CN109037321B - 石墨烯条带异质结双栅tfet及其开关特性提升方法 - Google Patents

石墨烯条带异质结双栅tfet及其开关特性提升方法 Download PDF

Info

Publication number
CN109037321B
CN109037321B CN201810647726.2A CN201810647726A CN109037321B CN 109037321 B CN109037321 B CN 109037321B CN 201810647726 A CN201810647726 A CN 201810647726A CN 109037321 B CN109037321 B CN 109037321B
Authority
CN
China
Prior art keywords
channel
section
graphene
strip
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810647726.2A
Other languages
English (en)
Other versions
CN109037321A (zh
Inventor
王晶
封路
阮良浩
赵文生
张海鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201810647726.2A priority Critical patent/CN109037321B/zh
Publication of CN109037321A publication Critical patent/CN109037321A/zh
Application granted granted Critical
Publication of CN109037321B publication Critical patent/CN109037321B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66015Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene
    • H01L29/66037Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66045Field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了石墨烯条带异质结双栅TFET及其开关特性提升方法。如何提高TFET的开态电流是TFET研究的一个重要方向。本发明的源区、漏区以及源区与漏区之间的沟道组成石墨烯条带异质结;沟道由沿源区至漏区方向排布的沟道一段和沟道二段组成;源区、沟道二段和漏区均为扶手椅型石墨烯纳米条带;沟道一段的条带延伸方向与扶手椅型石墨烯纳米条带的延伸方向成一夹角。本发明在关态情况下,沟道一段沿器件长度方向为带隙扶手椅型石墨烯纳米条带,区域态密度为0,起到抑制关态电流的作用;开态情况下,沟道内有电流,沟道一段沿电流传输方向为锯齿型石墨烯条带,沟道一段内无带隙,促进电子在源区与沟道间的量子隧穿效应,提升开态电流。

Description

石墨烯条带异质结双栅TFET及其开关特性提升方法
技术领域
本发明属于场效应晶体管技术领域,提出了一种使用石墨烯异质结作隧穿场效应管(TFET)的导电沟道,提升TFET开关特性的方法。
背景技术
自IC发明以来,金属氧化物场效应管(MOSFET)就是IC中最流行的半导体器件,且器件的特征尺寸按照摩尔定律的预测规律不断缩小。随着器件小型化的持续发展,MOSFET由于沟道长度缩短而出现的“短沟道效应”等一系列负面效应严重影响了MOSFET器件的性能;另一方面,因为MOSFET利用电子的热运动产生沟道电流,工作原理的限制导致MOSFET器件的亚阈值摆幅不能低于60meV/dec,器件功耗大,同时也抑制了器件尺寸的进一步缩小。为了解决MOSFET器件在IC小型化和低功耗发展过程中的各种弊端,新原理、新结构、新材料器件是目前业界提出的3种解决问题的方案。
TFET利用电子在不同能级间的量子隧穿效应产生沟道电流,器件亚阈值摆幅可以降低到60meV/dec以下,满足当前IC发展的需求,但是TFET开态电流较小,在一定程度上限制了它的应用,所以如何提高TFET的开态电流是TFET研究的一个重要方向。
发明内容
本发明的目的是针对现有TFET器件开态电流小的问题,提供一种石墨烯条带异质结双栅TFET,并提供一种利用石墨烯条带异质结提升双栅TFET开关特性的方法,该方法利用石墨烯条带(GNR)的电子迁移率高,带隙大小受条带宽度和边缘形状调控的特性,采用不同边缘形状的GNR构成异质结结构作为TFET的导电沟道,通过调整异质结形状和边缘结构控制电子在沟道内的量子隧穿效应,起到提升TFET电学性能的目的。
本发明石墨烯条带异质结双栅TFET,包括顶栅、底栅、栅氧化层、源区、漏区和沟道;所述的源区、漏区和沟道位于顶部栅氧化层及底部栅氧化层之间;底栅位于底部的栅氧化层下方,顶栅位于顶部的栅氧化层上方,且顶栅和底栅在长度方向上均与沟道对齐设置;源区、漏区以及源区与漏区之间的沟道组成石墨烯条带异质结;源区、漏区和沟道的宽度相等;所述的沟道由沿源区至漏区方向排布的沟道一段和沟道二段组成;源区、沟道二段和漏区均为扶手椅型石墨烯纳米条带;沟道一段的条带延伸方向与扶手椅型石墨烯纳米条带的延伸方向成一夹角。
所述的栅氧化层采用SiO2材料。
所述的石墨烯条带异质结是有带隙的单层石墨烯纳米条带。
所述的夹角为30°。
本发明石墨烯条带异质结双栅TFET提升开关特性的方法,具体如下:
关态情况下,沟道一段沿器件长度方向表现为扶手椅型石墨烯纳米条带,与沟道二段及源、漏区条带为同宽且同性质的条带,此时,沟道一段区域存在带隙,区域态密度为0,起到抑制关态电流的作用;开态情况下,沟道内有电流,沟道一段沿电流传输方向表现为锯齿型石墨烯条带,此时,沟道一段区域内无带隙,促进电子在源区与沟道间的量子隧穿效应,提升开态电流。
本发明的有益效果是:
本发明减小TFET的亚阈值摆幅(SS),减小泄露电流,增大开态电流,提升器件的开关特性。
附图说明
图1是本发明的石墨烯条带异质结原子结构示意图。
图2是本发明的结构示意图。
图3是本发明与现有AGNR-TFET器件的转移特性对比图。
图4是现有AGNR-TFET器件条带的原子结构示意图。
图5是本发明关态时的态密度分布图。
图6是本发明开态时的态密度分布图。
具体实施方式
下面结合附图对本发明作进一步说明。
本发明以双栅TFET结构为例,采用图1所示的混合石墨烯条带,例证这一器件结构可以提升TFET的开关特性。
如图2所示,石墨烯条带异质结双栅隧穿场效应管(TFET),包括顶栅1、底栅2、栅氧化层3、源区4、漏区5和沟道6,其中,栅氧化层采用SiO2材料;源区4、漏区5和沟道6位于顶部栅氧化层3及底部栅氧化层3之间;底栅2位于底部的栅氧化层3下方,顶栅1位于顶部的栅氧化层3上方,且顶栅1和底栅2在长度方向上均与沟道6对齐设置;源区、漏区以及源区与漏区之间的沟道组成石墨烯条带异质结(Mixed-graphene ribbon,简称MGNR)6,石墨烯条带异质结是有带隙的单层石墨烯纳米条带;源区、漏区和沟道的宽度均为W(本实施例中W=4nm);沟道由沿源区4至漏区5方向排布的沟道一段6-1和沟道二段6-2组成;源区、沟道二段和漏区均为扶手椅型石墨烯纳米条带(AGNR);沟道一段6-1的条带延伸方向与扶手椅型石墨烯纳米条带的延伸方向成一夹角,本实施例中夹角为30°,如图1所示。
在源区与漏区施加偏压,调控顶栅和底栅栅压的大小在器件内形成沟道电流,电流大小随栅压变化关系如图3所示,Vg代表顶栅及底栅的栅压,IDS代表沟道电流。本发明中沟道电流大小的数值结果通过在NanoTCAD ViDES软件中仿真得到,源漏均匀掺杂(掺杂摩尔分数为0.005),沟道无掺杂,计算过程中器件各部分参数设置如表1所示。
参数名称 L<sub>S</sub> L<sub>C1</sub> L<sub>C2</sub> L<sub>D</sub> L<sub>G</sub> W T1 T2
长度(nm) 5 1 14 5 15 4 1 1
表中,LS为源区的长度,LC1为沟道一段的长度,LC2为沟道二段的长度,LD为漏区的长度,LG为顶栅1或底栅2的长度,T1为顶部的栅氧化层3厚度,T2为底部的栅氧化层3厚度。
图3中,虚线代表普通AGNR-TFET器件(即源、漏、沟道为同种性质的扶手椅型石墨烯纳米条带,普通AGNR-TFET器件的条带如图4所示,其中,Lc为该沟道的长度)的转移特性,实线代表本发明器件的转移特性。与普通TFET器件相比,本发明设计的异质结沟道器件,使TFET的关态电流(Vg≈0.17V对应的IDS)减小了约一个数量级,开态电流(Vg≈0.5V对应的IDS)提高了约50%,同时器件的亚阈值摆幅明显减小(S1<S2),以上结果说明利用本发明设计的异质结结构作为TFET的导电沟道,能大大提升石墨烯TFET器件的电学性能。
本发明设计的沟道结构能够提升器件性能的原因是,在均匀条带器件中沟道靠近源区的一端通过一段ZGNR条带(沟道一段)与源区相连。在关态情况下,近似认为沟道中没有电流,这段ZGNR条带区域,沿器件结构z方向表现为扶手椅型条带,与沟道二段及源漏区条带为同宽同性质条带,是有带隙的AGNR,图5对这点给出了证明。图5所示为关态时器件各部分态密度分布图(图中,E为能量,且图中颜色越深态密度越小),关态情况下,该段区域存在带隙(图5中箭头所指区域态密度为0,即该区域无能级,为带隙区)。开态情况下,沟道内有较大电流,沟道一段沿电流传输方向(图1中箭头所示方向)为无带隙的锯齿型石墨烯条带(ZGNR),在图6所示的器件开态态密度分布图中,可以明显看到,沟道一段区域内无带隙(图5中带隙区在图6中消失,图6中箭头所指区域)。沟道一段在关态时表现为有带隙石墨烯条带,起到抑制关态电流的作用;在开态时,表现为无带隙的石墨烯条带,促进电子在源与沟道间的量子隧穿效应,提升开态电流。
本发明设计的石墨烯条带异质结结构,利用开态时沟道一段表现为金属性提高开态电流,关态时沟道一段表现为非金属性抑制关态电流,提高了TFET器件的电输运性能,因此该结构可以被用来制作高性能半导体电子器件。
上述实例仅仅只是例证本发明方法,并非是对于本发明的限制,本发明也并非仅限于上述实例,只要符合本发明方法的要求,均属于本发明方法的保护范围。

Claims (5)

1.石墨烯条带异质结双栅TFET,包括顶栅、底栅、栅氧化层、源区、漏区和沟道,其特征在于:所述的源区、漏区和沟道位于顶部栅氧化层及底部栅氧化层之间;底栅位于底部的栅氧化层下方,顶栅位于顶部的栅氧化层上方,且顶栅和底栅在长度方向上均与沟道对齐设置;源区、漏区以及源区与漏区之间的沟道组成石墨烯条带异质结;源区、漏区和沟道的宽度相等;所述的沟道由沿源区至漏区方向排布的沟道一段和沟道二段组成;源区、沟道二段和漏区均为扶手椅型石墨烯纳米条带;沟道一段的石墨烯纳米条带的原子结构与沟道二段的扶手椅型石墨烯纳米条带的原子结构在延伸方向上成一夹角。
2.根据权利要求1所述的石墨烯条带异质结双栅TFET,其特征在于:所述的栅氧化层采用SiO2材料。
3.根据权利要求1所述的石墨烯条带异质结双栅TFET,其特征在于:所述的石墨烯条带异质结是有带隙的单层石墨烯纳米条带。
4.根据权利要求1所述的石墨烯条带异质结双栅TFET,其特征在于:所述的夹角为30°。
5.根据权利要求1至4中任一项所述的石墨烯条带异质结双栅TFET来提升开关特性的方法,其特征在于:该方法具体如下:
关态情况下,沟道一段沿器件长度方向表现为扶手椅型石墨烯纳米条带,与沟道二段及源、漏区条带为同宽且同性质的条带,此时,沟道一段区域存在带隙,区域态密度为0,起到抑制关态电流的作用;开态情况下,沟道内有电流,沟道一段沿电流传输方向表现为锯齿型石墨烯条带,此时,沟道一段区域内无带隙,促进电子在源区与沟道间的量子隧穿效应,提升开态电流。
CN201810647726.2A 2018-06-22 2018-06-22 石墨烯条带异质结双栅tfet及其开关特性提升方法 Active CN109037321B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810647726.2A CN109037321B (zh) 2018-06-22 2018-06-22 石墨烯条带异质结双栅tfet及其开关特性提升方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810647726.2A CN109037321B (zh) 2018-06-22 2018-06-22 石墨烯条带异质结双栅tfet及其开关特性提升方法

Publications (2)

Publication Number Publication Date
CN109037321A CN109037321A (zh) 2018-12-18
CN109037321B true CN109037321B (zh) 2021-06-01

Family

ID=64610244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810647726.2A Active CN109037321B (zh) 2018-06-22 2018-06-22 石墨烯条带异质结双栅tfet及其开关特性提升方法

Country Status (1)

Country Link
CN (1) CN109037321B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110078067A (zh) * 2019-06-13 2019-08-02 广东凯金新能源科技股份有限公司 一种端面结构可控的石墨负极材料的制备方法
CN112289856B (zh) * 2020-10-12 2023-03-07 杭州电子科技大学 提高沟道长度亚10nm石墨烯TFET性能的方法
CN112909092B (zh) * 2021-01-19 2022-08-02 华中科技大学 一种碳纳米管-石墨烯共价异质结隧穿场效应晶体管

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694030A (zh) * 2012-06-01 2012-09-26 北京大学 具有石墨烯纳米带异质结构的隧穿场效应晶体管
CN103227204A (zh) * 2013-04-01 2013-07-31 南京邮电大学 晕掺杂的双材料异质栅石墨烯条带场效应管
CN104091829A (zh) * 2014-07-14 2014-10-08 南京邮电大学 双线性掺杂漏异质材料栅氧化层石墨烯隧穿场效应管
WO2014178208A1 (ja) * 2013-05-01 2014-11-06 独立行政法人産業技術総合研究所 グラフェン膜、電子装置、及び電子装置の製造方法
CN105027294A (zh) * 2013-02-22 2015-11-04 Hrl实验室有限责任公司 石墨烯异质结构场效应晶体管

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090174435A1 (en) * 2007-10-01 2009-07-09 University Of Virginia Monolithically-Integrated Graphene-Nano-Ribbon (GNR) Devices, Interconnects and Circuits

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694030A (zh) * 2012-06-01 2012-09-26 北京大学 具有石墨烯纳米带异质结构的隧穿场效应晶体管
CN105027294A (zh) * 2013-02-22 2015-11-04 Hrl实验室有限责任公司 石墨烯异质结构场效应晶体管
CN103227204A (zh) * 2013-04-01 2013-07-31 南京邮电大学 晕掺杂的双材料异质栅石墨烯条带场效应管
WO2014178208A1 (ja) * 2013-05-01 2014-11-06 独立行政法人産業技術総合研究所 グラフェン膜、電子装置、及び電子装置の製造方法
CN104091829A (zh) * 2014-07-14 2014-10-08 南京邮电大学 双线性掺杂漏异质材料栅氧化层石墨烯隧穿场效应管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"一种新型石墨烯条带隧穿场效应管";孟雨;《杭州电子科技大学学报(自然科学版)》;20180228;第25-29页 *

Also Published As

Publication number Publication date
CN109037321A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
Cao et al. 2D semiconductor FETs—Projections and design for sub-10 nm VLSI
Rahi et al. Heterogate junctionless tunnel field-effect transistor: future of low-power devices
CN109037321B (zh) 石墨烯条带异质结双栅tfet及其开关特性提升方法
Yadav et al. Impactful study of dual work function, underlap and hetero gate dielectric on TFET with different drain doping profile for high frequency performance estimation and optimization
Dong et al. Assessment of 2-D transition metal dichalcogenide FETs at sub-5-nm gate length scale
Liu et al. A novel step-shaped gate tunnel FET with low ambipolar current
Kumar et al. Halo-doped hetero dielectric nanowire mosfet scaled to the sub-10 nm node
CN102544073A (zh) 无结纳米线场效应晶体管
Kumar et al. A novel step-channel tfet for better subthreshold swing and improved analog/rf characteristics
Gowthami et al. Design and analysis of a symmetrical Low-κ source-side spacer multi-gate Nanowire device
Yan et al. A GaAs0. 5Sb0. 5/In0. 53Ga0. 47As heterojunction Z-gate TFET with hetero-gate-dielectric
Sinha et al. Investigation of noise characteristics in gate-source overlap tunnel field-effect transistor
Li et al. Effects of drain doping profile and gate structure on ambipolar current of TFET
Ghodrati et al. Improving the performance of a doping-less carbon nanotube FET with dual junction source and drain regions: numerical studies
Raushan et al. Electrostatically doped drain junctionless transistor for low-power applications
Turkane et al. Ge/Si Hetero-Junction Hetero-Gate PNPN TFET with Hetero-Dielectric BOX to Improve I
Aslam et al. Enhancement of the DC performance of a PNPN hetero-dielectric BOX tunnel field-effect transistor for low-power applications
CN105870170B (zh) 一种肖特基结隧穿场效应晶体管
Sorée et al. Novel device concepts for nanotechnology: the nanowire pinch-off fet and graphene tunnelfet
Tahaei et al. A computational study of a heterostructure tunneling carbon nanotube field-effect transistor
CN214279984U (zh) 一种SiC基纳米尺度肖特基势垒场效应晶体管
Karbalaei et al. Influence of source stack and heterogeneous gate dielectric on band to band tunneling rate of tunnel FET
US10593778B1 (en) Electrostatic doping-based all GNR tunnel field-effect transistor
CN112289856B (zh) 提高沟道长度亚10nm石墨烯TFET性能的方法
Banadaki et al. Width-dependent characteristics of graphene nanoribbon field effect transistor for high frequency applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant