CN109039579A - 一种Lorenz型吸引子的简单混沌系统电路 - Google Patents

一种Lorenz型吸引子的简单混沌系统电路 Download PDF

Info

Publication number
CN109039579A
CN109039579A CN201811072942.5A CN201811072942A CN109039579A CN 109039579 A CN109039579 A CN 109039579A CN 201811072942 A CN201811072942 A CN 201811072942A CN 109039579 A CN109039579 A CN 109039579A
Authority
CN
China
Prior art keywords
reverse phase
multiplier
input
chaos
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811072942.5A
Other languages
English (en)
Inventor
仓诗建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201811072942.5A priority Critical patent/CN109039579A/zh
Publication of CN109039579A publication Critical patent/CN109039579A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/001Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using chaotic signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/12Details relating to cryptographic hardware or logic circuitry

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Feedback Control In General (AREA)
  • Amplifiers (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种具有Lorenz型吸引子的简单混沌系统电路由三路电阻、电容和运算放大器LF347BN及乘法器AD633JN组成,电阻和运算放大器LF347BN实现反相加法和反相运算,电容和运算放大器LF347BN实现积分运算,乘法由乘法器AD633JN实现;本发明提出了以一定的藕合比例系数,实现主动系统和被动系统的方法克服现有技术的缺陷,提供了一种的具有Lorenz型吸引子混沌系统,这对于混沌的控制、同步等具有重要的工作应用前景。

Description

一种Lorenz型吸引子的简单混沌系统电路
技术领域
发明涉及一种具有Lorenz型吸引子的简单混沌系统及电路,属于非线性电路系统领域。
背景技术
混沌学研究从早期探索到重大突破,直到本世纪70年代以后形成世界性研究热潮,其涉及的领域包括数学、物理学、生物学、气象学、工程学和经济学等众多学科,其研究的成果,不只是增添了一个新的现代科学学科分支,而且几乎渗透和影响着现代科学的整个学科体系。混沌学的研究是现代科学发展的新篇章。许多学者把混沌理论称为继量子力学和相对论以后二十世纪最有影响的科学理论之一。非线性科学是一门研究非线性现象共性的基础科学,具有广阔的应用的前景,本发明提出了以一定的藕合比例系数,实现主动系统和被动系统的方法克服现有技术的缺陷,提供了一种的具有Lorenz型吸引子混沌系统,这对于混沌的控制、同步等具有重要的工作应用前景。
发明内容
1.一种Lorenz型吸引子的简单混沌系统电路,其特征在于:
(1)一种Lorenz型吸引子的简单混沌系统i为:
式中x,y,z为状态变量,f(x)为函数;
(2)当f(x)=0时,系统i变为:
系统ii没有平衡点,因此,此时,系统具有隐藏混沌吸引子;
根据系统ii设计电路,电路由三路电阻、电容和运算放大器LF347BN及乘法器AD633JN组成,电阻和运算放大器LF347BN实现反相加法和反相运算,电容和运算放大器LF347BN实现积分运算,乘法由乘法器AD633JN实现;
第一路的反相加法输入端接第一路和第二路的积分输出;乘法器(A1)输入分别接第一路的反相输出和第三路的反相输出,乘法器(A1)的输出接第二路的反相加法输入,第二路反相加法器的输入接函数f(x),乘法器(A2)的输入分别接第一路的反相输出和第二路的反相输出,乘法器(A2)的输出接第三路的反相加法输入,第三路反相加法输入通过-1V直流电源接地;
当f(x)悬空时,电路实现具有隐藏混沌吸引子的系统ii。
有益效果:本发明提出了以一定的藕合比例系数,实现主动系统和被动系统的方法克服现有技术的缺陷,提供了一种的具有Lorenz型吸引子混沌系统,这对于混沌的控制、同步等具有重要的工作应用前景,丰富了混沌系统的类型,为混沌系统应用于工程实践提供了更多选择。
附图说明
图1为实现系统的电路图。
图2为系统ii的相图。
具体实施方式
下面结合附图和优选实施例对本发明作更进一步的详细描述,参见图1-图2。
1.一种Lorenz型吸引子的简单混沌系统电路,其特征在于:
(1)一种Lorenz型吸引子的简单混沌系统i为:
式中x,y,z为状态变量,f(x)为函数;
(2)当f(x)=0时,系统i变为:
系统ii没有平衡点,因此,此时,系统具有隐藏混沌吸引子;
根据系统ii设计电路,电路由三路电阻、电容和运算放大器LF347BN及乘法器AD633JN组成,电阻和运算放大器LF347BN实现反相加法和反相运算,电容和运算放大器LF347BN实现积分运算,乘法由乘法器AD633JN实现;
第一路的反相加法输入端接第一路和第二路的积分输出;乘法器(A1)输入分别接第一路的反相输出和第三路的反相输出,乘法器(A1)的输出接第二路的反相加法输入,第二路反相加法器的输入接函数f(x),乘法器(A2)的输入分别接第一路的反相输出和第二路的反相输出,乘法器(A2)的输出接第三路的反相加法输入,第三路反相加法输入通过-1V直流电源接地;
当f(x)悬空时,电路实现具有隐藏混沌吸引子的系统ii。
当然,上述说明并非对发明的限制,本发明也不仅限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也属于本发明的保护范围。

Claims (1)

1.一种Lorenz型吸引子的简单混沌系统电路,其特征在于:
(1)一种Lorenz型吸引子的简单混沌系统i为:
式中x,y,z为状态变量,f(x)为函数;
(2)当f(x)=0时,系统i变为:
系统ii没有平衡点,因此,此时,系统具有隐藏混沌吸引子;
根据系统ii设计电路,电路由三路电阻、电容和运算放大器LF347BN及乘法器AD633JN组成,电阻和运算放大器LF347BN实现反相加法和反相运算,电容和运算放大器LF347BN实现积分运算,乘法由乘法器AD633JN实现;
第一路的反相加法输入端接第一路和第二路的积分输出;乘法器(A1)输入分别接第一路的反相输出和第三路的反相输出,乘法器(A1)的输出接第二路的反相加法输入,第二路反相加法器的输入接函数f(x),乘法器(A2)的输入分别接第一路的反相输出和第二路的反相输出,乘法器(A2)的输出接第三路的反相加法输入,第三路反相加法输入通过-1V直流电源接地;
当f(x)悬空时,电路实现具有隐藏混沌吸引子的系统ii。
CN201811072942.5A 2016-04-28 2016-04-28 一种Lorenz型吸引子的简单混沌系统电路 Pending CN109039579A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811072942.5A CN109039579A (zh) 2016-04-28 2016-04-28 一种Lorenz型吸引子的简单混沌系统电路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610278609.4A CN105790924B (zh) 2016-04-28 2016-04-28 一种具有Lorenz型吸引子的简单混沌系统电路
CN201811072942.5A CN109039579A (zh) 2016-04-28 2016-04-28 一种Lorenz型吸引子的简单混沌系统电路

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201610278609.4A Division CN105790924B (zh) 2016-04-28 2016-04-28 一种具有Lorenz型吸引子的简单混沌系统电路

Publications (1)

Publication Number Publication Date
CN109039579A true CN109039579A (zh) 2018-12-18

Family

ID=56399102

Family Applications (5)

Application Number Title Priority Date Filing Date
CN201811072942.5A Pending CN109039579A (zh) 2016-04-28 2016-04-28 一种Lorenz型吸引子的简单混沌系统电路
CN201811073292.6A Pending CN109039582A (zh) 2016-04-28 2016-04-28 一种输出Lorenz型吸引子的简单混沌系统电路
CN201811072958.6A Pending CN109039581A (zh) 2016-04-28 2016-04-28 一种输出Lorenz型切换吸引子的简单混沌系统电路
CN201610278609.4A Active CN105790924B (zh) 2016-04-28 2016-04-28 一种具有Lorenz型吸引子的简单混沌系统电路
CN201811072944.4A Pending CN109039580A (zh) 2016-04-28 2016-04-28 一种产生Lorenz型吸引子的简单混沌系统电路

Family Applications After (4)

Application Number Title Priority Date Filing Date
CN201811073292.6A Pending CN109039582A (zh) 2016-04-28 2016-04-28 一种输出Lorenz型吸引子的简单混沌系统电路
CN201811072958.6A Pending CN109039581A (zh) 2016-04-28 2016-04-28 一种输出Lorenz型切换吸引子的简单混沌系统电路
CN201610278609.4A Active CN105790924B (zh) 2016-04-28 2016-04-28 一种具有Lorenz型吸引子的简单混沌系统电路
CN201811072944.4A Pending CN109039580A (zh) 2016-04-28 2016-04-28 一种产生Lorenz型吸引子的简单混沌系统电路

Country Status (1)

Country Link
CN (5) CN109039579A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474416A (zh) * 2018-12-29 2019-03-15 安顺学院 一种含有隐藏吸引子的超混沌信号发生电路

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108337081B (zh) * 2018-03-21 2019-09-17 齐鲁理工学院 一种含有常数项三维三次混沌电路
CN112152774B (zh) * 2019-06-28 2022-08-02 天津科技大学 一种能产生四涡卷混沌流的非哈密顿系统的构建方法
CN112422258B (zh) * 2019-08-23 2022-07-29 天津科技大学 一种具有单簇保守混沌流的改进型Sprott-A系统的构建方法
CN112422260B (zh) * 2019-08-23 2022-08-02 天津科技大学 一种具有三维2×2×2簇保守混沌流的非哈密顿系统的构建方法
CN111538245B (zh) * 2020-06-26 2022-06-03 西京学院 一种具隐藏吸引子混沌系统的鲁棒控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011008737A8 (en) * 2009-07-13 2011-08-11 The University Of North Carolina At Chapel Hill Engineered aerosol particles, and associated methods
CN102752099A (zh) * 2012-06-29 2012-10-24 东北大学 一种Lorenz混沌信号发生器
CN103731256A (zh) * 2014-01-03 2014-04-16 滨州学院 一个三维无平衡点的混沌系统及模拟电路实现

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2488514A1 (en) * 2002-06-06 2003-12-18 Cryptico A/S Method for improving unpredictability of output of pseudo-random number generators
EP1786510A4 (en) * 2004-07-15 2009-12-02 Northstar Neuroscience Inc SYSTEMS AND METHOD FOR INCREASING OR INFLUENCING THE EFFICIENCY OR EFFECTIVENESS OF NEURAL STIMULATION
CN100454187C (zh) * 2006-05-29 2009-01-21 西安交通大学 基于直接延迟反馈的混沌产生方法
KR101716465B1 (ko) * 2010-02-24 2017-03-14 오피스 오브 더 내셔널 브로드캐스팅 앤드 텔레커뮤니케이션즈 커미션 정적-동적 비밀 키를 사용하는 변형된 카오스 어트랙터 등의 여러 카오스 어트랙터의 이중 마스킹에 기초한 보안 통신 시스템
CN103152159A (zh) * 2013-03-17 2013-06-12 王少夫 只有一个平衡点的三维混沌系统及其装置
GB201314114D0 (en) * 2013-08-07 2013-09-18 Lancaster University Encoding data using dynamic system coupling
CN103731129B (zh) * 2014-01-07 2016-05-18 田宝存 一个具有2个平衡点的双翼吸引子混沌系统
CN105227290B (zh) * 2015-09-01 2016-11-16 重庆凌云工具有限公司 一种单平衡点的三维四翼连续混沌系统电路
CN105071926B (zh) * 2015-09-01 2018-01-02 泰州市齐大涂料助剂有限公司 一种含绝对值的单平衡点四翼混沌系统电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011008737A8 (en) * 2009-07-13 2011-08-11 The University Of North Carolina At Chapel Hill Engineered aerosol particles, and associated methods
CN102752099A (zh) * 2012-06-29 2012-10-24 东北大学 一种Lorenz混沌信号发生器
CN103731256A (zh) * 2014-01-03 2014-04-16 滨州学院 一个三维无平衡点的混沌系统及模拟电路实现

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赖强: "混沌分析及其反控制研究", 《中国博士学位论文全文数据库信息科技辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474416A (zh) * 2018-12-29 2019-03-15 安顺学院 一种含有隐藏吸引子的超混沌信号发生电路

Also Published As

Publication number Publication date
CN109039582A (zh) 2018-12-18
CN105790924B (zh) 2018-11-02
CN109039581A (zh) 2018-12-18
CN105790924A (zh) 2016-07-20
CN109039580A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
CN109039579A (zh) 一种Lorenz型吸引子的简单混沌系统电路
Goswami et al. A note on the new extended beta and Gauss hypergeometric functions
CN105553640B (zh) 基于Rikitake系统的无平衡点四维超混沌系统的构造方法
Song et al. Study of travelling wave solutions for some special-type nonlinear evolution equations
Najafi et al. Wronskian determinant solutions of the (2+ 1)-dimensional Boiti-Leon-Manna-Pempinelli equation
Wang et al. Generalized synchronization of fractional order chaotic systems
Elcrat et al. Point vortex model for asymmetric inviscid wakes past bluff bodies
Adachi et al. On multidimensional inverse scattering in time-dependent electric fields
Kumar et al. Novel symmetries in Christ-Lee model
Chen et al. An arbitrarily high-order spectral difference method with divergence cleaning (SDDC) for compressible magnetohydrodynamic simulations on unstructured grids
Basu Constraining gravitational interactions in the M theory effective action
Cheng et al. A KdV-Type Wronskian Formulation to Generalized KP, BKP and Jimbo–Miwa Equations
CN205725683U (zh) 一种具有类心音波形信号电路
Liu Exact solitary wave solutions of the Rangwala-Rao equation
Kambe A new representation of rotational flow fields satisfying Euler's equation of an ideal compressible fluid
Yan Nonlinear Gronwall-Bellman type integral inequalities with maxima
Marian et al. Oscillation of caputo like discrete fractional equations
Dvirny et al. Stability in terms of two measures for a class of semilinear impulsive parabolic equations
Amler et al. Regularity of solutions of a phase field model
Bykovskii et al. The average length of finite continued fractions with fixed denominator
Ren et al. Nonlocal symmetry reductions for Bosonized supersymmetric Burgers equation
Zhang et al. Bilinear approaches for a finite-dimensional Hamiltonian system
Yang NEVANLINNA’S VALUE DISTRIBUTION THEORY AND ITS APPLICATIONS
Guan et al. Exact quasi-periodic solutions of the Konno–Oono equations
Truebenbacher The Klein paradox: a new treatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181218

WD01 Invention patent application deemed withdrawn after publication