828085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810979423.0A Pending CN109126833A (zh) 2018-08-27 2018-08-27 一种制备AgFe3(SO4)2(OH)6可见光磁性催化剂的方法

Country Status (1)

Country Link
CN (1) CN109126833A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070292326A1 (en) * 2006-06-15 2007-12-20 Barrick Gold Corporation Process for reduced alkali consumption in the recovery of silver
CN105836812A (zh) * 2016-04-06 2016-08-10 暨南大学 一种铁系颜料黄铁矾及其制备方法
CN106040267A (zh) * 2016-06-24 2016-10-26 武汉大学 草黄铁矾催化剂的制备及生物类电‑芬顿体系处理废水的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070292326A1 (en) * 2006-06-15 2007-12-20 Barrick Gold Corporation Process for reduced alkali consumption in the recovery of silver
CN105836812A (zh) * 2016-04-06 2016-08-10 暨南大学 一种铁系颜料黄铁矾及其制备方法
CN106040267A (zh) * 2016-06-24 2016-10-26 武汉大学 草黄铁矾催化剂的制备及生物类电‑芬顿体系处理废水的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A. A. GUNARATNAM,ET AL: "Characterisationofsolidphasesinthe iron–sulphate–watersystem where silver is present", 《CANADIAN METALLURGICAL QUARTERLY》 *
CHIRANJIT MUKHERJEE,ET AL: "Synthesis of argentojarosite with simulated bioleaching solutions produced by Acidithiobacillus ferrooxidans", 《MATERIALS SCIENCE AND ENGINEERING C》 *
KEIKO SASAKI, ET AL: "Characterization of argentojarosite formed from biologically oxidized Fe3+ ions", 《THE CANADIAN MINERALOGIST》 *
黄志刚,等: "《基础应用化学》", 30 September 2010, 航空工业出版社 *

Similar Documents

Publication Publication Date Title
Yadav et al. Synergistic effect of MgO nanoparticles for electrochemical sensing, photocatalytic-dye degradation and antibacterial activity
CN109482179A (zh) TiO2/石墨烯/纳米银复合光催化剂的制备及其对甲醛的降解
Hao et al. Synthesis of NiWO4 powder crystals of polyhedron for photocatalytic degradation of Rhodamine
CN102380366B (zh) 铋、硅共掺杂的纳米二氧化钛光催化剂及其制备、应用
Dhir Photocatalytic degradation of methyl orange dye under UV irradiation in the presence of synthesized PVP capped pure and gadolinium doped ZnO nanoparticles
CN108311164A (zh) 一种铁改性光催化材料及其制备方法和应用
Borker et al. Enhanced photocatalytic activity of ZnO supported on Alumina and Antibacterial study
Synnott et al. Novel microwave assisted synthesis of ZnS nanomaterials
Syed et al. Effect of CeO2-ZnO nanocomposite for photocatalytic and antibacterial activities
CN103977830A (zh) 可见光活性掺杂纳米二氧化钛的制法及可见光光催化光触媒上光乳液的制法
CN1686609A (zh) 氧化铁敏化的片状氧化钛可见光催化剂及制备方法
Chen et al. Enhanced photocatalytic performance of Ce-doped SnO2 hollow spheres by a one-pot hydrothermal method
TW201402463A (zh) 雙金屬改質的二氧化鈦及其製備方法
CN108636395A (zh) 一种弱可见光响应的复合光催化剂及其制备和应用
CN107511154A (zh) 一种海胆状CeO2/Bi2S3复合可见光催化剂及其制备方法
CN107519897A (zh) 一种新型三元z型结构光催化剂及其制备方法和应用
Lal et al. Optical, structural properties and photocatalytic potential of Nd-ZnO nanoparticles synthesized by hydrothermal method
CN103992660A (zh) 一种ZrO2包裹型γ-Ce2S3红色料及其制备方法
Rauf et al. New insight in photocatalytic degradation of textile dyes over CeO2/Ce2S3 composite
Dhatshanamurthi et al. Synthesis and characterization of ZnS–TiO2 photocatalyst and its excellent sun light driven catalytic activity
Tijani et al. Photocatalytic, electrochemical, antibacterial and antioxidant behaviour of carbon-sulphur Co-doped zirconium (IV) oxide nanocomposite
Sampath et al. Solvothermal synthesis of magnetically separable Co–ZnO nanowires for visible light driven photocatalytic applications
Juárez-Cortazar et al. Doping of TiO2 Using Metal Waste (Door Key) to Improve Its Photocatalytic Efficiency in the Mineralization of an Emerging Contaminant in an Aqueous Environment
Yao et al. TiO2-coated copper zinc tin sulfide photocatalyst for efficient photocatalytic decolourization of dye-containing wastewater
CN108927102A (zh) 一种二氧化钛纳米管材料的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190104

WD01 Invention patent application deemed withdrawn after publication