CN109385545A - 一种超声Mg-Al-Zn-Mn-Nd耐蚀稀土镁合金的制备方法 - Google Patents

一种超声Mg-Al-Zn-Mn-Nd耐蚀稀土镁合金的制备方法 Download PDF

Info

Publication number
CN109385545A
CN109385545A CN201811112010.9A CN201811112010A CN109385545A CN 109385545 A CN109385545 A CN 109385545A CN 201811112010 A CN201811112010 A CN 201811112010A CN 109385545 A CN109385545 A CN 109385545A
Authority
CN
China
Prior art keywords
alloy
seconds
rare earth
corrosion
ultrasound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811112010.9A
Other languages
English (en)
Other versions
CN109385545B (zh
Inventor
胡志
殷正
闫洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mgo Nobel Prize Tongchuan New Material Co ltd
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201811112010.9A priority Critical patent/CN109385545B/zh
Publication of CN109385545A publication Critical patent/CN109385545A/zh
Application granted granted Critical
Publication of CN109385545B publication Critical patent/CN109385545B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/02Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
    • C22B9/026Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves by acoustic waves, e.g. supersonic waves
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Manufacturing & Machinery (AREA)
  • Continuous Casting (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

一种超声Mg‑Al‑Zn‑Mn‑Nd耐蚀稀土镁合金的制备方法,将Mg‑Al‑Zn‑Mn系合金放入730‑750℃炉温的坩埚中加热熔化后,加入铝箔纸包裹小块状Mg‑20%Nd中间合金,保温待合金全部熔化;然后将超声变幅杆伸入合金熔体中间歇超声处理,强度1000‑2000w,每次15‑20秒,间隔15‑20秒,总时间700‑900秒;最后快速浇注到已预热金属模具中,所得合金各组分重量百分比:铝7.0‑9.1%,锌1.2‑1.5%,锰0.7‑0.9%,钕0.5~1.5%,余为镁。本发明合金的第二相组织分布更加均匀,同时稀土元素的添加形成了自腐蚀电位低的阴极相,使得合金整个腐蚀性能得到显著的改善。

Description

一种超声Mg-Al-Zn-Mn-Nd耐蚀稀土镁合金的制备方法
技术领域
本发明属于合金或有色金属的处理技术领域。
背景技术
镁-铝(Mg-Al)合金由于优异的性能和低廉的价格,被广泛的应用于多种形式的机械部件,是目前应用最为广泛的高强度变形镁合金。但是因为镁固有的活性,较小的电负性和较负的电极电位,所以镁合金极易被腐蚀。为了解决这个问题,需要开发新型的镁合金。
近年来,稀土合金化处理是提高镁合金耐蚀性的有利途径之一。李晓等人研究表明:在AZ31和AZ91镁合金中添加稀土元素Sm,合金中容易形成的Al2Sm金属间化合物会减慢合金的微电偶腐蚀的速率,显著改善合金的耐腐蚀性。T. Zhang等人指出,加入Nd元素后,孪生和位错密度的减小使阳极的腐蚀速率降低。同时,均匀分散的Al3Nd在微电偶腐蚀中能降低阴极还原反应速率,从而提高合金的耐腐蚀性。相关研究表明,稀土相Al2Sm的自腐蚀电位为-1.010VSCE,而稀土相Al2Y的自腐蚀电位与之相比更正,而Al2Nd的自腐蚀电位比Al2Sm更负。合金中微电偶腐蚀的阳极相和阴极相之间的腐蚀电位差的减小有益于改善合金的耐腐蚀性。
然而,合金的耐蚀性不仅与腐蚀电势有关,而且与合金的微观结构有关。第二相粒子的微观结构,特别是尺寸、数量、分布等,在镁合金的耐腐蚀性能中起着关键作用。超声波在熔体中传播时,会产生正压相和负压相,破坏熔体的结构完整性,可有效细化镁合金中的第二相,同时在声流作用下使得细化的第二相更加均匀地分布在合金中。合金中细小的、均匀分布的第二相组织可以有效改善镁合金的腐蚀形貌,抑制严重的局部腐蚀发生,形成轻微的全面腐蚀,从而对镁基体起到保护作用,提高合金的耐腐蚀性能。
发明内容
本发明的目的在于提供了一种Mg-Al-Zn-Mn-Nd耐蚀稀土镁合金的制备方法,超声作用下,合金的第二相组织分布更加均匀和细化,同时稀土元素的添加形成了自腐蚀电位更低的阴极相,使得合金整个腐蚀性能得到显著的改善。
本发明是通过以下技术方案实现的。
本发明所述的一种超声Mg-Al-Zn-Mn-Nd耐蚀稀土镁合金的制备方法,其特征是将Mg-Al-Zn-Mn系合金放入730-750℃炉温的坩埚中加热至熔化后,加入用铝箔纸包裹的小块状Mg-20%Nd中间合金,保温7-10分钟待合金全部熔化;然后将超声变幅杆伸入上述合金熔体中进行间歇超声处理,超声强度为1000-2000w,每次超声脉冲时间为15-20秒,非脉冲时间为15-20秒,超声时间总计700-900秒;最后将合金熔体快速浇注在已经预热的金属模具中,所获得的合金的各组分的重量百分比为:铝为7.0-9.1%,锌为1.2-1.5%,锰为0.7-0.9%,钕为0.5~1.5%,余量为镁。
本发明的技术效果是:超声作用下,合金的第二相组织分布更加均匀和细化,同时稀土元素的添加形成了自腐蚀电位更低的阴极相,使得合金整个腐蚀性能得到显著的改善。
附图说明
图1为实施例1条件下制备的合金的纵切面扫描电子显微镜(SEM)图。
图2为实施例4条件下制备的合金的纵切面扫描电子显微镜(SEM)图。
具体实施方式
本发明将通过以下实施例作进一步说明。
实施例1:本实施例的Mg-Al-Zn-Mn镁合金,其组成及各组分的重量百分比为:Al:7.21%;Zn:1.23%;Mn:0.72%;余量为Mg元素。
熔铸工艺:将Mg-Al-Zn-Mn系合金放入730℃炉温的坩埚中加热至熔化后,保温8分钟;然后将超声变幅杆伸入上述合金熔体中进行间歇超声处理,超声强度为1000w,每次超声时间为12秒,间歇时间13秒,超声时间总计700秒;最后将合金熔体快速浇注在已经预热的金属模具中。
结果:本实施例合金在室温下3.5%NaCl溶液中腐蚀24小时,失重腐蚀速率为0.324mg·cm-2·day-1
实施例2:本实施例的Mg-Al-Zn-Mn-Nd耐蚀稀土镁合金,其组成及各组分的重量百分比为:Al:7.86%;Zn:1.31%;Mn:0.75%;Nd:0.50%;余量为Mg元素。
熔铸工艺:将Mg-Al-Zn-Mn系合金放入750℃炉温的坩埚中加热至熔化后,加入用铝箔纸包裹的小块状Mg-20%Nd中间合金,保温9分钟待合金全部熔化;然后将超声变幅杆伸入上述合金熔体中进行间歇超声处理,超声强度为1200w,每次超声时间为10秒,间歇时间15秒,超声时间总计800秒;最后将合金熔体快速浇注在已经预热的金属模具中。
结果:本实施例合金在室温下3.5%NaCl溶液中腐蚀24小时,失重腐蚀速率为0.104mg·cm-2·day-1
实施例3:本实施例的Mg-Al-Zn-Mn-Nd耐蚀稀土镁合金,其组成及各组分的重量百分比为:Al:8.65%;Zn:1.48%;Mn:0.87%;Nd:1.00%;余量为Mg元素。
熔铸工艺:将Mg-Al-Zn-Mn系合金放入740℃炉温的坩埚中加热至熔化后,加入用铝箔纸包裹的小块状Mg-20%Nd中间合金,保温10分钟待合金全部熔化;然后将超声变幅杆伸入上述合金熔体中进行间歇超声处理,超声强度为1800w,每次超声时间为15秒,间歇时间5秒,超声时间总计900秒;最后将合金熔体快速浇注在已经预热的金属模具中。
结果:本实施例合金在室温下3.5%NaCl溶液中腐蚀24小时,失重腐蚀速率为0.094mg·cm-2·day-1
实施例4:本实施例的Mg-Al-Zn-Mn-Nd耐蚀稀土镁合金,其组成及各组分的重量百分比为:Al:9.03%;Zn:0.81%;Mn:0.76%;Nd:1.50%;余量为Mg元素。
熔铸工艺:将Mg-Al-Zn-Mn系合金放入740℃炉温的坩埚中加热至熔化后,加入用铝箔纸包裹的小块状Mg-20%Nd中间合金,保温8分钟待合金全部熔化;然后将超声变幅杆伸入上述合金熔体中进行间歇超声处理,超声强度为2000w,每次超声时间为14秒,间歇时间11秒,超声时间总计750秒;最后将合金熔体快速浇注在已经预热的金属模具中。
结果:本实施例合金在室温下3.5%NaCl溶液中腐蚀24小时,失重腐蚀速率为0.090mg·cm-2·day-1
对比例:本对比例的Mg-Al-Zn-Mn镁合金,其组成及各组分的重量百分比为:Al:8.32%;Zn:1.35%;Mn:0.72%;余量为Mg。
熔铸工艺:将Mg-Al-Zn-Mn系合金放入750℃炉温的坩埚中加热至熔化后,保温9分钟,最后将合金熔体快速浇注在已经预热的金属模具中。
结果:本实施例合金在室温下3.5%NaCl溶液中腐蚀24小时,失重腐蚀速率为0.628mg·cm-2·day-1
上述实例的耐化学腐蚀性能的试验方法为:根据GB10124-1988金属材料试验室均匀腐蚀全浸试验方法,将试样完全浸没于3.5% NaCl溶液中,24小时后取出用20% CrO3 +1%AgNO3+蒸馏水清除试样表面的腐蚀产物,然后再用无水酒精和丙酮清洗,测量腐蚀后的重量,计算腐蚀速率(mg·cm-2·day-1)。
将实施例1和4制得的合金,在室温下3.5%NaCl溶液中腐蚀24小时,经打磨抛光后在扫面电子显微镜下观察合金的纵切面形貌(SEM),如附图1和附图2所示。结果显示:超声作用下,实施例1条件下合金的失重腐蚀速率(0.324 mg·cm-2·day-1)是对比例条件下合金(0.628 mg·cm-2·day-1)的51.6%。当添加稀土元素Gd后,合金的失重腐蚀速率随稀土含量的增加而减小,且实施例4条件下合金的腐蚀速率(0.090 mg·cm-2·day-1)只有实施例1(0.324 mg·cm-2·day-1)的27.8%。从附图上可以看出,稀土元素的添加使合金有原来的局部严重腐蚀转变为表面均匀腐蚀,同时稀土元素的添加形成了自腐蚀电位更低的阴极相,使得合金整个腐蚀性能得到显著的改善。

Claims (1)

1.一种超声Mg-Al-Zn-Mn-Nd耐蚀稀土镁合金的制备方法,其特征是将Mg-Al-Zn-Mn系合金放入730-750℃炉温的坩埚中加热至熔化后,加入用铝箔纸包裹的小块状Mg-20%Nd中间合金,保温7-10分钟待合金全部熔化;然后将超声变幅杆伸入上述合金熔体中进行间歇超声处理,超声强度为1000-2000w,每次超声脉冲时间为15-20秒,非脉冲时间为15-20秒,超声时间总计700-900秒;最后将合金熔体快速浇注在已经预热的金属模具中,所获得的合金的各组分的重量百分比为:铝为7.0-9.1%,锌为1.2-1.5%,锰为0.7-0.9%,钕为0.5~1.5%,余量为镁。
CN201811112010.9A 2018-09-25 2018-09-25 一种超声Mg-Al-Zn-Mn-Nd耐蚀稀土镁合金的制备方法 Active CN109385545B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811112010.9A CN109385545B (zh) 2018-09-25 2018-09-25 一种超声Mg-Al-Zn-Mn-Nd耐蚀稀土镁合金的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811112010.9A CN109385545B (zh) 2018-09-25 2018-09-25 一种超声Mg-Al-Zn-Mn-Nd耐蚀稀土镁合金的制备方法

Publications (2)

Publication Number Publication Date
CN109385545A true CN109385545A (zh) 2019-02-26
CN109385545B CN109385545B (zh) 2020-07-14

Family

ID=65417755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811112010.9A Active CN109385545B (zh) 2018-09-25 2018-09-25 一种超声Mg-Al-Zn-Mn-Nd耐蚀稀土镁合金的制备方法

Country Status (1)

Country Link
CN (1) CN109385545B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022012024A1 (zh) * 2020-07-17 2022-01-20 东莞宜安科技股份有限公司 一种新能源汽车用基于镁合金材料的高真空精密压铸技术
CN114134379A (zh) * 2021-11-30 2022-03-04 东北电力大学 一种az31m合金及其应用
CN114934220A (zh) * 2022-05-10 2022-08-23 青岛科技大学 一种耐海水腐蚀的稀土镁合金材料及其制备方法
CN115011852A (zh) * 2022-04-20 2022-09-06 青岛科技大学 一种海水电池用镁合金阳极材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074528A (zh) * 2012-09-18 2013-05-01 南昌大学 一种用超声原位合成法制备稀土耐热镁合金

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074528A (zh) * 2012-09-18 2013-05-01 南昌大学 一种用超声原位合成法制备稀土耐热镁合金

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李宜达: "稀土镁合金微观组织及腐蚀性能的研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *
潘复生: "《中国战略性新兴产业•新材料•新型合金材料》", 31 October 2017, 中国铁道出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022012024A1 (zh) * 2020-07-17 2022-01-20 东莞宜安科技股份有限公司 一种新能源汽车用基于镁合金材料的高真空精密压铸技术
CN114134379A (zh) * 2021-11-30 2022-03-04 东北电力大学 一种az31m合金及其应用
CN115011852A (zh) * 2022-04-20 2022-09-06 青岛科技大学 一种海水电池用镁合金阳极材料及其制备方法
CN114934220A (zh) * 2022-05-10 2022-08-23 青岛科技大学 一种耐海水腐蚀的稀土镁合金材料及其制备方法

Also Published As

Publication number Publication date
CN109385545B (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
CN109385545A (zh) 一种超声Mg-Al-Zn-Mn-Nd耐蚀稀土镁合金的制备方法
Zeng et al. Review of studies on corrosion of magnesium alloys
Shi et al. Microstructure and electrochemical corrosion behavior of extruded Mg–Al–Pb–La alloy as anode for seawater-activated battery
Ahmadkhaniha et al. Corrosion behavior of severely plastic deformed magnesium based alloys: A review
Tian et al. Metastable pitting corrosion of 304 stainless steel in 3.5% NaCl solution
Sun et al. The performance of Al–Zn–In–Mg–Ti sacrificial anode in simulated deep water environment
Candan et al. Improvement of mechanical and corrosion properties of magnesium alloy by lead addition
CN107937879A (zh) 一种钕铁硼磁体及钕铁硼磁体表面镀层的方法
CN102051562A (zh) 一种铝合金的均匀化工艺方法
Zhou et al. Effect of ultrasonic agitation during the activation process on the microstructure and corrosion resistance of electroless Ni-WP coatings on AZ91D magnesium alloy
Ghali Corrosion and protection of magnesium alloys
Incesu et al. Mechanical properties and biodegradability of Mg–Zn–Ca alloys: homogenization heat treatment and hot rolling
CN105803465B (zh) 一种含Sm镁合金牺牲阳极材料
Wang et al. Corrosion behavior of single-and poly-crystalline dual-phase TiAl-Ti3Al alloy in NaCl solution
CN105779837A (zh) 一种含Gd牺牲阳极镁合金
CN108866409A (zh) 一种高耐蚀性镁合金的制备方法
Shi et al. Second phase refining induced optimization of Fe alloying in Zn: Significantly enhanced strengthening effect and corrosion uniformity
Raman et al. Laser assisted modification of surface microstructure for localised corrosion resistance of magnesium alloys
Mondal et al. Corrosion behaviour of creep‐resistant AE42 magnesium alloy‐based hybrid composites developed for powertrain applications
Wang et al. Bridge for the thermodynamics and kinetics of electrochemical corrosion: Designing of the high corrosion-resistant magnesium alloy
Hassani et al. Effect of friction stir processing on corrosion behavior of cast AZ91C magnesium alloy
Mehdipour et al. Effect of friction stir back extrusion rotational speed on microstructure, mechanical properties, and corrosion behaviour of AZ91-Ca alloy
CN109112376B (zh) 一种Mg-Al-Zn-Mn-Gd耐蚀稀土镁合金的制备方法
Elen et al. Investigation of microstructure, mechanical and corrosion properties of biodegradable Mg-Ag alloys
Yin et al. Effects of Zn Addition on Microstructure, Mechanical, and Corrosion Properties of the As-Solutionized Mg-5Ga Alloy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201117

Address after: Room 107, 1 / F, Donghu sub district office, 168 Changjiang Road, Donghu street, Pizhou City, Xuzhou City, Jiangsu Province

Patentee after: Pizhou tailiheng Trading Co., Ltd

Address before: 999 No. 330031 Jiangxi province Nanchang Honggutan University Avenue

Patentee before: Nanchang University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201209

Address after: Room 111, building A1, phase II, software new town, 156 Tiangu 8th Road, Yuhua Street office, high tech Zone, Xi'an City, Shaanxi Province

Patentee after: Xi'an shehetmanno award New Materials Research Institute Co.,Ltd.

Address before: Room 107, 1 / F, Donghu sub district office, 168 Changjiang Road, Donghu street, Pizhou City, Xuzhou City, Jiangsu Province

Patentee before: Pizhou tailiheng Trading Co., Ltd

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201231

Address after: 727031 Tongchuan Industrial Technology Research Institute, intersection of Datang 3rd road and Xingye 3rd road, Tongchuan New District, Shaanxi Province

Patentee after: MgO Nobel Prize (Tongchuan) new material Co.,Ltd.

Address before: Room 111, building A1, phase II, software new town, 156 Tiangu 8th Road, Yuhua Street office, high tech Zone, Xi'an City, Shaanxi Province

Patentee before: Xi'an shehetmanno award New Materials Research Institute Co.,Ltd.