CN109111914B - 一种稀土配合物紫外增强薄膜 - Google Patents

一种稀土配合物紫外增强薄膜 Download PDF

Info

Publication number
CN109111914B
CN109111914B CN201810823302.7A CN201810823302A CN109111914B CN 109111914 B CN109111914 B CN 109111914B CN 201810823302 A CN201810823302 A CN 201810823302A CN 109111914 B CN109111914 B CN 109111914B
Authority
CN
China
Prior art keywords
film
rare earth
earth complex
ultraviolet
oven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810823302.7A
Other languages
English (en)
Other versions
CN109111914A (zh
Inventor
陆红波
李志远
郑安东
夏果
王国栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201810823302.7A priority Critical patent/CN109111914B/zh
Publication of CN109111914A publication Critical patent/CN109111914A/zh
Application granted granted Critical
Publication of CN109111914B publication Critical patent/CN109111914B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/351Metal complexes comprising lanthanides or actinides, e.g. comprising europium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了一种稀土配合物紫外增强薄膜,是将一类可溶解于乙醇的高量子效率的稀土配合物荧光材料和一种易溶于水的PVA聚合物混溶于乙醇水溶液中,通过烘箱干燥挥发溶剂形成薄膜,具有高效的紫外增强效果,在制备过程中其材料易得,工艺简单,效果好,成本低,可以应用于紫外光电探测领域,如火灾检测、有机污染物检测、雷达监测、飞行器预警等。

Description

一种稀土配合物紫外增强薄膜
技术领域
本发明属于光电探测材料技术领域,尤其涉及一种稀土配合物紫外增强薄膜。
背景技术
目前,所用的紫外探测器件多为真空倍增器件,而真空倍增器件的量子效率一般只有10-20%,并且工作寿命短,严重制约了紫外载荷探测的应用范围。近年来,新型宽禁带紫外半导体成像器件发展迅速,性能不断提高,GaN和SiC是两种典型的日盲紫外半导体探测器。GaN紫外探测器具有量子效率高、耐高温和耐化学腐蚀性等优点。2005年美国西北大学的R.McClintock等人研制出320256日盲型AlGaN紫外焦平面器件。虽然AlGaN紫外探测器的材料制备已取得阶段性进展,但制备AlGaN紫外探测器的难度较大,严重制约器件性能的提高;SiC材料的高硬度、高导热性可以大大提高探测器的抗损伤能力,但是受制于SiC器件结构,在现有的半导体工艺下,其更适合线阵成像器件。
此外,常规探测器表面的多晶硅电极对低于400nm的紫外光具有强烈的吸收作用,一般的探测器如CCD、CMOS等在紫外波段响应很弱,很难适用于紫外探测领域。
为了弥补上述方法的种种不足,本专利提出一种工艺简单,成本低的紫外增强膜制备方法,并在线阵CCD上证明了其探测的高效性。
发明内容
本发明的目的是提供一种稀土配合物荧光材料和聚合物材料复合制备紫外增强薄膜,通过将一类吸收波段在240-400nm的稀土配合物荧光材料和PVA聚合物混溶在乙醇水溶液中,制备高效紫外增强薄膜。
为了实现上述的目的,本发明提供以下技术方案:
一种稀土配合物紫外增强薄膜,是将一类可溶解于乙醇的高量子效率的稀土配合物荧光材料和一种易溶于水的PVA聚合物混溶于乙醇水溶液中,通过烘箱干燥挥发溶剂形成薄膜,具有高效的紫外增强效果。
所述的稀土配合物紫外增强薄膜的制备方法,包括以下步骤:
(1)按照稀土配合物荧光材料:PVA=1:9的质量比例,分别称取稀土配合物荧光材料、PVA,然后将称取的所有原料混合溶于乙醇水溶液中,得到发光溶胶;
(2)将步骤(1)制得的发光溶胶在室温下根据需要旋涂成膜或者浇铸成膜,40℃烘箱烘干成膜,再在制备的增强膜表面旋涂一层PDMS膜,40℃烘箱中固化,制成稀土配合物紫外增强薄膜。
所述的稀土配合物荧光材料的结构通式如下:
Figure BDA0001741850000000021
所述的稀土配合物荧光材料的结构通式中A+为四丁基溴化铵/1-己基-3-甲基咪唑氯化物。
所述的稀土配合物荧光材料的制备方法为,按照EuCl3·6H2O:四丁基溴化铵/1-己基-3-甲基咪唑氯化物:噻吩甲酰三氟丙酮=1:1:4摩尔比对应的质量称取反应原料,将称取的四丁基溴化铵/1-己基-3-甲基咪唑氯化物、噻吩甲酰三氟丙酮加入到容器中,加入适量NaOH水溶液,混合均匀后,再加入无水乙醇,室温下完全溶解,将称取的EuCl3·6H2O配制成0.1M的水溶液,加入容器后,48-52℃加热搅拌,反应80-90min,之后关闭电源,室温下静置10-12h后抽滤,有淡黄色产物析出,用蒸馏水洗涤两遍,收集产物,于73-77℃烘箱烘干,收集产物即得。
所述的稀土配合物紫外增强薄膜的应用为,将稀土配合物荧光材料和PVA混合制得的发光溶胶在室温下浇铸到线阵CCD里感光槽里,将灌入发光溶胶的CCD平置于干燥烘箱里,40℃烘箱烘干,再在制备的增强膜表面旋涂一层PDMS膜,40℃烘箱中固化,制成稀土配合物紫外增强线阵CCD。
本发明的优点是:
本发明设计将稀土配合物荧光材料、聚合物材料混溶于混合溶剂中得到胶液,通过烘箱干燥成膜,实现高效的紫外增强,材料易得,工艺简单,效果好,成本低,可以应用于紫外光电探测领域,如火灾检测、有机污染物检测、雷达监测、飞行器预警等。
附图说明
图1所示为本发明中稀土配合物荧光材料的合成路线图。
图2所示为本发明中增强薄膜吸收光谱图。
图3所示为本发明中增强薄膜通过光谱图。
图4所示为本发明中增强薄膜激发光谱图。
图5所示为本发明中增强薄膜发射光谱图。
图6所示为本发明中线阵紫外增强CCD效果测试图。
图7所示为本发明中紫外增强膜实物图。
图8所示为本发明中线阵紫外增强CCD实物图。
具体实施方式
以下结合具体的实例对本发明的技术方案做进一步说明:
实施例1
稀土配合物材料的制备:
(1)按照EuCl3·6H2O:四丁基溴化铵/1-己基-3-甲基咪唑氯化物:噻吩甲酰三氟丙酮=1:1:4摩尔比对应的质量称取反应原料;
(2)将称取的四丁基溴化铵/1-己基-3-甲基咪唑氯化物、噻吩甲酰三氟丙酮加入到250ml单口瓶中;
(3)加入适量NaOH水溶液,混合均匀;
(4)加入20ml无水乙醇,室温下完全溶解;
(5)将称取的EuCl3·6H2O配制成0.1M的水溶液,加入单口瓶;
(6)50℃加热,搅拌,反应1.5h;
(7)关闭电源,室温下静置12h;
(8)抽滤,有淡黄色产物析出,用适量蒸馏水洗涤两遍,收集产物;
(9)70℃烘箱常压下烘干,收集产物。
实施例2
稀土配合物紫外增强薄膜的制备:
(1)称取0.6g PVA124于10ml玻璃瓶,加入4.4g蒸馏水,静置2h(使PVA溶胀);
(2)加入搅拌子,85℃加热搅拌至完全溶解;
(3)加入5g无水乙醇,65℃加热搅拌至完全溶解;
(4)称取适量配合物加入上述PVA溶液;
(5)40℃加热搅拌24h形成混合发光胶液;
(6)根据需要旋涂成膜或者浇铸成膜;
(7)40℃烘箱常压下烘干成膜;
(8)再在制备的增强膜表面旋涂一层PDMS膜;
(9)40℃烘箱中常压下固化。
实施例3
在紫外增强线阵CCD上的应用:
(1)将配制的发光溶胶,浇铸到线阵CCD里感光槽里;
(2)将灌入发光溶胶的CCD平置于干燥烘箱里;
(3)40℃烘箱常压下烘干;
(4)再在制备的增强膜表面旋涂一层PDMS膜,40℃烘箱中常压下固化。

Claims (2)

1.一种稀土配合物紫外增强薄膜,其特征在于,是将一类可溶解于乙醇的高量子效率的稀土配合物荧光材料和一种易溶于水的PVA聚合物混溶于乙醇水溶液中,通过烘箱干燥挥发溶剂形成薄膜,具有高效的紫外增强效果;
所述的稀土配合物紫外增强薄膜的制备方法,包括以下步骤:
(1)按照稀土配合物荧光材料:PVA=1:9的质量比例,分别称取稀土配合物荧光材料、PVA,然后将称取的所有原料混合溶于乙醇水溶液中,得到发光溶胶;
(2)将步骤(1)制得的发光溶胶在室温下根据需要旋涂成膜或者浇铸成膜,40℃烘箱烘干成膜,再在制备的增强膜表面旋涂一层PDMS膜,40℃烘箱中固化,制成稀土配合物紫外增强薄膜;
所述的稀土配合物荧光材料的结构通式如下:
Figure 208065DEST_PATH_IMAGE002
式中所述A+为四丁基溴化铵/1-己基-3-甲基咪唑氯化物;
所述的稀土配合物荧光材料的制备方法,按照EuCl3·6H2O:四丁基溴化铵/1-己基-3-甲基咪唑氯化物:噻吩甲酰三氟丙酮=1:1:4摩尔比对应的质量称取反应原料,将称取的四丁基溴化铵/1-己基-3-甲基咪唑氯化物、噻吩甲酰三氟丙酮加入到容器中,加入适量NaOH水溶液,混合均匀后,再加入无水乙醇,室温下完全溶解,将称取的EuCl3·6H2O配制成0.1M的水溶液,加入容器后,48-52℃加热搅拌,反应80-90min,之后关闭电源,室温下静置10-12h后抽滤,有淡黄色产物析出,用蒸馏水洗涤两遍,收集产物,于73-77℃烘箱烘干,收集产物即得。
2.根据权利要求1所述的稀土配合物紫外增强薄膜的应用,其特征在于,将稀土配合物荧光材料和PVA混合制得的发光溶胶在室温下浇铸到线阵CCD里感光槽里,将灌入发光溶胶的CCD平置于干燥烘箱里,40℃烘箱烘干,再在制备的增强膜表面旋涂一层PDMS膜,40℃烘箱中固化,制成稀土配合物紫外增强线阵CCD。
CN201810823302.7A 2018-07-25 2018-07-25 一种稀土配合物紫外增强薄膜 Active CN109111914B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810823302.7A CN109111914B (zh) 2018-07-25 2018-07-25 一种稀土配合物紫外增强薄膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810823302.7A CN109111914B (zh) 2018-07-25 2018-07-25 一种稀土配合物紫外增强薄膜

Publications (2)

Publication Number Publication Date
CN109111914A CN109111914A (zh) 2019-01-01
CN109111914B true CN109111914B (zh) 2021-06-01

Family

ID=64863278

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810823302.7A Active CN109111914B (zh) 2018-07-25 2018-07-25 一种稀土配合物紫外增强薄膜

Country Status (1)

Country Link
CN (1) CN109111914B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599550A (zh) * 2020-12-16 2021-04-02 北京空间机电研究所 基于下转换发光的日盲紫外探测器、制备方法和探测相机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0506999A1 (en) * 1991-04-03 1992-10-07 MITSUI TOATSU CHEMICALS, Inc. Resin composition for ultraviolet luminescent screen
CN103078056A (zh) * 2013-01-22 2013-05-01 北京交通大学 一种基于稀土配合物的光盲型有机紫外探测器件
CN103745981A (zh) * 2013-12-04 2014-04-23 广东普加福光电科技有限公司 一种紫外响应稀土光转换膜及其用途
CN104059093A (zh) * 2014-07-04 2014-09-24 重庆理工大学 一种稀土铕配合物及基于pvb基质的铕红光透明薄膜的制备方法
CN104086927A (zh) * 2014-06-27 2014-10-08 河北工业大学 一种柔性稀土透明发光薄膜及其制备方法
WO2015079813A1 (ja) * 2013-11-28 2015-06-04 株式会社クレハ 太陽電池モジュール用波長変換シートおよび太陽電池モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0506999A1 (en) * 1991-04-03 1992-10-07 MITSUI TOATSU CHEMICALS, Inc. Resin composition for ultraviolet luminescent screen
CN103078056A (zh) * 2013-01-22 2013-05-01 北京交通大学 一种基于稀土配合物的光盲型有机紫外探测器件
WO2015079813A1 (ja) * 2013-11-28 2015-06-04 株式会社クレハ 太陽電池モジュール用波長変換シートおよび太陽電池モジュール
CN103745981A (zh) * 2013-12-04 2014-04-23 广东普加福光电科技有限公司 一种紫外响应稀土光转换膜及其用途
CN104086927A (zh) * 2014-06-27 2014-10-08 河北工业大学 一种柔性稀土透明发光薄膜及其制备方法
CN104059093A (zh) * 2014-07-04 2014-09-24 重庆理工大学 一种稀土铕配合物及基于pvb基质的铕红光透明薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ionic liquid as plasticizer for europium( III)-doped luminescent poly(methyl methacrylate) films;Kyra Lunstroot等;《Phys.Chem.Chem.Phys.》;20101231;1879–1885 *

Also Published As

Publication number Publication date
CN109111914A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
Zhang et al. A review of diverse halide perovskite morphologies for efficient optoelectronic applications
Chen et al. Highly efficient LiYF4: Yb3+, Er3+ upconversion single crystal under solar cell spectrum excitation and photovoltaic application
CN107919409B (zh) 一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器及其制备方法
CN102382654B (zh) 上转换荧光材料稀土掺杂NaYF4纳米晶的制备方法
Chen et al. Highly Efficient and Stable Luminescence from Microbeans Integrated with Cd-Free Quantum Dots for White-Light-Emitting Diodes.
Han et al. Red and green-emitting biocompatible carbon quantum dots for efficient tandem luminescent solar concentrators
Karunakaran et al. Efficiency improvement of Si solar cells by down-shifting Ce3+-doped and down-conversion Ce3+-Yb3+ co-doped YAG phosphors
CN108659831B (zh) 一种一锅法制备固体室温磷光碳点的方法
Zhang et al. Large‐area flexible, transparent, and highly luminescent films containing lanthanide (III) complex‐doped ionic liquids for efficiency enhancement of silicon‐based heterojunction solar cell
CN104638066B (zh) ZnO/ZnS/FeS2核壳结构阵列薄膜及制备方法
CN110373184A (zh) 一种高产率红色荧光碳量子点材料的合成方法
CN109111914B (zh) 一种稀土配合物紫外增强薄膜
Sato et al. Effective stabilization of perovskite cesium lead bromide nanocrystals through facile surface modification by perfluorocarbon acid
CN101665695A (zh) Pr3+掺杂(YXLa1-X)2O3发光材料制备方法
CN105223633A (zh) 一种平面荧光聚光器及其制备方法
CN109721918A (zh) 一种应用于硅基太阳能电池的柔性稀土透明发光薄膜及其制备方法
Gavriluta et al. Enhancement of copper indium gallium selenide solar cells using europium complex as photon downshifter
Adams et al. Fabrication of rapid response self-powered photodetector using solution-processed triple cation lead-halide perovskite
Satpute et al. Synthesis and luminescence characterization of downconversion and downshifting phosphor for efficiency enhancement of solar cells: Perspectives and challenges
CN107658384A (zh) 基于有机‑无机多异质结纳米阵列的广谱光电探测器及其制备方法
CN109796710B (zh) 一种氧化石墨烯稀土配合物复合紫外增强薄膜的制备方法
CN107022096B (zh) 具有近紫外激发功能高光透过性复合醋酸纤维素膜的制备
Shrivastava et al. Materials for solar cell applications: an overview of TiO 2, ZnO, upconverting organic and polymer-based solar cells
CN107233910A (zh) 一种类石墨氮化碳/硫化亚锡纳米异质结的合成方法
CN103172956B (zh) 太赫兹频段的太波材料的合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant