CN109112376A - 一种Mg-Al-Zn-Mn-Gd耐蚀稀土镁合金的制备方法 - Google Patents

一种Mg-Al-Zn-Mn-Gd耐蚀稀土镁合金的制备方法 Download PDF

Info

Publication number
CN109112376A
CN109112376A CN201811112014.7A CN201811112014A CN109112376A CN 109112376 A CN109112376 A CN 109112376A CN 201811112014 A CN201811112014 A CN 201811112014A CN 109112376 A CN109112376 A CN 109112376A
Authority
CN
China
Prior art keywords
alloy
seconds
rare earth
corrosion
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811112014.7A
Other languages
English (en)
Other versions
CN109112376B (zh
Inventor
胡志
殷正
闫洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mgo Nobel Prize Tongchuan New Material Co ltd
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201811112014.7A priority Critical patent/CN109112376B/zh
Publication of CN109112376A publication Critical patent/CN109112376A/zh
Application granted granted Critical
Publication of CN109112376B publication Critical patent/CN109112376B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

一种Mg‑Al‑Zn‑Mn‑Gd耐蚀稀土镁合金的制备方法,将Mg‑Al‑Zn‑Mn系合金放入760‑780℃炉温的坩埚中加热至熔化后,加入用铝箔纸包裹的小块状Mg‑20%Gd中间合金,保温10‑15分钟待合金全部熔化;然后将超声变幅杆伸入上述合金熔体中进行间歇超声处理,强度2000‑3000w,每次5‑10秒,间隔5‑10秒,总计300‑500秒;最后将合金熔体快速浇注在已预热金属模具中,得Mg‑Al‑Zn‑Mn‑Gd耐蚀稀土镁合金。本发明合金的细小的第二相组织分布更加均匀,同时稀土元素的添加形成了自腐蚀电位低的阴极相,使得合金整个腐蚀性能得到显著改善。

Description

一种Mg-Al-Zn-Mn-Gd耐蚀稀土镁合金的制备方法
技术领域
本发明属于合金或有色金属的处理技术领域。
背景技术
镁-铝(Mg-Al)合金由于优异的性能和低廉的价格,被广泛的应用于多种形式的机械部件,是目前应用最为广泛的高强度变形镁合金。但是因为镁固有的活性,较小的电负性和较负的电极电位,所以镁合金极易被腐蚀。为了解决这个问题,需要开发新型的镁合金。
近年来,稀土合金化处理是提高镁合金耐蚀性的有利途径之一。李晓等人研究表明:在AZ31和AZ91镁合金中添加稀土元素Sm,合金中容易形成的Al2Sm金属间化合物会减慢合金的微电偶腐蚀的速率,显著改善合金的耐腐蚀性。张金玲等人研究了稀土元素Gd对AZ91镁合金摩擦磨损及腐蚀性能的影响,表明由于Al2Gd相的形成消耗了部分Al,减少了β-Mg17Al12相的数量,使得活性阴极的面积减少,有效地抑制了自腐蚀过程。同时,R. Arrabal等人指出,稀土Gd的添加使得Al-Mn相转变为表面电势更低的Al-Mn-Gd相,从而降低微电偶的阴极腐蚀速率,最终改善合金的耐腐蚀性。相关研究表明,稀土相Al2Sm的自腐蚀电位为-1.010VSCE,而稀土相Al2Y的自腐蚀电位与之相比更正,而Al2Gd的自腐蚀电位比Al2Sm更负。合金中微电偶腐蚀的阳极相和阴极相之间的腐蚀电位差的减小有益于改善合金的耐腐蚀性。
然而,合金的耐蚀性不仅与腐蚀电势有关,而且与合金的微观结构有关。第二相粒子的微观结构,特别是尺寸、数量、分布等,在镁合金的耐腐蚀性能中起着关键作用。超声波在熔体中传播时,会产生正压相和负压相,破坏熔体的结构完整性,可有效细化镁合金中的第二相,同时在声流作用下使得细化的第二相更加均匀地分布在合金中。合金中细小的、均匀分布的第二相组织可以有效改善镁合金的腐蚀形貌,抑制严重的局部腐蚀发生,形成轻微的全面腐蚀,从而对镁基体起到保护作用,提高合金的耐腐蚀性能。
发明内容
本发明的目的在于提供了一种Mg-Al-Zn-Mn-Gd耐蚀稀土镁合金的制备方法,超声作用下,合金的第二相组织分布更加均匀和细化,同时稀土元素的添加形成了自腐蚀电位更低的阴极相,使得合金整个腐蚀性能得到显著的改善。
本发明是通过以下技术方案实现的。
本发明所述的一种Mg-Al-Zn-Mn-Gd耐蚀稀土镁合金的制备方法,将Mg-Al-Zn-Mn系合金放入760-780℃炉温的坩埚中加热至熔化后,加入用铝箔纸包裹的小块状Mg-20%Gd中间合金,保温10-15分钟待合金全部熔化;然后将超声变幅杆伸入上述合金熔体中进行间歇超声处理,超声强度为2000-3000w,每次超声脉冲时间为5-10秒,非脉冲时间为5-10秒,超声时间总计300-500秒;最后将合金熔体快速浇注在已经预热的金属模具中,所获得的合金的各组分的重量百分比为:铝为9.2~12.5%,锌为0.8~1.2%,锰为0.5~0.7%,钆为0.5~1.5%,余量为镁。
本发明的技术效果是:超声作用下,合金的第二相组织分布更加均匀和细化,同时稀土元素的添加形成了自腐蚀电位更低的阴极相,使得合金整个腐蚀性能得到显著的改善。
附图说明
图1为对比例条件下制备的合金的扫描电子显微镜(SEM)图。
图2为实施例4条件下制备的合金的扫描电子显微镜(SEM)图。
具体实施方式
本发明将通过以下实施例作进一步说明。
实施例1:本实施例的Mg-Al-Zn-Mn镁合金,其组成及各组分的重量百分比为:Al:9.33%;Zn:0.88%;Mn:0.53%;余量为Mg。
熔铸工艺:将Mg-Al-Zn-Mn系合金放入760℃炉温的坩埚中加热至熔化后,保温10分钟;然后将超声变幅杆伸入上述合金熔体中进行间歇超声处理,超声强度为2000w,每次超声时间为6秒,间歇时间4秒,超声时间总计500秒;最后将合金熔体快速浇注在已经预热的金属模具中。
结果:本实施例合金在室温下3.5%NaCl溶液中腐蚀24小时,失重腐蚀速率为0.296mg·cm-2·day-1
实施例2:本实施例的Mg-Al-Zn-Mn-Gd耐蚀稀土镁合金,其组成及各组分的重量百分比为:Al:10.5%;Zn:0.97%;Mn:0.60%;Gd:0.50%;余量为Mg元素。
熔铸工艺:将Mg-Al-Zn-Mn系合金放入770℃炉温的坩埚中加热至熔化后,加入用铝箔纸包裹的小块状Mg-20%Gd中间合金,保温12分钟待合金全部熔化;然后将超声变幅杆伸入上述合金熔体中进行间歇超声处理,超声强度为2500w,每次超声时间为5秒,间歇时间10秒,超声时间总计450秒;最后将合金熔体快速浇注在已经预热的金属模具中。
结果:本实施例合金在室温下3.5%NaCl溶液中腐蚀24小时,失重腐蚀速率为0.096mg·cm-2·day-1
实施例3:本实施例的Mg-Al-Zn-Mn-Gd耐蚀稀土镁合金,其组成及各组分的重量百分比为:Al:9.75%;Zn:1.12%;Mn:0.65%;Gd:1.00%;余量为Mg元素。
熔铸工艺:将Mg-Al-Zn-Mn系合金放入780℃炉温的坩埚中加热至熔化后,加入用铝箔纸包裹的小块状Mg-20%Gd中间合金,保温15分钟待合金全部熔化;然后将超声变幅杆伸入上述合金熔体中进行间歇超声处理,超声强度为3000w,每次超声时间为10秒,间歇时间5秒,超声时间总计450秒;最后将合金熔体快速浇注在已经预热的金属模具中。
结果:本实施例合金在室温下3.5%NaCl溶液中腐蚀24小时,失重腐蚀速率为0.091mg·cm-2·day-1
实施例4:本实施例的Mg-Al-Zn-Mn-Gd耐蚀稀土镁合金,其组成及各组分的重量百分比为:Al:11.55%;Zn:1.05%;Mn:0.58%;Gd:1.50%;余量为Mg元素。
熔铸工艺:将Mg-Al-Zn-Mn系合金放入780℃炉温的坩埚中加热至熔化后,加入用铝箔纸包裹的小块状Mg-20%Gd中间合金,保温13分钟待合金全部熔化;然后将超声变幅杆伸入上述合金熔体中进行间歇超声处理,超声强度为2500w,每次超声时间为4秒,间歇时间6秒,超声时间总计300秒;最后将合金熔体快速浇注在已经预热的金属模具中。
结果:本实施例合金在室温下3.5%NaCl溶液中腐蚀24小时,失重腐蚀速率为0.085mg·cm-2·day-1
对比例:本对比例的Mg-Al-Zn-Mn镁合金,其组成及各组分的重量百分比为:Al:9.89%;Zn:0.91%;Mn:0.57%;余量为Mg。
熔铸工艺:将Mg-Al-Zn-Mn系合金放入760℃炉温的坩埚中加热至熔化后,保温10分钟,最后将合金熔体快速浇注在已经预热的金属模具中。
结果:本实施例合金在室温下3.5%NaCl溶液中腐蚀24小时,失重腐蚀速率为0.589mg·cm-2·day-1
上述实例的耐化学腐蚀性能的试验方法为:根据GB10124-1988金属材料试验室均匀腐蚀全浸试验方法,将试样完全浸没于3.5% NaCl溶液中,24小时后取出用20% CrO3 +1%AgNO3+蒸馏水清除试样表面的腐蚀产物,然后再用无水酒精和丙酮清洗,测量腐蚀后的重量,计算腐蚀速率(mg·cm-2·day-1)。
将实施例1和4制得的合金,经打磨抛光后在扫面电子显微镜下观察合金的表面形貌(SEM),如附图1和附图2所示。结果显示:超声作用下,实施例1条件下合金的失重腐蚀速率(0.296mg·cm-2·day-1)是对比例条件下合金(0.589mg·cm-2·day-1)的50.3%。当添加稀土元素Gd后,合金的失重腐蚀速率随稀土含量的增加而减小,且实施例4条件下合金的腐蚀速率(0.085mg·cm-2·day-)只有实施例1(0.296mg·cm-2·day-1)的28.7%。从附图上可以看出,超声作用下,合金的第二相组织分布更加均匀和细化,同时稀土元素的添加形成了自腐蚀电位更低的阴极相,使得合金整个腐蚀性能得到显著的改善。

Claims (1)

1.一种Mg-Al-Zn-Mn-Gd耐蚀稀土镁合金的制备方法,其特征是将Mg-Al-Zn-Mn系合金放入760-780℃炉温的坩埚中加热至熔化后,加入用铝箔纸包裹的小块状Mg-20%Gd中间合金,保温10-15分钟待合金全部熔化;然后将超声变幅杆伸入上述合金熔体中进行间歇超声处理,超声强度为2000-3000w,每次超声脉冲时间为5-10秒,非脉冲时间为5-10秒,超声时间总计300-500秒;最后将合金熔体快速浇注在已经预热的金属模具中,所获得的合金的各组分的重量百分比为:铝为9.2~12.5%,锌为0.8~1.2%,锰为0.5~0.7%,钆为0.5~1.5%,余量为镁。
CN201811112014.7A 2018-09-25 2018-09-25 一种Mg-Al-Zn-Mn-Gd耐蚀稀土镁合金的制备方法 Active CN109112376B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811112014.7A CN109112376B (zh) 2018-09-25 2018-09-25 一种Mg-Al-Zn-Mn-Gd耐蚀稀土镁合金的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811112014.7A CN109112376B (zh) 2018-09-25 2018-09-25 一种Mg-Al-Zn-Mn-Gd耐蚀稀土镁合金的制备方法

Publications (2)

Publication Number Publication Date
CN109112376A true CN109112376A (zh) 2019-01-01
CN109112376B CN109112376B (zh) 2020-07-14

Family

ID=64856567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811112014.7A Active CN109112376B (zh) 2018-09-25 2018-09-25 一种Mg-Al-Zn-Mn-Gd耐蚀稀土镁合金的制备方法

Country Status (1)

Country Link
CN (1) CN109112376B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022012024A1 (zh) * 2020-07-17 2022-01-20 东莞宜安科技股份有限公司 一种新能源汽车用基于镁合金材料的高真空精密压铸技术

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10501370A (ja) * 1994-06-14 1998-02-03 オヴォニック バッテリー カンパニーインコーポレイテッド 電気化学的水素貯蔵合金及びMg含有ベース合金から作製される二次電池
CN103074528A (zh) * 2012-09-18 2013-05-01 南昌大学 一种用超声原位合成法制备稀土耐热镁合金
CN105331866A (zh) * 2015-10-14 2016-02-17 济南大学 一种Mg-Zn-Gd准晶增强的AZ91镁合金及其制备方法
JP2016211011A (ja) * 2015-04-28 2016-12-15 国立研究開発法人物質・材料研究機構 高靱性マグネシウム基合金伸展材及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10501370A (ja) * 1994-06-14 1998-02-03 オヴォニック バッテリー カンパニーインコーポレイテッド 電気化学的水素貯蔵合金及びMg含有ベース合金から作製される二次電池
CN103074528A (zh) * 2012-09-18 2013-05-01 南昌大学 一种用超声原位合成法制备稀土耐热镁合金
JP2016211011A (ja) * 2015-04-28 2016-12-15 国立研究開発法人物質・材料研究機構 高靱性マグネシウム基合金伸展材及びその製造方法
CN105331866A (zh) * 2015-10-14 2016-02-17 济南大学 一种Mg-Zn-Gd准晶增强的AZ91镁合金及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022012024A1 (zh) * 2020-07-17 2022-01-20 东莞宜安科技股份有限公司 一种新能源汽车用基于镁合金材料的高真空精密压铸技术

Also Published As

Publication number Publication date
CN109112376B (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
Shi et al. Microstructure and electrochemical corrosion behavior of extruded Mg–Al–Pb–La alloy as anode for seawater-activated battery
Cao et al. Corrosion and passivation of magnesium alloys
Ahmadkhaniha et al. Corrosion behavior of severely plastic deformed magnesium based alloys: A review
US5059390A (en) Dual-phase, magnesium-based alloy having improved properties
Wen et al. Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid
CN109385545A (zh) 一种超声Mg-Al-Zn-Mn-Nd耐蚀稀土镁合金的制备方法
Zhou et al. Effect of ultrasonic agitation during the activation process on the microstructure and corrosion resistance of electroless Ni-WP coatings on AZ91D magnesium alloy
CN107937879A (zh) 一种钕铁硼磁体及钕铁硼磁体表面镀层的方法
Candan et al. Improvement of mechanical and corrosion properties of magnesium alloy by lead addition
Li et al. Tailoring the microstructure and enhancing the corrosion resistance of extruded dilute Mg-0.6 Al-0.5 Mn-0.25 Ca alloy by adding trace Ce
Pérez et al. Corrosion behaviour of Mg–Zn–Y–Mischmetal alloys in phosphate buffer saline solution
Ghali Corrosion and protection of magnesium alloys
Wang et al. Bridge for the thermodynamics and kinetics of electrochemical corrosion: Designing of the high corrosion-resistant magnesium alloy
Zengin et al. Influence of Sn addition on microstructure and corrosion resistance of AS21 magnesium alloy
Padekar et al. Stress corrosion cracking behavior of magnesium alloys EV31A and AZ91E
CN105803465B (zh) 一种含Sm镁合金牺牲阳极材料
CN105779837A (zh) 一种含Gd牺牲阳极镁合金
Zhang et al. Influence of microalloying with Ca and Ce on the corrosion behavior of extruded Mg-3Al-1Zn
Wang et al. Effect of minor Ni addition on the microstructure, mechanical properties and corrosion behavior of Mg–2Gd alloy
Mehdipour et al. Effect of friction stir back extrusion rotational speed on microstructure, mechanical properties, and corrosion behaviour of AZ91-Ca alloy
Hu et al. Effects of Sm on microstructure and corrosion resistance of hot-extruded AZ61 magnesium alloys
Elen et al. Investigation of microstructure, mechanical and corrosion properties of biodegradable Mg-Ag alloys
CN109112376A (zh) 一种Mg-Al-Zn-Mn-Gd耐蚀稀土镁合金的制备方法
Xiaodong et al. Effect of Y on microstructure and mechanical properties as well as corrosion resistance of Mg-9Li-3Al alloy
Xu et al. Development of dilute Mg–Bi alloy sheet with good synergy of corrosion-resistance and tensile properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201111

Address after: Room 107, 1 / F, Donghu sub district office, 168 Changjiang Road, Donghu street, Pizhou City, Xuzhou City, Jiangsu Province

Patentee after: Pizhou tailiheng Trading Co., Ltd

Address before: 999 No. 330031 Jiangxi province Nanchang Honggutan University Avenue

Patentee before: Nanchang University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201204

Address after: Room 111, building A1, phase II, software new town, 156 Tiangu 8th Road, Yuhua Street office, high tech Zone, Xi'an City, Shaanxi Province

Patentee after: Xi'an shehetmanno award New Materials Research Institute Co.,Ltd.

Address before: Room 107, 1 / F, Donghu sub district office, 168 Changjiang Road, Donghu street, Pizhou City, Xuzhou City, Jiangsu Province

Patentee before: Pizhou tailiheng Trading Co., Ltd

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201225

Address after: 727031 Tongchuan Industrial Technology Research Institute, intersection of Datang 3rd road and Xingye 3rd road, Tongchuan New District, Shaanxi Province

Patentee after: MgO Nobel Prize (Tongchuan) new material Co.,Ltd.

Address before: Room 111, building A1, phase II, software new town, 156 Tiangu 8th Road, Yuhua Street office, high tech Zone, Xi'an City, Shaanxi Province

Patentee before: Xi'an shehetmanno award New Materials Research Institute Co.,Ltd.

TR01 Transfer of patent right