CN109046265B - 一种磁性羧甲基壳聚糖吸附剂的制备方法 - Google Patents
一种磁性羧甲基壳聚糖吸附剂的制备方法 Download PDFInfo
- Publication number
- CN109046265B CN109046265B CN201810897790.6A CN201810897790A CN109046265B CN 109046265 B CN109046265 B CN 109046265B CN 201810897790 A CN201810897790 A CN 201810897790A CN 109046265 B CN109046265 B CN 109046265B
- Authority
- CN
- China
- Prior art keywords
- carboxymethyl chitosan
- magnetic
- adsorbent
- water
- mixed solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0225—Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
- B01J20/0229—Compounds of Fe
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/24—Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28009—Magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28016—Particle form
- B01J20/28021—Hollow particles, e.g. hollow spheres, microspheres or cenospheres
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/286—Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
- C02F2101/206—Manganese or manganese compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Inorganic Chemistry (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明公开了一种磁性羧甲基壳聚糖吸附剂的制备方法,包括如下步骤:(1)将羧甲基壳聚糖分散于水中;(2)将Fe3O4@SiO2分散于水中;(3)将步骤(1)和(2)分散均匀的溶液转移至环己烷和Span‑80的混合溶液中,并调节混合溶液pH至11~12;(4)在混合液中再加入戊二醛,于45~60℃搅拌加热0.5~1.5h,随后磁分离,分离所得的固体经洗涤干燥,即得到所述的吸附剂。本发明制备的磁性羧甲基壳聚糖吸附剂,粒径508.26μm,在中性条件下吸附锰离子效果最好,对Mn2+饱和吸附容量约为75.74mg/g(=1.37mmolMn2+·g‑1),经氨水洗脱后,仍有较好的吸附性能,而且,磁性羧甲基壳聚糖复合微球自身具有良好的降解性,不会造成二次污染。
Description
技术领域
本发明属于水处理技术领域,尤其涉及一种磁性羧甲基壳聚糖吸附剂的制备方法。
背景技术
锰是一种重要的金属元素,在工业上用途很广,需求量很大。近年来随着经济的迅速发展,伴随着各种工业污染,造成某些地区地表水中铁锰含量不断升高。废水中的锰离子若不经处理直接排入水体,将会通过对水体、土壤等生态系统的污染在动植物体内积累,破坏食物链直接或间接影响人类健康。
目前,在含锰废水处理领域,工程应用最广泛的处理方法为传统沉淀法、絮凝沉降法、电解法、铁屑微电解法。传统沉淀法的优点在于操作简单,只需加入足量氢氧化钠即可去除大量锰离子,缺点在于需要后续的pH调节,成本高。絮凝沉降法的优点为操作简易、运行成本低、方便管理、投资少,缺点为不仅对pH要求严格,并且絮凝剂会带来二次污染。铁屑微电解法的优点在于它的双管齐下可以达到很好的锰离子去除效果,在微电场的作用下,水中胶体微粒、极性分子和微小的污染物向相反电荷的电极方向移动,聚集在电极上,形成大颗粒而沉淀,并且与此同时,由于上述沉淀过程的进行,电极反应使得废水中的H+处于不断消耗状态,因此废水中OH-的浓度不断增加,从而能够使废水中的剩余的锰离子形成氢氧化物沉淀得以去除;铁屑微电解法的缺点在于投资和运行成本高,而且设备与技术较为复杂,维修不方便,因此适用范围较小。
发明内容
针对现有技术存在的上述不足,本发明的目的是提供一种磁性羧甲基壳聚糖吸附剂的制备方法,解决现有方法处理含锰废水存在处理成本高、技术设备复杂等问题。
为实现上述目的,本发明采用如下技术方案:
一种磁性羧甲基壳聚糖吸附剂的制备方法,包括如下步骤:
(1)将羧甲基壳聚糖分散于水中;
(2)将Fe3O4@SiO2分散于水中;
(3)将步骤(1)和(2)分散均匀的溶液转移至环己烷和Span-80的混合溶液中,并调节混合溶液pH至11~12;
(4)在混合液中再加入戊二醛,于45~60℃搅拌加热0.5~1.5h,随后磁分离,分离所得的固体经洗涤干燥,即得到所述的吸附剂。
在上述步骤中,羧甲基壳聚糖可以0.04g/mL分散于水中,Fe3O4@SiO2可以0.08g/mL分散于水中,可采用氢氧化钠调节混合溶液pH至11~12。
其中环己烷作为溶剂,保证制备过程中羧甲基壳聚糖、Fe3O4@SiO2、戊二醛的充分接触,Span-80为表面活性剂,有利于羧甲基壳聚糖包裹Fe3O4@SiO2,戊二醛为交联剂,使羧甲基壳聚糖和Fe3O4@SiO2发生交联。
步骤(3)中调节pH为11~12,可增加交联后稳定性,pH过低过高都会使交联后的产物稳定性不足,为了更好的进行交联反应,还可将调节pH后的混合溶液搅拌0.5~1.5h。步骤(4)中反应温度过低,则交联反应不易进行且反应速率慢,温度过高则容易导致交联过大,使产物有效吸附位点减少,影响吸附效果。
作为优选,所述羧甲基壳聚糖与Fe3O4@SiO2的质量比为1.5~2.5:1。此比例可保证制备的吸附剂具有较好的磁性,同时还具有较多的锰离子吸附位点,对锰离子具有较好的吸附效果。
作为优选,羧甲基壳聚糖与戊二醛的质量比为1:1~2。羧甲基壳聚糖与戊二醛两者主要发生交联反应,戊二醛投加比例过低则交联度不足,吸附剂成型困难,戊二醛投加比例过高容易导致交联度过大,降低吸附剂有效吸附位点,影响吸附剂最终吸附性能。
作为优选,羧甲基壳聚糖与环己烷、Span-80的质量比为1:110~130:2.4~2.8。因为环己烷是油相,油水比不能太小。由于羧甲基壳聚糖和Fe3O4@SiO2在反应环境中为分散相,若油水比太小,导致接触不均匀,从而磁性微球成球困难。油水比越大,磁性微球越小,当油水比过大时,磁性微球直径太小,不利于沉降。司班80为乳化剂和表面活性剂,乳化剂的量太少则不起作用,不利于包裹磁性物质,影响磁性微球的成形;若乳化剂加太多使得反应物分散不好。羧甲基壳聚糖与环己烷、Span-80的质量比可优选为1:121.9:2.6,其中羧甲基壳聚糖以0.04g/mL分散于水中,Fe3O4@SiO2可以0.08g/mL分散于水中。
作为优选,所述Fe3O4@SiO2的制备方法为:将Fe3O4磁性颗粒分散于无氧去离子水中,将Na2SiO3·9H2O的无氧去离子水溶液滴加至Fe3O4磁性颗粒的分散液中,滴加过程中维持溶液pH为6.0,滴加完后,混合液在80℃下于氮气气氛中搅拌反应3h,随后进行磁分离,分离所得的固体经洗涤干燥,即得到Fe3O4@SiO2磁性颗粒。
作为优选,Fe3O4与Na2SiO3·9H2O的摩尔比为0.2~0.3:1。这样可保证Fe3O4均匀包裹SiO2。
相比现有技术,本发明具有如下有益效果:
(1)本发明制备的磁性羧甲基壳聚糖吸附剂,对锰离子吸附位点多,对锰离子具有较好的吸附效果,既可吸附水中的锰离子,同时也方便锰离子的回收再利用,处理过后的吸附剂可以用适当的碱性(如氨水、氢氧化钠)溶液洗脱,即可重复利用,且磁性羧甲基壳聚糖复合微球自身就具有良好的降解性,不会造成二次污染。
(2)包裹了磁流体之后的羧甲基壳聚糖耐磨性良好,机械强度高,具有很好的可重复利用性,实验表明,本发明制备的磁性羧甲基壳聚糖吸附剂多次解吸后,不会引起吸附剂的变形及破损,说明壳聚糖基磁性吸附剂吸附性能稳定。
(3)本发明制备的磁性羧甲基壳聚糖吸附剂,粒径约508.26μm,在中性条件下吸附锰离子效果最好,对Mn2+饱和吸附容量约为75.74mg/g(=1.37mmolMn2+·g-1),经氨水洗脱后,仍有较好的吸附性能,且剩余质量的磁性微球与初始制备的磁性微球的吸附能力相近。
附图说明
图1为实施例1制备的磁性羧甲基壳聚糖吸附剂300μm尺度下的SEM电镜检测图;
图2为实施例1制备的磁性羧甲基壳聚糖吸附剂100μm尺度下的SEM电镜检测图;
图3为实施例1制备的磁性羧甲基壳聚糖吸附剂10μm尺度下的SEM电镜检测图;
图4为实施例1制备的磁性羧甲基壳聚糖吸附剂5μm尺度下的SEM电镜检测图;
图5为实施例1制备的磁性羧甲基壳聚糖吸附剂的红外光谱图;
图6为实施例1制备的磁性羧甲基壳聚糖吸附剂的CSM磁化曲线;
图7为实施例1制备的磁性羧甲基壳聚糖吸附剂的XRD衍射图谱。
具体实施方式
下面结合具体实施例对本发明作进一步详细说明。
其中,本发明实施例中使用的Fe3O4磁性纳米颗粒的制备方法为:
1.1首先配制摩尔浓度为2mol/L的NaOH溶液(注:使用无氧去离子水);
1.2之后将配制的NaOH溶液在80℃下于N2环境下搅拌;
1.3分别称量FeCl3·6H2O和FeCl3·4H2O,配制二者的混合溶液(FeCl3·6H2O的摩尔浓度为0.32mol/L,FeCl2·4H2O的摩尔浓度为0.16mol/L,摩尔比Fe3+:Fe2+=2:1)(注:使用无氧去离子水);
1.4待1.2中NaOH溶液的温度达到80℃时,再加入1.3中配制的混合溶液,80℃下于N2环境下搅拌反应3h,其中加入的混合溶液与NaOH溶液体积相等。
1.5进行磁分离固体,并用去离子水进行多次洗涤,于50℃下真空干燥。
实施例1:
本实施例磁性羧甲基壳聚糖吸附剂的制备方法,包括如下步骤:
(1)Fe3O4@SiO2磁性纳米颗粒的制备
1.1取700ml无氧去离子水于1000ml的烧杯中;
1.2称量5.7885g Fe3O4磁性颗粒(0.025mol)分散于1.1的水中(注:使用无氧去离子水);
1.3称量28.42g Na2SiO3·9H2O,配制摩尔浓度为1mol/L的Na2SiO3·9H2O溶液(注:使用无氧去离子水);
1.4取100ml 1.3中的溶液(0.1mol Na2SiO3·9H2O)(Fe3O4和SiO2的摩尔比为1:4,滴加到1.2的烧杯中,一边搅拌一边用1.5中溶液维持该溶液pH=6.0;
1.5取16.66mL浓盐酸于100ml容量瓶中来配制摩尔浓度为2mol/L的HCl溶液;
1.6将1.4滴完后的溶液倒入三颈烧瓶中,80℃下于N2环境下搅拌反应3h;
1.7进行磁分离固体,并且用去离子水多次洗涤直至水中性,在50℃下干燥,得到Fe3O4@SiO2磁性纳米颗粒。
(2)吸附剂的制备
1.称量0.8g羧甲基壳聚糖分散于20ml水中;
2.称量0.4g上述制备的Fe3O4@SiO2溶于5ml蒸馏水中;
3.搅拌均匀后,将步骤1、2中的溶液转移至盛有97.5g环己烷及2.08gSpan-80的三颈烧瓶中,并加入氢氧化钠调节pH=12的,然后搅拌1h;
4.再加入1.5g戊二醛,于50℃水浴加热、搅拌1h;
5.磁分离固体,并用无水乙醇多次洗涤成型微球(产物成球状,洗涤不变形不破裂),50℃下干燥,即得到上述的磁性羧甲基壳聚糖吸附剂。
实施例2
本实施例制备方法与实施例1的区别为:步骤(1)中Fe3O4磁性颗粒为0.2mol,步骤(2)中Fe3O4@SiO2为0.35g,戊二醛的质量为0.8g,环己烷的质量为90g,Span-80的质量为2g,其他条件与实施例1相同。
实施例3
本实施例制备方法与实施例1的区别为:步骤(1)中Fe3O4磁性颗粒为0.3mol,步骤(2)中Fe3O4@SiO2为0.5g,戊二醛的质量为1.6g,环己烷的质量为102g,Span-80的质量为2.2g,其他条件与实施例1相同。
图1至图4为实施例1制备的磁性羧甲基壳聚糖吸附剂不同尺度下的电镜扫描图,本实施例制备的磁性羧甲基壳聚糖吸附剂微球直径约为508.26μm,根据SEM检测后所得结果显示,磁性微球物理形状十分理想,单个微球的几何形状十分接近球形,且表面有许多层状褶皱,褶皱隆起部分宽度约为0.79μm,褶皱间凹面积巨大,大大增加了磁性微球在吸附时的吸附容量。
图5为实施例1制备的磁性羧甲基壳聚糖吸附剂的红外光谱图,图中3447cm-1为O-H和N-H的伸缩振动吸收峰;1634cm-1和1417cm-1分别为对称及不对称的-COO-弯曲振动的吸收峰;1104cm-1为Si-O伸缩振动的吸收峰;571cm-1和468cm-1为Fe-O的特征峰。由此说明,羧甲基壳聚糖已成功包覆了改性的四氧化三铁,形成了磁性羧甲基壳聚糖复合微球。
图6为实施例1制备的磁性羧甲基壳聚糖吸附剂的磁化曲线,本实施例制备的磁性羧甲基壳聚糖复合微球饱和磁化强度为13.42emu/g,具有明显磁性。因此,可通过外加磁场从水溶液中高效地进行分离,大大增加了磁性羧甲基壳聚糖复合微球的分离效率。
图7为实施例1制备的磁性羧甲基壳聚糖吸附剂的XRD衍射图谱,图中衍射谱峰出现在2θ=30.21°、35.42°、43.47°、53.56°、57.06°、62.68°处,分别对应立方相的Fe3O4各个晶面,且衍射峰尖锐,这证明所制备的微球主要含有晶相较好的Fe3O4晶体。
实施例2和实施例3制备的吸附剂,测试结果与实施例1相似。
应用试验
(1)将上述实施例1-3制备的磁性混凝剂用于水中锰离子的去除,测试其对水中锰离子的去除率。
配制Mn(II)的初始浓度为40mg/L的模拟废水,在不同pH下测试实施例1~3制备的磁性混凝剂的去除效果,每次投加40mg/L实施例1~3制备的磁性混凝剂,在22±0.5℃下震荡12h后,静置30min,再于液面以下1cm处取样进行Mn(II)离子浓度测定。
表1实施例1~3制备的混凝剂对Mn(II)的去除效果比较
由表1可以看出,本发明制备的磁性混凝剂在不同pH值下处理含锰废水,其去除率最高可达到93.5%。
(2)吸附剂的再生回用
将实施例1至3制备的吸附剂分别吸附锰离子(Mn)之后,通过磁场磁分离收集后,置于10%的氨水中震荡1h,通过质子化作用解吸絮体中的锰离子。将再生的吸附剂分别进行回用实验,经3个再生-回用循环,对Mn(II)的去除率最高可达到82%,仍具有较好的去除能力,吸附剂循环使用3次后的回收率在80%以上。
本发明的上述实施例仅仅是为说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化和变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引申出的显而易见的变化或变动仍处于本发明的保护范围之列。
Claims (1)
1.一种磁性羧甲基壳聚糖吸附剂的应用,其特征在于,采用如下制备方法得到磁性羧甲基壳聚糖吸附剂,用于对含锰废水的处理;
所述磁性羧甲基壳聚糖吸附剂的制备方法,包括如下步骤:
(1)将羧甲基壳聚糖分散于水中;
(3)将步骤(1)和(2)分散均匀的溶液转移至环己烷和Span-80的混合溶液中,并调节混合溶液pH至11~12;
(4)在混合液中再加入戊二醛,于45~60℃搅拌加热0.5~1.5h,随后磁分离,分离所得的固体经洗涤干燥,即得到所述的吸附剂;
羧甲基壳聚糖与戊二醛的质量比为1:1~2;
羧甲基壳聚糖与环己烷、Span-80的质量比为1:110~130:2.4~2.8;
所述磁性羧甲基壳聚糖吸附剂在22±0.5℃和中性条件下吸附锰离子,对Mn2+的去除率在90%以上。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810897790.6A CN109046265B (zh) | 2018-08-08 | 2018-08-08 | 一种磁性羧甲基壳聚糖吸附剂的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810897790.6A CN109046265B (zh) | 2018-08-08 | 2018-08-08 | 一种磁性羧甲基壳聚糖吸附剂的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109046265A CN109046265A (zh) | 2018-12-21 |
CN109046265B true CN109046265B (zh) | 2022-03-01 |
Family
ID=64678798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810897790.6A Active CN109046265B (zh) | 2018-08-08 | 2018-08-08 | 一种磁性羧甲基壳聚糖吸附剂的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109046265B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111111631A (zh) * | 2020-01-08 | 2020-05-08 | 重庆大学 | 一种高效吸附阳离子染料的壳聚糖基磁性微球吸附剂制备方法 |
CN111774039A (zh) * | 2020-06-12 | 2020-10-16 | 中国热带农业科学院农产品加工研究所 | 一种吸附Cd/Pb的可回收羧甲基壳聚糖/贝壳粉复合材料的制备与使用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004358292A (ja) * | 2003-06-02 | 2004-12-24 | Japan Atom Energy Res Inst | キチン及びキトサン誘導体ハイドロゲルによる浄化剤 |
CN101637709A (zh) * | 2009-07-10 | 2010-02-03 | 广东海洋大学 | 羧甲基壳聚糖磁性微球的制备及吸附牡蛎肉中镉的使用方法 |
CN104941601A (zh) * | 2015-07-09 | 2015-09-30 | 成都理工大学 | 一种羧甲基壳聚糖凝胶球的制备方法 |
CN107597071A (zh) * | 2017-11-10 | 2018-01-19 | 重庆大学 | 一种接枝型磁性壳聚糖吸附剂的制备方法 |
-
2018
- 2018-08-08 CN CN201810897790.6A patent/CN109046265B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004358292A (ja) * | 2003-06-02 | 2004-12-24 | Japan Atom Energy Res Inst | キチン及びキトサン誘導体ハイドロゲルによる浄化剤 |
CN101637709A (zh) * | 2009-07-10 | 2010-02-03 | 广东海洋大学 | 羧甲基壳聚糖磁性微球的制备及吸附牡蛎肉中镉的使用方法 |
CN104941601A (zh) * | 2015-07-09 | 2015-09-30 | 成都理工大学 | 一种羧甲基壳聚糖凝胶球的制备方法 |
CN107597071A (zh) * | 2017-11-10 | 2018-01-19 | 重庆大学 | 一种接枝型磁性壳聚糖吸附剂的制备方法 |
Non-Patent Citations (2)
Title |
---|
磁性羧甲基壳聚糖吸附分离孔雀石绿的研究;胡春平等;《离子交换与吸附》;20150228;第31卷(第1期);文章摘要,第44页第2节 * |
羧甲基化壳聚糖修饰磁性硅粒子去除Cr(VI)离子;程昌敬等;《化工进展》;20120105;第31卷(第1期);文章第228页左栏第2-3段、1.2节 * |
Also Published As
Publication number | Publication date |
---|---|
CN109046265A (zh) | 2018-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Arica et al. | Magnetic MCM-41 silica particles grafted with poly (glycidylmethacrylate) brush: modification and application for removal of direct dyes | |
Bao et al. | Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nano-adsorbents: behaviours and mechanisms | |
Wang et al. | Lead and uranium sorptive removal from aqueous solution using magnetic and nonmagnetic fast pyrolysis rice husk biochars | |
Peng et al. | Facile modification of nanoscale zero-valent iron with high stability for Cr (VI) remediation | |
Prasad et al. | Bio-inspired green synthesis of RGO/Fe3O4 magnetic nanoparticles using Murrayakoenigii leaves extract and its application for removal of Pb (II) from aqueous solution | |
Peng et al. | Magnetic Fe3O4@ silica–xanthan gum composites for aqueous removal and recovery of Pb2+ | |
Ren et al. | Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: preparation, characterization, and application in heavy metal adsorption | |
Wang et al. | Amino-functionalized Fe3O4@ SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal | |
Hakami et al. | Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water | |
Wang et al. | Carboxyl-functionalized nanoparticles with magnetic core and mesopore carbon shell as adsorbents for the removal of heavy metal ions from aqueous solution | |
CN107442082B (zh) | 一种磁性聚丙烯酰胺/海藻酸锆凝胶球及其制备方法和应用 | |
Zhu et al. | Highly promoted removal of Hg (II) with magnetic CoFe 2 O 4@ SiO 2 core–shell nanoparticles modified by thiol groups | |
Wang et al. | Adsorptive removal of phosphate by magnetic Fe3O4@ C@ ZrO2 | |
Tang et al. | Enhanced adsorption of humic acid on amine functionalized magnetic mesoporous composite microspheres | |
Mehdinia et al. | Removal of lead (II), copper (II) and zinc (II) ions from aqueous solutions using magnetic amine-functionalized mesoporous silica nanocomposites | |
Ji et al. | Sorption enhancement of nickel (II) from wastewater by ZIF-8 modified with poly (sodium 4-styrenesulfonate): Mechanism and kinetic study | |
Sun et al. | Efficient adsorption of Cu (II), Pb (II) and Ni (II) from waste water by PANI@ APTS-magnetic attapulgite composites | |
CN110732307B (zh) | 一种edta改性磁性纳米复合材料的制备方法及应用 | |
Gao et al. | A controlled solvethermal approach to synthesize nanocrystalline iron oxide for congo red adsorptive removal from aqueous solutions | |
Jin et al. | Removal of Cu (II) ions from aqueous solution by magnetic chitosan-tripolyphosphate modified silica-coated adsorbent: characterization and mechanisms | |
Wang et al. | Facile synthesis of monodisperse functional magnetic dialdehyde starch nano-composite and used for highly effective recovery of Hg (II) | |
Liu et al. | Fabrication of novel magnetic core-shell chelating adsorbent for rapid and highly efficient adsorption of heavy metal ions from aqueous solution | |
Liu et al. | Preparation and characterization of a novel hybrid chelating material for effective adsorption of Cu (II) and Pb (II) | |
Guo et al. | Synthesis and application of 8-hydroxyquinoline modified magnetic mesoporous carbon for adsorption of multivariate metal ions from aqueous solutions | |
CN106745317A (zh) | 一步法制备多孔四氧化三铁磁性纳米微球的方法及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220530 Address after: 1114c6, building C, Huangdu Plaza, No. 3008, Yitian Road, Huanggang community, Futian street, Futian District, Shenzhen, Guangdong 518000 Patentee after: Shenzhen Jiayao Ecological Environmental Protection Technology Co.,Ltd. Address before: 400044 No. 174 Sha Jie street, Shapingba District, Chongqing Patentee before: Chongqing University |
|
TR01 | Transfer of patent right |