CN109119540A - 在F掺杂SnO2透明导电薄膜基体上原位制备SnO2电子传输层的方法 - Google Patents

在F掺杂SnO2透明导电薄膜基体上原位制备SnO2电子传输层的方法 Download PDF

Info

Publication number
CN109119540A
CN109119540A CN201710481697.2A CN201710481697A CN109119540A CN 109119540 A CN109119540 A CN 109119540A CN 201710481697 A CN201710481697 A CN 201710481697A CN 109119540 A CN109119540 A CN 109119540A
Authority
CN
China
Prior art keywords
sno
transfer layer
electron transfer
situ
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710481697.2A
Other languages
English (en)
Other versions
CN109119540B (zh
Inventor
刘岗
甄超
吴金波
成会明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201710481697.2A priority Critical patent/CN109119540B/zh
Publication of CN109119540A publication Critical patent/CN109119540A/zh
Application granted granted Critical
Publication of CN109119540B publication Critical patent/CN109119540B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/102Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

本发明涉及太阳能电池领域,具体为一种在F掺杂SnO2(FTO)透明导电薄膜基体上原位制备光电器件用高效SnO2电子传输层的方法。以FTO作为基体,利用(电)化学还原(或热还原)方法将其表层的F掺杂SnO2还原为金属Sn,去除掺杂的F离子,再通过热氧化(或电/化学氧化)方法将生成的金属Sn重新转化为纯SnO2,进而在FTO表面原位获得共型的SnO2电子传输层。本发明利用先还原‑再氧化的过程,在FTO透明导电薄膜基体上原位制备光电器件用高效SnO2电子传输层,SnO2是光电器件(如:钙钛矿太阳能电池)用电子传输层的理想材料之一,具有高载流子迁移率和低表面态密度,利于光生电子的界面转移和体相输运。

Description

在F掺杂SnO2透明导电薄膜基体上原位制备SnO2电子传输层的 方法
技术领域
本发明涉及太阳能电池领域,具体为一种在F掺杂SnO2(FTO)透明导电薄膜基体上原位制备光电器件用高效SnO2电子传输层的方法。
背景技术
光伏电池是太阳能转化利用的重要途径之一,它将丰富的太阳能转化为便于应用的电能。钙钛矿太阳能电池作为新型的光伏器件,具有加工简易、成本低廉、效率高效等诸多优点,是光伏领域未来有望替代晶体硅太阳能电池的潜在候选者。钙钛矿太阳能电池中,钙钛矿吸光材料具有优异的光物理特性,光生载流子能够高效迁移至吸光层表面。因此,电荷传输层的结构和特性对后续的界面电荷转移和体相输运起着至关重要的作用,影响最终的转化效率。钙钛矿太阳能电池中常用的电子传输层为TiO2,但由于TiO2具有低的载流子迁移率且表面富含缺陷态,光生电子的收集速率和效率受限。此外,TiO2紫外光下强的光催化降解活性对钙钛矿吸光材料产生降解作用,降低钙钛矿太阳能电池的稳定性。
SnO2相比于TiO2具有更高的载流子迁移率(高2~3个数量级),且表面态密度SnO2远远低于TiO2。除此之外,SnO2的紫外光下的光催化活性远低于TiO2。因此,SnO2是一种理想的钙钛矿太阳能电子传输层材料。目前,SnO2电子传输层的制备方法有溶液成膜法(如:旋涂、热喷涂、浸渍提拉法等)、物理成膜法(如:磁控溅射、真空热蒸镀、物理气相沉积等)和化学成膜法(如:化学气相沉积、原子层沉积等)。上述的所用成膜方法中都需要利用含Sn的前驱体源,将SnO2成膜与透明导电基体(如:FTO、ITO、AZO等)上,且部分沉积方法需要昂贵的实验仪器设备,增加了器件组装工艺和生产成本。
发明内容
本发明的目的在于提供一种在F掺杂SnO2(FTO)透明导电薄膜基体上原位制备光电器件用高效SnO2电子传输层的方法,简化工艺制备高质量的SnO2电子传输层,以获得高效钙钛矿太阳能电池,是推进钙钛矿太阳能电池应用的一种有效途径。
本发明的技术方案是:
一种在F掺杂SnO2透明导电薄膜基体上原位制备SnO2电子传输层的方法,以FTO为基体,利用化学还原、电化学还原或热还原方法将其表层的F掺杂SnO2还原为金属Sn,去除掺杂的F离子,再通过热氧化、化学氧化或电化学氧化方法将生成的金属Sn重新转化为纯SnO2,进而在FTO表面原位获得共型的SnO2电子传输层。
所述的化学还原、电化学还原方法包括各种湿化学还原方法。
所述的湿化学还原方法为还原剂还原方法或电化学阴极还原方法。
所述的热还原方法为还原气氛下的热处理过程,其中,还原气氛包括各种具有还原特性的气体或其混合气,热处理温度范围为100~800℃。
所述的具有还原特性的气体为氢气、氨气或硫化氢。
所述的热氧化方法为在含氧气氛下进行的热处理过程,其中氧气的分压范围10~108Pa,热处理温度为范围为100~800℃。
所述的化学氧化或电化学氧化方法包括各种湿化学氧化方法。
所述的湿化学氧化方法为氧化剂氧化方法或电化学阳极氧化方法。
本发明的设计思想是:
以FTO作为基体,利用(电)化学还原(或热还原)方法将其表层的F掺杂SnO2还原为金属Sn,去除掺杂的F离子,再通过热氧化(或电/化学氧化)方法将生成的金属Sn重新转化为纯SnO2,进而在FTO表面原位获得共型的SnO2电子传输层。本发明利用先还原-再氧化的过程,在FTO透明导电薄膜基体上原位制备光电器件用高效SnO2电子传输层,SnO2是光电器件(如钙钛矿太阳能电池)用电子传输层的理想材料之一,具有高的载流子迁移率和低的表面态密度,利于光生电子的界面转移和体相输运。
本发明的优点及有益效果是:
1、本发明利用先还原再氧化的过程在FTO透明导电薄膜基体上原位制备光电器件用高效SnO2电子传输层的方法,无需额外的Sn源作为前驱体,有效节省源材料成本。
2、本发明制备的SnO2电子传输层与ALD方法制备SnO2电子传输层相似,具有厚度均匀、共型的优点,但制备过程简易,无需昂贵前驱体和仪器设备,可有效降低器件的加工成本。
附图说明
图1.原位共型制备高质量SnO2电子传输层的示意图。
图2.不同电位下电化学还原后FTO的光学照片。其中,(a)为-1.8V;(b)为-1.7V;(c)为-1.56V;(d)为未还原。
图3.不同电位下电化学还原后FTO的透光率图谱。图中,X轴wavelength为光子波长(nm),Y轴为透光率(T%)。
图4.初始FTO、-1.8V还原后的FTO(R-FTO)以及还原后再热氧化后的FTO(O-R-FTO)的X射线衍射(XRD)图谱。图中,X轴2theta为衍射角(degree),Y轴intensity为强度(a.u.)。
图5.初始FTO、-1.56V还原后的FTO(R-FTO)以及还原后再热氧化后的FTO(O-R-FTO)的扫面电子显微镜(SEM)照片和光学照片。其中,(a)为FTO;(b)为R-FTO;(c)为O-R-FTO。
图6.制备的SnO2电子传输层和传统TiO2电子传输层组装钙钛矿太阳能电池后的I-V测试曲线。图中,X轴potential为电压(V),Y轴current density为光电流密度(mA·cm-2)。
图7.制备的SnO2电子传输层和传统TiO2电子传输层组装钙钛矿太阳能电池后的效率曲线。图中,X轴potential为电压(V),Y轴efficiency为太阳能转化效率(%)。
具体实施方式
在具体实施过程中,本发明在F掺杂SnO2(FTO)透明导电薄膜基体上原位制备光电器件用高效SnO2电子传输层的方法。以FTO为基体,利用(电)化学还原(或热还原)方法将其表层的F掺杂SnO2还原为金属Sn,去除掺杂的F离子,再通过热氧化(或电/化学氧化)方法将生成的金属Sn重新转化为纯SnO2,进而在FTO表面原位获得共型的SnO2电子传输层,具体如下:
1、所述的(电)化学还原方法包括各种湿化学还原方法;如:还原剂还原方法和电化学阴极还原方法等。
2、所述的热还原方法为还原气氛下的热处理过程;其中,还原气氛包括各种具有还原特性的气体(如:氢气、氨气、硫化氢等)及其混合气,热处理温度范围为100~800℃,优选温度为200~500℃。
3、所述的热氧化方法为在含氧气氛下进行的热处理过程;其中,氧气的分压范围10~108Pa,优选分压为104~105Pa;热处理温度为范围为100~800℃,优选温度为400~500℃。
4、所述的电/化学氧化包括各种湿化学氧化方法;如:氧化剂氧化方法和电化学阳极氧化方法等。
下面结合实施例和附图对本发明进一步详细阐述。
实施例1
本实施例中,将FTO(1.6cm×2.4cm)基片分别在去离子水、乙醇、丙酮、异丙醇中超声清洗15分钟,吹干后将其作为工作电极连接到电化学工作站,Ag@AgCl作为参比电极,Pt作为对电极。配摩尔浓度1M的NaSO3溶液作为电解液,将上述三个电极浸入该电解液中,调节工作电极电位相对于参比电极为-1.56V、-1.7V和-1.8V时分别进行电化学还原,还原时间3分钟。电化学还原处理后,用大量的去离子水清洗去除表面吸附的电解液,吹干后放入马弗炉中450℃热处理2小时,将电化学还原得到的金属Sn重新氧化,获得共型于(共型的含义是在基体表面均匀生长,保留基体原有形貌)FTO的高质量SnO2电子传输层。利用该电子传输层组装钙钛矿太阳能电池,测试其光电转化效率。
如图1所示,FTO通过电化学还原后表面生成共型金属Sn,再通过热氧化后转化为SnO2
如图2所示,在不同电位下的还原速度不同,电位越负还原的越快,表面生成Sn的量越多,颜色越深。-1.8V还原3分钟后FTO有透明变为黑灰的,随着降低还原电位至-1.7V和-1.56V,FTO透明度增高,在-1.56V还原条件下的透明度与纯FTO基本相当;
如图3所示,经过电化学还原后,FTO的透光率下降,且随着还原电位从-1.56V增加至-1.8V,透光率依次下降,在-1.56V伏还原下的投光率与纯FTO相当;
如图4所示,经过-1.8V电化学还原后,出现金属Sn的XRD衍射峰(R-FTO),说明电化学还原出金属Sn,在通过热氧化后,金属Sn的衍射峰又消失(O-R-FTO,说明金属Sn重新被氧化变为SnO2
如图5所示,在-1.56V下电位还原下,FTO的形貌没有发生明显变化,再经过热氧化后形貌保持一致。说明生成的SnO2共型生长在FTO表面,从光学照片上观察FTO的透光性没有明显变化;
如图6所示,以获得的共性高质量SnO2电子传输层组装钙钛矿太阳能电池,相比于传统的TiO2电子传输层具有更高的短路电流和开路电压;
如图7所示,以获得的共性高质量SnO2电子传输层组装钙钛矿太阳能电池,相比于传统的TiO2电子传输层具有更高太阳能转化效率。
实施例结果表明,本发明以FTO作为基体,利用(电)化学还原(或热还原)方法将其表层的F掺杂SnO2还原为金属Sn,去除掺杂的F离子,再通过热氧化(或电/化学氧化)方法将生成的金属Sn重新转化为纯SnO2,进而在FTO表面原位获得共型的SnO2电子传输层。SnO2是光电器件(如:钙钛矿太阳能电池)用电子传输层的理想材料之一,具有高的载流子迁移率和低的表面态密度,利于光生电子的界面转移和体相输运,组装的钙钛矿太阳能电池展现出优异太阳能转化效率,优于传统旋涂获得的TiO2电子传输层。

Claims (8)

1.一种在F掺杂SnO2透明导电薄膜基体上原位制备SnO2电子传输层的方法,其特征在于:以FTO为基体,利用化学还原、电化学还原或热还原方法将其表层的F掺杂SnO2还原为金属Sn,去除掺杂的F离子,再通过热氧化、化学氧化或电化学氧化方法将生成的金属Sn重新转化为纯SnO2,进而在FTO表面原位获得共型的SnO2电子传输层。
2.按照权利要求1所述的在F掺杂SnO2透明导电薄膜基体上原位制备SnO2电子传输层的方法,其特征在于:所述的化学还原、电化学还原方法包括各种湿化学还原方法。
3.按照权利要求2所述的在F掺杂SnO2透明导电薄膜基体上原位制备SnO2电子传输层的方法,其特征在于:所述的湿化学还原方法为还原剂还原方法或电化学阴极还原方法。
4.按照权利要求1所述的在F掺杂SnO2透明导电薄膜基体上原位制备SnO2电子传输层的方法,其特征在于:所述的热还原方法为还原气氛下的热处理过程,其中,还原气氛包括各种具有还原特性的气体或其混合气,热处理温度范围为100~800℃。
5.按照权利要求4所述的在F掺杂SnO2透明导电薄膜基体上原位制备SnO2电子传输层的方法,其特征在于:所述的具有还原特性的气体为氢气、氨气或硫化氢。
6.按照权利要求1所述的在F掺杂SnO2透明导电薄膜基体上原位制备SnO2电子传输层的方法,其特征在于:所述的热氧化方法为在含氧气氛下进行的热处理过程,其中氧气的分压范围10~108Pa,热处理温度为范围为100~800℃。
7.按照权利要求1所述的在F掺杂SnO2透明导电薄膜基体上原位制备SnO2电子传输层的方法,其特征在于:所述的化学氧化或电化学氧化方法包括各种湿化学氧化方法。
8.按照权利要求7所述的在F掺杂SnO2透明导电薄膜基体上原位制备SnO2电子传输层的方法,其特征在于:所述的湿化学氧化方法为氧化剂氧化方法或电化学阳极氧化方法。
CN201710481697.2A 2017-06-22 2017-06-22 在F掺杂SnO2透明导电薄膜基体上原位制备SnO2电子传输层的方法 Active CN109119540B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710481697.2A CN109119540B (zh) 2017-06-22 2017-06-22 在F掺杂SnO2透明导电薄膜基体上原位制备SnO2电子传输层的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710481697.2A CN109119540B (zh) 2017-06-22 2017-06-22 在F掺杂SnO2透明导电薄膜基体上原位制备SnO2电子传输层的方法

Publications (2)

Publication Number Publication Date
CN109119540A true CN109119540A (zh) 2019-01-01
CN109119540B CN109119540B (zh) 2020-03-20

Family

ID=64732780

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710481697.2A Active CN109119540B (zh) 2017-06-22 2017-06-22 在F掺杂SnO2透明导电薄膜基体上原位制备SnO2电子传输层的方法

Country Status (1)

Country Link
CN (1) CN109119540B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888106A (zh) * 2019-03-11 2019-06-14 吉林大学 一种SnO2电子传输层及钙钛矿太阳电池的制备方法
CN110743598A (zh) * 2019-11-05 2020-02-04 西华师范大学 一种多孔氮化碳/锡/氧化亚锡光催化材料及其制备方法
CN111446374A (zh) * 2020-03-09 2020-07-24 浙江师范大学 一种钙钛矿太阳能电池及其制备方法
CN114284444A (zh) * 2021-12-23 2022-04-05 华能新能源股份有限公司 一种CsPbBr3钙钛矿太阳能电池的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204407369U (zh) * 2015-01-19 2015-06-17 武汉大学 一种氧化锡电子传输层介观钙钛矿光伏电池
US20160079552A1 (en) * 2014-09-17 2016-03-17 National Taiwan University Perovskite solar cell
CN106505150A (zh) * 2016-12-09 2017-03-15 中国科学院半导体研究所 基于氧化锡电子传输层的钙钛矿太阳能电池及其制备方法
CN106784329A (zh) * 2017-01-12 2017-05-31 武汉大学 一种SnO2量子点电子传输层钙钛矿太阳能电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160079552A1 (en) * 2014-09-17 2016-03-17 National Taiwan University Perovskite solar cell
CN204407369U (zh) * 2015-01-19 2015-06-17 武汉大学 一种氧化锡电子传输层介观钙钛矿光伏电池
CN106505150A (zh) * 2016-12-09 2017-03-15 中国科学院半导体研究所 基于氧化锡电子传输层的钙钛矿太阳能电池及其制备方法
CN106784329A (zh) * 2017-01-12 2017-05-31 武汉大学 一种SnO2量子点电子传输层钙钛矿太阳能电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIKE HUANG等: ""UV-Sintered Low-Temperature Solution-Processed SnO2 as Robust Electron Transport Layer for Efficient Planar Heterojunction Perovskite Solar Cells"", 《APPLIED MATERIALS & INTERFACES》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888106A (zh) * 2019-03-11 2019-06-14 吉林大学 一种SnO2电子传输层及钙钛矿太阳电池的制备方法
CN109888106B (zh) * 2019-03-11 2020-09-01 吉林大学 一种SnO2电子传输层及钙钛矿太阳电池的制备方法
CN110743598A (zh) * 2019-11-05 2020-02-04 西华师范大学 一种多孔氮化碳/锡/氧化亚锡光催化材料及其制备方法
CN110743598B (zh) * 2019-11-05 2024-01-16 西华师范大学 一种多孔氮化碳/锡/氧化亚锡光催化材料及其制备方法
CN111446374A (zh) * 2020-03-09 2020-07-24 浙江师范大学 一种钙钛矿太阳能电池及其制备方法
CN114284444A (zh) * 2021-12-23 2022-04-05 华能新能源股份有限公司 一种CsPbBr3钙钛矿太阳能电池的制备方法

Also Published As

Publication number Publication date
CN109119540B (zh) 2020-03-20

Similar Documents

Publication Publication Date Title
Murugadoss et al. An efficient electron transport material of tin oxide for planar structure perovskite solar cells
Dubale et al. Heterostructured Cu 2 O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction
CN109119540A (zh) 在F掺杂SnO2透明导电薄膜基体上原位制备SnO2电子传输层的方法
Wang et al. Enhanced photoelectrochemical hydrogen generation in neutral electrolyte using non-vacuum processed CIGS photocathodes with an earth-abundant cobalt sulfide catalyst
CN102220615B (zh) 制备CdS/ZnO纳米管阵列光电极的方法
CN106637287B (zh) 一种制备钽酸镧氧氮化物高效光电极的方法
CN103882494A (zh) 一种Cu2O/ZnO异质结材料的制备方法
CN103746077A (zh) 一种有机无机复合的太阳能电池及其制备方法
CN106384669A (zh) 一种光电响应型碳量子点修饰氧化锌光阳极的制备方法
CN103021668A (zh) 一种半导体纳米晶敏化太阳能电池及其制备方法
Jasim et al. Natural dye-sensitised photovoltaic cell based on nanoporous TiO 2
CN107170894B (zh) 一种钙钛矿太阳能电池及其制备方法
CN109574096B (zh) 一种金属硫化物的制备方法及应用
CN109473550A (zh) 一种大面积钙钛矿太阳能电池及其制备方法
CN107464881A (zh) 一种面向光解水制氢的集成器件及其制作方法
CN102592840A (zh) 量子点敏化氧化物/碳纳米管复合纤维太阳电池光阳极
CN109518149B (zh) 沿<002>方向择优生长的硒化锑光电薄膜的制备方法
CN107268020A (zh) 一种Ta3N5薄膜的制备方法及Ta3N5薄膜的应用
CN101692411B (zh) 太阳能电池的复合电极及其制备方法
JP2013089690A (ja) 量子ドット増感型太陽電池の製造方法
Chen et al. Stable Cu 2 O Photoelectrodes by Reactive Ion Beam Sputter Deposition
CN105405900A (zh) 一种碲化镉太阳能电池及其制备方法
CN111876809A (zh) 一种硒化锑薄膜的制备方法及应用
CN105580097B (zh) 用于染料敏化太阳能电池的催化碳对电极
Li et al. Electrodeposition and low-temperature post-treatment of nanocrystalline SnO2 films for flexible dye-sensitized solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant