CN109106952A - 一种靶向治疗恶性淋巴瘤的载药纳米粒的制备方法 - Google Patents

一种靶向治疗恶性淋巴瘤的载药纳米粒的制备方法 Download PDF

Info

Publication number
CN109106952A
CN109106952A CN201810849726.0A CN201810849726A CN109106952A CN 109106952 A CN109106952 A CN 109106952A CN 201810849726 A CN201810849726 A CN 201810849726A CN 109106952 A CN109106952 A CN 109106952A
Authority
CN
China
Prior art keywords
drug
preparation
nanometer particle
malignant lymphoma
nanoparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810849726.0A
Other languages
English (en)
Inventor
魏坤
罗逍
牛雪明
万淑倩
莫灿龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201810849726.0A priority Critical patent/CN109106952A/zh
Publication of CN109106952A publication Critical patent/CN109106952A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6935Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
    • A61K47/6937Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol the polymer being PLGA, PLA or polyglycolic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nanotechnology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种靶向治疗恶性淋巴瘤的载药纳米粒的制备方法。以两亲性具有良好生物相容性聚合物PEG‑PLGA为载体中心,在疏水段包载疏水性药物阿霉素(DOX),再通过化学反应将暴露在外端的羧基活化,键合上带有氨基的核酸适配体。本发明利用核酸适配体的靶向作用,将载药纳米粒迅速递送至肿瘤部位后,利用PEG‑PLGA纳米粒的缓释作用,缓慢释放药物,达到长效高效治疗恶性淋巴瘤的作用,减少化疗等普通疗法带来的副作用。

Description

一种靶向治疗恶性淋巴瘤的载药纳米粒的制备方法
技术领域
本发明属于生物化学药物技术领域。涉及一种靶向治疗恶性淋巴瘤的载药纳米粒的制备方法。
背景技术
特异性核酸适配体(Aptamer)是一种由寡肽核苷酸组成的小分子配体(通常是20~50个碱基),能与相应的靶标特异性结合。与抗体相比较,与以下优点:1.低分子量(8-25kDa),更加迅速穿透组织,到达靶点位置;2.非免疫原性,不易被免疫系统识别;3.具有热稳定性;4.可大量合成与修饰;5.相对于抗体的制备成本而言,核酸适配体的制备成本要相对低很多。
CD30分子是恶性淋巴瘤的一个特异标志物,其广泛表达于霍杰金淋巴瘤和间变性大细胞淋巴瘤细胞表面,而在正常组织不表达,因此被作为一个理想的靶点来开发淋巴瘤靶向治疗药物。CD30特异性核酸适配体(aptamer),用于CD30阳性的霍杰金淋巴瘤和间变性大细胞淋巴瘤诊断和靶向治疗。然而,由于aptamer易于被核酸酶降解以及被肾脏滤过,其在临床的应用受到了限制。
聚乳酸-羟基乙酸共聚物(PLGA)是被美国FDA批准的医药用辅料,广泛使用于载体材料,具备良好的生物可降解性、生物相容性和适当的降解速率等特点。但其本身为疏水性化合物,单独使用具有局限性。而聚乙二醇(PEG)是使用最广泛的亲水性化合物,可为药物扩散提供一个稳定的扩散层,可以有效减缓药物从血液的清除速率,延长体内滞留时间,并减小RES摄取,提高药物的生物利用度和肿瘤靶向效率。聚乙二醇(PEG)和聚乳酸-羟基乙酸共聚物(PLGA)由于具有良好的生物相容性和生物可降解性,已经被FDA批准应用于临床,其安全性和有效性已经被广泛认可。
阿霉素是一种广谱的抗肿瘤抗生素药物,使用广泛,对多种肿瘤都具有较好的疗效,但是由于其半衰期较短,对正常组织具有细胞毒性,容易引起肿瘤细胞的多药耐药性,所以临床使用还是有一定的局限性。
将疏水性的阿霉素包裹在疏水核里,作为纳米粒给药,能够有效降低网状内皮系统(RES)对其识别和吞噬,再通过键合具有靶向性的核酸适配体,能够实现在体内的主动靶向与被动靶向,而使药物能在肿瘤部位达到聚集和释放,提高药物治疗作用,降低对正常细胞的损伤。
发明内容
本发明的目的之一是提供一种以双亲性聚合物为中心载体,以特异性核酸适配体为靶向分子的能够显著治疗恶性淋巴瘤的缓释抗肿瘤药物,其中抗肿瘤药物会包载在制成的纳米粒中。本发明的目的之二是通过酰胺键将纳米粒与特异型核酸适配体相结合,制备成具有靶向作用的纳米粒。
本发明技术方案如下。
一种靶向治疗恶性淋巴瘤的载药纳米粒的制备方法,以两亲性具有良好生物相容性聚合物PEG-PLGA为载体中心,在疏水段包载疏水性药物阿霉素(DOX),再通过化学反应将暴露在外端的羧基活化,键合上带有氨基的核酸适配体,达到既可以靶向性达到肿瘤部位也可以在肿瘤部位有效释放药物杀伤肿瘤细胞的效果。减少直接使用阿霉素后对人体正常组织器官的损伤作用。
上述方法中,PEG-PLGA的分子链为一端疏水一端亲水,其结构式如下:
上述方法中,所述核酸适配体和纳米粒之间是通过氨基与羧基键合后形成酰胺键,在体内不易被体液分解,能够有效将载药纳米粒传送至肿瘤部位释放药物。
上述方法中,所述载药纳米粒的疏水端会在有机溶剂与水的混合液中通过表面活性剂的作用形成疏水端向里,亲水端向外的纳米胶束,纳米微粒保证了疏水药物的稳定性,又可以在达到肿瘤部位后缓慢释放药物发挥作用。
上述方法中,PEG-PLGA上的羧基是通过活化后,才能有效与核酸适配体上的氨基结合;具体方法是,使用EDC将末端羧基活化后形成一个中间物,然后这个中间物再与氨基反应后,使得氨基与羧基之间形成了相应的共价键。
上述方法中,末端羧基的活化途径中需要加入联合剂EDC、NHS,以反应温度、反应时间、反应条件以及EDC/NHS的摩尔比为影响因素,进行正交反应,优化实验条件,使纳米粒上尽可能的多连接上核酸适配体。
本发明中,双亲性化合物可通过自乳化-溶剂蒸发法、复乳法、透析法等方法制备具有缓释作用的抗肿瘤纳米粒。
上述方法中,在亲水-疏水分子链形成纳米粒的过程中,加入疏水药物阿霉素,在疏水作用以及相同药物相容性好的双重作用下,药物进一步被包入疏水性内核,增加药物的包封率。
一种靶向治疗恶性淋巴瘤的载药纳米粒的制备方法,包括如下步骤:
(1)将PEG-PLGA-COOH溶解于二氯甲烷之中,超声使其在有机相中分散均匀;
(2)称取50~70mg盐酸阿霉素,使用二甲亚砜溶解,加入10~14mg三乙胺后搅拌过夜,使盐酸阿霉素脱盐酸,而变成疏水性药物;
(3)将步骤(2)中制得的阿霉素加入到步骤(1)制备的溶液中,细胞破碎仪超声后使载体材料与药物混合均匀;
(4)在80-200W超声30s-1min的情况下,将步骤(3)制备的溶液滴入20~40mL 1%胆酸钠溶液中,乳化法制备纳米粒,使用旋转蒸发仪蒸发有机溶剂,得到PEG-PLGA-DOX纳米粒;
(5)将获得的纳米粒重悬于去离子水,加入过量的EDC(1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐)和NHS(N-羟基琥珀酰亚胺),使末端羧基活化,加入5’-NH2的核酸适配体搅拌后,使用DEPC水清洗,获得具有靶向作用的纳米粒。
本发明采用的PLGA的分子量在15k~30k之间,其中17k最佳,因为分子量大的PLGA分子链过长,不利于PEG的包裹,而过短不利于形成纳米粒达到想要的效果。而PEG的分子量在2000~20000之间。
与现有技术相比,本发明的优势在于:
本发明构建了一种既可以通过核酸适配体达到主动靶向性能,又可通过纳米粒子本身的性质逃离网状内皮系统的吞噬达到被动靶向性,通过主动靶向与被动靶向双重效应,实行载药纳米粒在迅速达到肿瘤部位后,通过细胞的吞噬和纳米粒子的溶解达到缓慢释放药物的特性,提高药物的生物利用度和肿瘤靶向效率。
附图说明
图1为DOX-NP的粒径分布图;
图2为Apt-DOX-NP的粒径分布图;
图3为实施例1的靶向载药纳米粒的SEM图(比例尺1μm);
图4为实施例1的靶向载药纳米粒的SEM图(比例尺100nm);
图5为Apt-DOX-NP与游离DOX的体外释放图;
图6为Apt-DOX-NP合成路线图。
具体实施方式
下面结合具体实施例对本发明作进一步地具体详细描述,但本发明的实施方式不限于此,对于未特别注明的工艺参数,可参照常规技术进行。
实施例1
1.称取0.2g的PEG-PLGA-COOH溶于4~5ml二氯甲烷中。
2.称取0.02g盐酸阿霉素溶于2ml DMSO中,加入40mg的三乙胺,搅拌4~12h后使盐酸阿霉素脱盐酸,后加入到步骤1得到的液体中,超声5min,使阿霉素均匀分散至液体中。
3.精密称取0.5g的胆酸钠溶于50ml去离子水中,配置成1%胆酸钠溶液;同样方法配置0.5%胆酸钠溶液。
4.将步骤2中得到的液体,混入1步骤1中制得的溶液(20mL)中,使用超声仪120W超声1分钟,使药物均匀的分散在有机相中。
5.使用5ml的注射器吸取步骤4中的溶液,在细胞破碎仪的超声(180W,5min)状况下,逐滴加入到1%胆酸钠溶液中,可以观察到溶液迅速乳化,变成粉红色乳状液体,均匀,无分层现象。
6.将步骤5制得的乳液加入到旋转蒸发仪中,在低压、30℃下蒸发二氯甲烷。将制得的纳米颗粒使用去离子水清洗三遍后,用去离子水重悬。
7.获得PEG-PLGA-DOX混悬液后加入过量的EDC以及NHS搅拌30分钟,活化纳米粒上的羧基,获得活化后的DOX-NP。
8.在步骤7的溶液中加入1mL 5’-NH2核酸适配体(Apt),磁力搅拌下反应6h后使用DEPC水洗涤Apt-DOX-NP三次,干燥,获得具有靶向恶性淋巴瘤细胞的纳米粒。要使用时,再重悬于DEPC水中使用。
实施例2
1.称取0.2g的PEG-PLGA溶于4~5ml二氯甲烷中。
2.称取0.02g盐酸阿霉素溶于2ml DMSO中,加入40mg的三乙胺,搅拌4~12h后使盐酸阿霉素脱盐酸,后加入到步骤1得到的液体中,超声5min,使阿霉素均匀分散至液体中。
3.精密称取0.5g的胆酸钠溶于50ml去离子水中,配置成1%胆酸钠溶液;同样方法配置0.5%胆酸钠溶液。
4.将步骤2中得到的液体,混入1步骤1中制得的溶液(20mL)中,使用超声仪80W超声1分钟,使药物均匀的分散在有机相中。
5.使用5ml的注射器吸取步骤4中的溶液,在细胞破碎仪的超声(180W,5min)状况下,逐滴加入到1%胆酸钠溶液中,可以观察到溶液迅速乳化,变成粉红色乳状液体,均匀,无分层现象。
6.将步骤5制得的乳液加入到旋转蒸发仪中,在低压、30℃下蒸发二氯甲烷。将制得的纳米颗粒使用去离子水清洗三遍后,用去离子水重悬。
7.获得PEG-PLGA-DOX混悬液后加入过量的EDC以及NHS搅拌30分钟,活化纳米粒上的羧基,获得活化后的DOX-NP。
8.在步骤7的溶液中加入1mL 5’-NH2核酸适配体(Apt),磁力搅拌下反应6h后使用DEPC水洗涤Apt-DOX-NP三次,干燥,获得具有靶向恶性淋巴瘤细胞的纳米粒。要使用时,再重悬于DEPC水中使用。
实施例3
1.称取0.2g的PEG-PLGA溶于4~5ml二氯甲烷中。
2.称取0.02g盐酸阿霉素溶于2ml DMSO中,加入40mg的三乙胺,搅拌4~12h后使盐酸阿霉素脱盐酸,后加入到步骤1得到的液体中,超声5min,使阿霉素均匀分散至液体中。
3.精密称取0.5g的胆酸钠溶于50ml去离子水中,配置成1%胆酸钠溶液;同样方法配置0.5%胆酸钠溶液。
4.将步骤2中得到的液体,混入1步骤1中制得的溶液(20mL)中,使用超声仪300W超声1分钟,使药物均匀的分散在有机相中。
5.使用5ml的注射器吸取步骤4中的溶液,在细胞破碎仪的超声(180W,5min)状况下,逐滴加入到1%胆酸钠溶液中,可以观察到溶液迅速乳化,变成粉红色乳状液体,均匀,无分层现象。
6.将步骤5制得的乳液加入到旋转蒸发仪中,在低压、30℃下蒸发二氯甲烷。将制得的纳米颗粒使用去离子水清洗三遍后,用去离子水重悬。
7.获得PEG-PLGA-DOX混悬液后加入过量的EDC以及NHS搅拌30分钟,活化纳米粒上的羧基,获得活化后的DOX-NP。
8.在步骤7的溶液中加入1mL 5’-NH2核酸适配体(Apt),磁力搅拌下反应6h后使用DEPC水洗涤Apt-DOX-NP三次,干燥,获得具有靶向恶性淋巴瘤细胞的纳米粒。要使用时,再重悬于DEPC水中使用。
实施例4
单因素变量后对比
在实施例1、例2、例3中采取单因素变量原则,改变超声功率为120W、80W、300W。在不同的超声功率下,对纳米粒的粒径和载药量、包封率等都有影响。采用实施例1、2、3中所述方法,得到三种不同的样品,取20μL溶液稀释100倍后,使用纳米粒度仪检测不同样品的粒径进行比较。收集清洗纳米粒的溶液,使用紫外分光光度计检测残留的药物含量,间接计算纳米粒中药物的载药量与包封率。计算公式如下:
根据表一,可以得出不同超声功率对纳米粒的影响
表一不同超声功率下数据比较(Mean±SD,n=3)
实施例5
纳米粒的表征检测
根据实施例4,中可知最佳的实验方案为实施例1,那么使用实施例1中的方法制备得到载药纳米粒(DOX-NP)和靶向载药纳米粒(Apt-DOX-NP)后,需检测其表征特性,看是否符合样品要求。
1.粒径分布:将获得的DOX-NP与Apt-DOX-NP取20μL溶液稀释100倍后,使用纳米粒度仪检测不同样品的粒径进行比较。得到图1、图2中的粒径分布图,发现在接入靶向之后,Apt-DOX-NP的粒径有所增加,但是依旧小于200nm,仍可通过EPR效应达到被动靶向作用;
2.形态检测:将溶液滴加至导电的单晶硅片上,使用扫描电子显微镜观察纳米粒的形态。图3与图4中表示的是靶向载药纳米粒Apt-DOX-NP的样品形态;发现纳米粒呈规则的圆形,在溶液的分散均匀,大小相近。粒径为180nm左右,相对纯载药纳米粒(DOX-NP)有所增加,是由于在纳米粒的表面接上了靶向物质Aptamer所致。
3.药物释放对比:从图5中可以看出,游离的药物(DOX)在溶液中容易突释,在24h左右几乎全部释放完全,在36h后保持稳定数值,在48h后浓度有些许下降。这样单独使用药物时,会造成药物在体内的实时浓度扩大且药物使用时间短暂。而靶向载药纳米粒(Apt-DOX-NP)中,在前12h有一定的突释现象,使得纳米粒在达到肿瘤部位时迅速发挥其杀伤作用,而后续由于纳米粒的缓慢分解,药物释放量呈现缓慢释放状态,这样可使得肿瘤部位能长时间的维持在药物有效范围内并大大提高药物的生物利用度。

Claims (7)

1.一种靶向治疗恶性淋巴瘤的载药纳米粒的制备方法,其特征在于,以两亲性具有良好生物相容性聚合物PEG-PLGA为载体中心,在疏水段包载疏水性药物阿霉素(DOX),再通过化学反应将暴露在外端的羧基活化,键合上带有氨基的核酸适配体。
2.根据权利要求1所述靶向治疗恶性淋巴瘤的载药纳米粒的制备方法,其特征在于,PEG-PLGA的分子链为一端疏水一端亲水,其结构式如下:
3.根据权利要求1所述靶向治疗恶性淋巴瘤的载药纳米粒的制备方法,其特征在于,所述核酸适配体和纳米粒之间是通过氨基与羧基键合后形成酰胺键。
4.根据权利要求2所述靶向治疗恶性淋巴瘤的载药纳米粒的制备方法,其特征在于,所述载药纳米粒的疏水端会在有机溶剂与水的混合液中通过表面活性剂的作用形成疏水端向里,亲水端向外的纳米胶束。
5.根据权利要求1所述靶向治疗恶性淋巴瘤的载药纳米粒的制备方法,其特征在于,PEG-PLGA上的羧基是通过活化后,才能有效与核酸适配体上的氨基结合;具体方法是,使用EDC将末端羧基活化后形成一个中间物,然后这个中间物再与氨基反应后,使得氨基与羧基之间形成了相应的共价键。
6.权利要求4靶向治疗恶性淋巴瘤的载药纳米粒的制备方法,其特征在于,在亲水-疏水分子链形成纳米粒的过程中,加入疏水药物阿霉素,在疏水作用以及相同药物相容性好的双重作用下,药物进一步被包入疏水性内核,增加药物的包封率。
7.权利要求1靶向治疗恶性淋巴瘤的载药纳米粒的制备方法,其特征在于,包括如下步骤:
(1)将PEG-PLGA-COOH溶解于二氯甲烷之中,超声使其在有机相中分散均匀;
(2)称取50~70mg盐酸阿霉素,使用二甲亚砜溶解,加入10~14mg三乙胺后搅拌过夜,使盐酸阿霉素脱盐酸,而变成疏水性药物;
(3)将步骤(2)中制得的阿霉素加入到步骤(1)制备的溶液中,细胞破碎仪超声后使载体材料与药物混合均匀;
(4)在80-200W超声30s-1min的情况下,将步骤(3)制备的溶液滴入20~40mL1%胆酸钠溶液中,乳化法制备纳米粒,使用旋转蒸发仪蒸发有机溶剂,得到PEG-PLGA-DOX纳米粒;
(5)将获得的纳米粒重悬于去离子水,加入过量的EDC和NHS,使末端羧基活化,加入5’-NH2的核酸适配体搅拌后,使用DEPC水清洗,获得具有靶向作用的纳米粒。
CN201810849726.0A 2018-07-28 2018-07-28 一种靶向治疗恶性淋巴瘤的载药纳米粒的制备方法 Pending CN109106952A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810849726.0A CN109106952A (zh) 2018-07-28 2018-07-28 一种靶向治疗恶性淋巴瘤的载药纳米粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810849726.0A CN109106952A (zh) 2018-07-28 2018-07-28 一种靶向治疗恶性淋巴瘤的载药纳米粒的制备方法

Publications (1)

Publication Number Publication Date
CN109106952A true CN109106952A (zh) 2019-01-01

Family

ID=64863527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810849726.0A Pending CN109106952A (zh) 2018-07-28 2018-07-28 一种靶向治疗恶性淋巴瘤的载药纳米粒的制备方法

Country Status (1)

Country Link
CN (1) CN109106952A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109620973A (zh) * 2019-01-24 2019-04-16 广州贝奥吉因生物科技有限公司 用于靶向诊疗动脉硬化的纳米载药复合物及制备方法
CN110237264A (zh) * 2019-01-31 2019-09-17 华东理工大学 一种包载盐酸阿霉素的TA-Fe(III)修饰的PLGA纳米颗粒及其制备方法
CN111529510A (zh) * 2020-05-09 2020-08-14 重庆医科大学 一种纳米粒子作为肿瘤微环境响应性药物或者成像剂的应用
CN111821419A (zh) * 2020-07-31 2020-10-27 浙江大学 一种自组装多肽纳米载体及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104667289A (zh) * 2014-01-28 2015-06-03 暨南大学 一种抗肿瘤药物载体及其使用方法
CN105213358A (zh) * 2015-10-29 2016-01-06 广东工业大学 一种装载姜黄素或姜黄素衍生物纳米银靶向给药系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104667289A (zh) * 2014-01-28 2015-06-03 暨南大学 一种抗肿瘤药物载体及其使用方法
CN105213358A (zh) * 2015-10-29 2016-01-06 广东工业大学 一种装载姜黄素或姜黄素衍生物纳米银靶向给药系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIANWEI GUO,ET AL.: "Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery", 《BIOMATERIALS》 *
NINAXI ZHAO,ET AL.: "Self-assembled aptamer-nanomedicine for targeted chemotherapy and gene therapy", 《SMALL》 *
郭剑伟: "Aptamer介导载紫杉醇PEG-PLGA纳米递释系统的构建及抗肿瘤研究", 《万方数据知识服务平台》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109620973A (zh) * 2019-01-24 2019-04-16 广州贝奥吉因生物科技有限公司 用于靶向诊疗动脉硬化的纳米载药复合物及制备方法
CN110237264A (zh) * 2019-01-31 2019-09-17 华东理工大学 一种包载盐酸阿霉素的TA-Fe(III)修饰的PLGA纳米颗粒及其制备方法
CN111529510A (zh) * 2020-05-09 2020-08-14 重庆医科大学 一种纳米粒子作为肿瘤微环境响应性药物或者成像剂的应用
CN111821419A (zh) * 2020-07-31 2020-10-27 浙江大学 一种自组装多肽纳米载体及其制备方法和应用

Similar Documents

Publication Publication Date Title
Wu et al. Chemodrug-gated biodegradable hollow mesoporous organosilica nanotheranostics for multimodal imaging-guided low-temperature photothermal therapy/chemotherapy of cancer
Wang et al. Coordination of injectable self-healing hydrogel with Mn-Zn ferrite@ mesoporous silica nanospheres for tumor MR imaging and efficient synergistic magnetothermal-chemo-chemodynamic therapy
Shi et al. A tumor-specific cleavable nanosystem of PEG-modified C60@ Au hybrid aggregates for radio frequency-controlled release, hyperthermia, photodynamic therapy and X-ray imaging
You et al. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release
CN109106952A (zh) 一种靶向治疗恶性淋巴瘤的载药纳米粒的制备方法
Chen et al. Lipid/PLGA hybrid microbubbles as a versatile platform for noninvasive image-guided targeted drug delivery
Du et al. Multi-functional liposomes showing radiofrequency-triggered release and magnetic resonance imaging for tumor multi-mechanism therapy
CN108478531A (zh) 叶酸靶向还原敏感载药聚合物纳米胶束及其制备方法和应用
CN107095859B (zh) 一种具有肿瘤细胞生物还原性微环境敏感的载药纳米胶囊及其制备方法
CN105534957B (zh) 一种还原/酶/pH多重响应性释药的核壳结构纳米粒子
Tamarov et al. Approaches to improve the biocompatibility and systemic circulation of inorganic porous nanoparticles
CN103040757B (zh) 核-壳型纳米药物颗粒、其制备方法及应用
Tian et al. Hollow mesoporous carbon modified with cRGD peptide nanoplatform for targeted drug delivery and chemo-photothermal therapy of prostatic carcinoma
Peng et al. Biomimetic mesoporous silica nanoparticles for enhanced blood circulation and cancer therapy
TWI572369B (zh) 酸鹼應答型奈米微粒的製備並應用於製備促進抗癌藥物於腫瘤的傳輸與深層滲透之藥物的用途
Sharma et al. Recent advances of metal-based nanoparticles in nucleic acid delivery for therapeutic applications
Zhao et al. Hollow structures as drug carriers: recognition, response, and release
CN108578696B (zh) 一种脂质体微泡载金属-icg自组装复合体系
CN105748439A (zh) 一种基于短链烷烃修饰的树状分子的pH响应型纳米递药系统及其制备方法和应用
Lin et al. Doxorubicin loaded silica nanoparticles with dual modification as a tumor-targeted drug delivery system for colon cancer therapy
Wang et al. Advancing the pharmaceutical potential of bioinorganic hybrid lipid‐based assemblies
Tao et al. Minimally invasive antitumor therapy using biodegradable nanocomposite micellar hydrogel with functionalities of Nir-II photothermal ablation and vascular disruption
Sinha et al. Novel GD-loaded silicon nanohybrid: a potential epidermal growth factor receptor expressing cancer cell targeting magnetic resonance imaging contrast agent
CN105233282B (zh) 一种多功能纳米药物组合物及其制备方法
Li et al. Targeted pH/redox dual-responsive nanoparticles for cancer chemotherapy combined with photodynamic/photothermal therapy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190101

RJ01 Rejection of invention patent application after publication