CN109081305A - 一种同时降解生物质和光降解水产氢的方法 - Google Patents

一种同时降解生物质和光降解水产氢的方法 Download PDF

Info

Publication number
CN109081305A
CN109081305A CN201810933674.5A CN201810933674A CN109081305A CN 109081305 A CN109081305 A CN 109081305A CN 201810933674 A CN201810933674 A CN 201810933674A CN 109081305 A CN109081305 A CN 109081305A
Authority
CN
China
Prior art keywords
biomass
degradation
cobalt
nickel
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810933674.5A
Other languages
English (en)
Other versions
CN109081305B (zh
Inventor
王红艳
胡桂林
雷又嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201810933674.5A priority Critical patent/CN109081305B/zh
Publication of CN109081305A publication Critical patent/CN109081305A/zh
Application granted granted Critical
Publication of CN109081305B publication Critical patent/CN109081305B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种同时降解生物质和光降解水产氢的方法,以生物质为电子牺牲体,水溶性硒化镉或硫化镉量子点为光敏剂、钴或镍的无机盐为催化剂,实现了水相体系的可见光驱动水分解制氢,同时实现了对含有氨基基团的生物质的光降解。本发明的光催化产氢体系采用的各组分廉价易得,无需复杂的合成与提纯,且产氢效率高,同时无需铂、铑等贵金属材料为助催化剂,体系稳定性良好,有利于实际的生产应用。更重要的是,采用生物质为电子牺牲体,实现了生物质的无污染降解与综合利用。

Description

一种同时降解生物质和光降解水产氢的方法
技术领域
本发明属于光催化还原水制氢技术领域,具体涉及一种以生物质为电子牺牲体光致产氢气的方法,同时实现生物质的降解。
背景技术
由于能源危机的日趋严峻,环境友好的氢能备受瞩目,但由于传统的制氢方法耗能巨大,污染严重,利用环境友好的太阳能制氢成为人们普遍关注的热门课题(Nature2001,414,625;Int.J.Hydrogen Energy.2007,32,2673)。从上世纪以来,化学家们一直致力于如何高效的利用太阳能实现水的分解,大规模制备氢气,然而目前水分解仍然面临巨大的挑战。
实现水相的光致产氢,体系中需要三个组分,光敏剂、电子牺牲体以及催化剂。光敏剂吸收光能被激发,形成激发态的光敏剂,电子牺牲体可将电子直接传输给激发态的光敏剂,使其得到电子被还原,继而又将电子传递给催化剂,或者激发态的光敏剂将电子直接传输给催化剂,自身从电子牺牲体中得到电子得以复原,这两种途径的最终结果是催化剂得到电子,将水裂解产生氢气。科学家们一直在寻找高效稳定可循环利用的光催化水分解体系,然而催化剂的合成需要耗费大量的人力和资源,如何构筑廉价、高效可见光催化的光致产氢体系迫在眉睫。
自从上世纪七十年代Honda和Fujishima利用二氧化钛作为光催化剂并在紫外光照射下完成了光解水后(Nature 1972,238,37-38.),半导体材料光解水被广泛的研究。越来越多的可见光驱动半导体光解水体系被报道。量子点以其合成简便、可见光吸收能力强、有较大表面积与催化剂接触等特点,在可见光催化制氢领域有很广泛的应用。镍、铁、钴等金属的无机盐作为常用的产氢催化剂也被人们熟知。对于体系中电子牺牲体的关注却很少,目前普遍采用的电子牺牲体为三乙胺、三乙醇胺、抗坏血酸等,而一些生物质如氨基酸类,特别是有致癌作用的三聚氰胺等却很少提及。一方面这些物质含有羧基或氨基,容易提供质子和电子,另一方面这类化合物广泛存在于生产生活中,廉价易得。有效利用此类化合物实现水的光解制氢,既能有效的实现可见光下的催化制氢,又能实现生物质的光降解,特别是致癌物质三聚氰胺的光降解。
发明内容
本发明所要解决的技术问题在于提供一种以生物质为电子牺牲体,光致高效产氢的方法,该方法还可同时实现生物质的光降解。
解决上述技术问题所采用的技术方案是:将水溶性硒化镉量子点或水溶性硫化镉量子点、钴的无机盐或镍的无机盐、生物质电子牺牲体加入盛有水的透明反应器中,混合均匀,并用酸或碱调节混合体系的pH至9~13,在惰性气体保护或真空条件下,用波长为400~780nm的可见光照射反应器,对生物质进行光降解和光致产氢。
上述的生物质电子牺牲体为3-氨基丙酸、4-氨基丁酸、6-氨基己酸、8-氨基辛酸、对氨甲基苯甲酸、三聚氰胺中任意一种,优选对氨甲基苯甲酸或4-氨基丁酸。进一步优选控制混合体系中生物质电子牺牲体的浓度2×10-3~2×10-1mol/L。
上述的水溶性硒化镉量子点为3-巯基丙酸修饰的硒化镉量子点或11-巯基烷酸修饰的硒化镉量子点,水溶性硫化镉量子点为3-巯基丙酸修饰的硫化镉量子点或11-巯基烷酸修饰的硫化镉量子点,其中3-巯基丙酸修饰的硒化镉量子点(MPA-CdSe QDs)按文献“|Energy Environ.Sci.,2013,6,2597-2602”中报道的方法合成,11-巯基烷酸修饰的硒化镉量子点(MUA-CdSe QDs)按文献“化学试剂.,2008,30(11),801-805”中报道的方法合成。
上述的硒化镉量子点或硫化镉量子点的平均粒径为2~7nm,并控制混合体系中镉离子浓度在10-4mol/L数量级。
上述钴的无机盐为卤化钴、硫酸钴、硝酸钴、碳酸钴、草酸钴、醋酸钴、磷酸钴、铬酸钴中任意一种;镍的无机盐为卤化镍、硫酸镍、硝酸镍、碳酸镍、草酸镍、醋酸镍、磷酸镍、铬酸镍中任意一种。优选控制混合体系中钴的无机盐或镍的无机盐的浓度在10-4mol/L数量级。
上述调节pH所用的酸为盐酸,碱为氢氧化钠或氢氧化钾。
本发明的有益效果如下:
本发明以量子点作为光敏剂,利用生物质作为电子牺牲体,在钴或镍的无机盐催化作用下进行水相体系的可见光驱动水分解制氢,同时实现了对含有氨基基团的生物质的光降解。本发明的光催化产氢体系采用的各组分廉价易得,无需复杂的合成与提纯,且产氢效率高,同时无需铂、铑等贵金属材料为助催化剂,体系稳定性良好,有利于实际的生产应用。更重要的是,采用多种生物质为电子牺牲体,实现了生物质的无污染降解与综合利用。
附图说明
图1是实施例1中产氢体系在气相色谱上的H2-CH4的保留时间图。
具体实施方式
下面结合附图和具体实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
氨基酸的降解程度采用滴定的方式进行,具体操作步骤为:光照后的体系旋去大部分溶剂,加入异丙醇沉降量子点;过滤,得到澄清溶液旋干,加入蒸馏水配成10mL溶液,调节溶液的pH至0.2M氨基酸等电点。滴定时,取2个25mL的锥形瓶作为平行试样,向1、2号瓶内各加入2mL上述溶液和蒸馏水5mL,混匀。然后向两个锥形瓶中各加入5滴酚酞指示剂,混匀后各加2mL甲醛水溶液再混匀,分别用0.05mol/L标准氢氧化钠水溶液滴定至溶液微红色,且半分钟溶液不褪色。
降解率计算公式:
其中M指氨基酸摩尔质量,C指氢氧化钠浓度,V指滴定消耗的NaOH体积。
三聚氰胺的降解程度采用核磁的方式进行,具体操作步骤为:将光照后的体系旋去大部分溶剂,沉积下来的固体抽滤,烘干。称取10mg(5mg 1,4-二溴苯作为内标)固体溶解在氘代DMSO中,通过核磁谱图中三聚氰胺和1,4-二溴苯的峰面积来确定其降解程度。
实施例1
向pyrex试管中加入10mL平均粒径为4nm的MPA-CdSe QDs、1mg二氯化钴、178mg 3-氨基丙酸,混合均匀,并用0.1mol/L NaOH溶液调节体系pH至11,体系中3-氨基丙酸的浓度为0.2mol/L、镉离子浓度为2.5×10-4mol/L、二氯化钴浓度为4.2×10-4mol/L;使体系处于密封的氮气氛围中,并注入500μL甲烷为内标,采用420nm的LED灯照射6小时后,气相色谱监测体系产生的氢气(如图1所示)。由于气相色谱的定量存在一定误差,采用排水法对所产生的氢气进行定量,结果表明此体系生成氢气的速率达68μmol·h-1·mg-1,3-氨基丙酸降解率达83%。
实施例2
本实施例中,用等摩尔MUA-CdSe QDs替换实施例1中的MPA-CdSe QDs,其他步骤与实施例1相同。
实施例3
本实施例中,用等摩尔量4-氨基丁酸替换实施例1中的3-氨基丙酸,其他步骤与实施例1相同。此体系生成氢气的速率达102μmol·h-1·mg-1,4-氨基丁酸降解率高达87%。
实施例4
本实施例中,用等摩尔MUA-CdSe QDs替换实施例3中的MPA-CdSe QDs,其他步骤与实施例3相同。
实施例5
本实施例中,用等摩尔量6-氨基己酸替换实施例1中的3-氨基丙酸,其他步骤与实施例1相同。此体系生成氢气的速率达64.7μmol·h-1·mg-1,6-氨基己酸降解率达75%。
实施例6
本实施例中,用等摩尔MUA-CdSe QDs替换实施例5中的MPA-CdSe QDs,其他步骤与实施例5相同。
实施例7
本实施例中,用等摩尔量8-氨基辛酸替换实施例1中的3-氨基丙酸,其他步骤与实施例1相同。此体系生成氢气的速率达40μmol·h-1·mg-1,8-氨基辛酸降解率达64%。
实施例8
本实施例中,用MUA-CdSe QDs替换实施例7中的MPA-CdSe QDs,其他步骤与实施例7相同。
实施例9
本实施例中,用等摩尔量对氨甲基苯甲酸替换实施例1中的3-氨基丙酸,其他步骤与实施例1相同。此体系生成氢气的速率达309μmol·h-1·mg-1,对氨甲基苯甲酸降解率高达96%。
实施例10
本实施例中,用等摩尔MUA-CdSe QDs替换实施例9中的MPA-CdSe QDs,其他步骤与实施例9相同。
实施例11
本实施例中,用等摩尔量三聚氰胺替换实施例1中的3-氨基丙酸,其他步骤与实施例1相同。此体系生成氢气的速率可达86μmol·h-1·mg-1,三聚氰胺降解率达54%。
实施例12
本实施例中,用等摩尔MUA-CdSe QDs替换实施例11中的MPA-CdSe QDs,其他步骤与实施例11相同。

Claims (9)

1.一种同时降解生物质和光致产氢的方法,其特征在于:将水溶性硒化镉量子点或水溶性硫化镉量子点、钴的无机盐或镍的无机盐、生物质电子牺牲体加入盛有水的透明反应器中,混合均匀,并用酸或碱调节混合体系的pH至9~13,在惰性气体保护或真空条件下,用波长为400~780nm的可见光照射反应器,对生物质进行光降解和光致产氢;
上述的生物质电子牺牲体为3-氨基丙酸、4-氨基丁酸、6-氨基己酸、8-氨基辛酸、对氨甲基苯甲酸、三聚氰胺中任意一种。
2.根据权利要求1所述的同时降解生物质和光致产氢的方法,其特征在于:所述的生物质电子牺牲体为对氨甲基苯甲酸或4-氨基丁酸。
3.根据权利要求1或2所述的同时降解生物质和光致产氢的方法,其特征在于:控制混合体系中生物质电子牺牲体的浓度2×10-3~2×10-1mol/L。
4.根据权利要求1所述的同时降解生物质和光致产氢的方法,其特征在于:所述的水溶性硒化镉量子点为3-巯基丙酸修饰的硒化镉量子点或11-巯基烷酸修饰的硒化镉量子点。
5.根据权利要求1所述的同时降解生物质和光致产氢的方法,其特征在于:所述水溶性硫化镉量子点为3-巯基丙酸修饰的硫化镉量子点或11-巯基烷酸修饰的硫化镉量子点。
6.根据权利要求4或5所述的同时降解生物质和光致产氢的方法,其特征在于:所述的硒化镉量子点或硫化镉量子点的平均粒径为2~7nm,并控制混合体系中镉离子浓度在10- 4mol/L数量级。
7.根据权利要求1所述的同时降解生物质和光致产氢的方法,其特征在于:所述钴的无机盐为卤化钴、硫酸钴、硝酸钴、碳酸钴、草酸钴、醋酸钴、磷酸钴、铬酸钴中任意一种;所述镍的无机盐为卤化镍、硫酸镍、硝酸镍、碳酸镍、草酸镍、醋酸镍、磷酸镍、铬酸镍中任意一种。
8.根据权利要求7所述的同时降解生物质和光致产氢的方法,其特征在于:控制混合体系中钴的无机盐或镍的无机盐的浓度在10-4mol/L数量级。
9.根据权利要求1所述的同时降解生物质和光降解水产氢的方法,其特征在于:调节pH所用的酸为盐酸,碱为氢氧化钠或氢氧化钾。
CN201810933674.5A 2018-08-16 2018-08-16 一种同时降解生物质和光降解水产氢的方法 Expired - Fee Related CN109081305B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810933674.5A CN109081305B (zh) 2018-08-16 2018-08-16 一种同时降解生物质和光降解水产氢的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810933674.5A CN109081305B (zh) 2018-08-16 2018-08-16 一种同时降解生物质和光降解水产氢的方法

Publications (2)

Publication Number Publication Date
CN109081305A true CN109081305A (zh) 2018-12-25
CN109081305B CN109081305B (zh) 2021-06-25

Family

ID=64793447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810933674.5A Expired - Fee Related CN109081305B (zh) 2018-08-16 2018-08-16 一种同时降解生物质和光降解水产氢的方法

Country Status (1)

Country Link
CN (1) CN109081305B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110038488A (zh) * 2019-04-29 2019-07-23 南开大学 一种利用有机固体废弃物产氢的方法
CN111939987A (zh) * 2020-09-09 2020-11-17 陕西师范大学 一种光催化co2还原制备合成气的光催化材料及其方法
CN118320837A (zh) * 2024-04-10 2024-07-12 黑龙江大学 一种光热协同光催化产氢复合材料及其制备方法和应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0281696A1 (en) * 1987-03-12 1988-09-14 Council of Scientific and Industrial Research A process for the photocatalytic decomposition of water into hydrogen and oxygen
CN101508416A (zh) * 2009-03-11 2009-08-19 上海大学 巯基单或多元有机酸表面修饰的ⅱ-ⅵ族半导体量子点及其制备方法
CN103041829A (zh) * 2011-10-12 2013-04-17 中国科学院理化技术研究所 一种光催化重整生物质及其衍生物制氢的半导体光催化剂及制备与应用
CN103055954A (zh) * 2013-01-16 2013-04-24 中国科学院理化技术研究所 对量子点/棒进行表面修饰改性的方法、光合成催化剂的制备及体系与方法
CN103143377A (zh) * 2013-02-19 2013-06-12 中国科学院理化技术研究所 一种杂原子掺杂的水溶性碳量子点在光催化剂上的应用
CN103184468A (zh) * 2011-12-28 2013-07-03 新奥科技发展有限公司 一种含有鞣酸作为光敏化剂的电解液和光电催化制氢系统
CN103466545A (zh) * 2013-09-30 2013-12-25 中国大唐集团科学技术研究院有限公司 光化学循环制氢法及其制氢体系
KR101421572B1 (ko) * 2013-02-28 2014-07-22 금오공과대학교 산학협력단 TiO2-포르피린 유도체의 복합체를 포함하는 광촉매 및 이의 제조방법
KR20140108204A (ko) * 2014-08-07 2014-09-05 서울대학교산학협력단 유기 금속 착체 및 이를 이용한 수소 생산 방법
US20140332368A1 (en) * 2007-03-21 2014-11-13 Virginia Tech Intellectual Properties, Inc. Supramolecular complexes as photocatalysts for reduction
CN105478148A (zh) * 2014-09-15 2016-04-13 中国科学院理化技术研究所 掺杂的量子点催化剂及其制备方法、包含掺杂的量子点催化剂的制氢体系及制氢方法
US20170312744A1 (en) * 2015-01-05 2017-11-02 Sabic Global Technologies B.V. Metal deposition using potassium iodide for photocatalysts preparation
CN107890875A (zh) * 2017-09-13 2018-04-10 江苏大学 一种AgIn5S8‑ZnS量子点及其制备方法和用途

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0281696A1 (en) * 1987-03-12 1988-09-14 Council of Scientific and Industrial Research A process for the photocatalytic decomposition of water into hydrogen and oxygen
US20140332368A1 (en) * 2007-03-21 2014-11-13 Virginia Tech Intellectual Properties, Inc. Supramolecular complexes as photocatalysts for reduction
CN101508416A (zh) * 2009-03-11 2009-08-19 上海大学 巯基单或多元有机酸表面修饰的ⅱ-ⅵ族半导体量子点及其制备方法
CN103041829A (zh) * 2011-10-12 2013-04-17 中国科学院理化技术研究所 一种光催化重整生物质及其衍生物制氢的半导体光催化剂及制备与应用
CN103184468A (zh) * 2011-12-28 2013-07-03 新奥科技发展有限公司 一种含有鞣酸作为光敏化剂的电解液和光电催化制氢系统
CN103055954A (zh) * 2013-01-16 2013-04-24 中国科学院理化技术研究所 对量子点/棒进行表面修饰改性的方法、光合成催化剂的制备及体系与方法
CN103143377A (zh) * 2013-02-19 2013-06-12 中国科学院理化技术研究所 一种杂原子掺杂的水溶性碳量子点在光催化剂上的应用
KR101421572B1 (ko) * 2013-02-28 2014-07-22 금오공과대학교 산학협력단 TiO2-포르피린 유도체의 복합체를 포함하는 광촉매 및 이의 제조방법
CN103466545A (zh) * 2013-09-30 2013-12-25 中国大唐集团科学技术研究院有限公司 光化学循环制氢法及其制氢体系
KR20140108204A (ko) * 2014-08-07 2014-09-05 서울대학교산학협력단 유기 금속 착체 및 이를 이용한 수소 생산 방법
CN105478148A (zh) * 2014-09-15 2016-04-13 中国科学院理化技术研究所 掺杂的量子点催化剂及其制备方法、包含掺杂的量子点催化剂的制氢体系及制氢方法
US20170312744A1 (en) * 2015-01-05 2017-11-02 Sabic Global Technologies B.V. Metal deposition using potassium iodide for photocatalysts preparation
CN107890875A (zh) * 2017-09-13 2018-04-10 江苏大学 一种AgIn5S8‑ZnS量子点及其制备方法和用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHOWDHARY, NUPOOR: ""Genome Wide Re-Annotation of Caldicellulosiruptor saccharolyticus with New Insights into Genes Involved in Biomass Degradation and Hydrogen Production"", 《PLOS ONE》 *
肖琳: ""光催化污染物降解耦合光解水制氢"", 《中国优秀硕士学位论文全文数据库工程科技1辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110038488A (zh) * 2019-04-29 2019-07-23 南开大学 一种利用有机固体废弃物产氢的方法
CN111939987A (zh) * 2020-09-09 2020-11-17 陕西师范大学 一种光催化co2还原制备合成气的光催化材料及其方法
CN118320837A (zh) * 2024-04-10 2024-07-12 黑龙江大学 一种光热协同光催化产氢复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN109081305B (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
Liu et al. Lead bismuth oxybromide/graphene oxide: synthesis, characterization, and photocatalytic activity for removal of carbon dioxide, crystal violet dye, and 2-hydroxybenzoic acid
Pan et al. Recent progress in 2D metal-organic framework photocatalysts: synthesis, photocatalytic mechanism and applications
Jin et al. Exploration of Zr–metal–organic framework as efficient photocatalyst for hydrogen production
Xu et al. Atomically Pt implanted nanoporous TiO2 film for photocatalytic degradation of trace organic pollutants in water
Tran et al. The degradation of organic dye contaminants in wastewater and solution from highly visible light responsive ZIF-67 monodisperse photocatalyst
CN102963934B (zh) 钨酸铋量子点及其与石墨烯复合材料的制备方法
CN105413712B (zh) 金纳米棒‑CdS‑金纳米粒子复合光催化剂和应用
Wang et al. Interface engineering of pp Z-scheme BiOBr/Bi12O17Br2 for sulfamethoxazole photocatalytic degradation
CN103480353A (zh) 一种用水热法合成碳量子点溶液制备复合纳米光催化剂的方法
Hernández et al. Microwave-assisted sol-gel synthesis of an Au-TiO2 photoanode for the advanced oxidation of paracetamol as model pharmaceutical pollutant
CN109081305A (zh) 一种同时降解生物质和光降解水产氢的方法
CN101972645B (zh) 可见光响应型半导体光催化剂钒酸铋的制备方法
CN102463126B (zh) 用于光催化制氢体系的半导体催化剂及制备方法、包含该催化剂的制氢体系及制氢的方法
CN103934011B (zh) 一种高活性纳米磷酸铋光催化剂的仿生合成方法
Liu et al. Enhanced activation of peroxymonosulfate by a floating Cu0-MoS2/C3N4 photocatalyst under visible-light assistance for tetracyclines degradation and Escherichia coli inactivation
CN110102312A (zh) 一种一维氧化亚铜/银/氧化锌纳米棒光催化复合材料及其制备方法与应用
Shi et al. Engineering photocatalytic ammonia synthesis
CN107335460B (zh) 一种复合光催化材料的制备方法及其应用
CN110465318A (zh) 一种碳量子点负载中空多孔氮化碳球复合光催化剂及其制备方法和应用
CN102335618B (zh) 半导体催化剂及其制备方法、包含半导体催化剂的催化制氢体系及其制氢方法
CN106268819B (zh) 活性炭-铁酸钴复合材料、其制备方法及光催化脱氮用途
Cao et al. Crystal defect-mediated band-gap engineering: a new strategy for tuning the optical properties of Ag 2 Se quantum dots toward enhanced hydrogen evolution performance
Zhong et al. Preparation of pumice-loaded CeO 2/Bi 2 WO 6 photocatalysts and treatment of tetracycline wastewater with a continuous flow photocatalytic reactor
CN109225303A (zh) 一种二维薄层Au/g-C3N4复合光催化剂的制备方法及用途
CN103803634A (zh) 一种介孔氧化锌微球光催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210625