CN112909092B - 一种碳纳米管-石墨烯共价异质结隧穿场效应晶体管 - Google Patents

一种碳纳米管-石墨烯共价异质结隧穿场效应晶体管 Download PDF

Info

Publication number
CN112909092B
CN112909092B CN202110068578.0A CN202110068578A CN112909092B CN 112909092 B CN112909092 B CN 112909092B CN 202110068578 A CN202110068578 A CN 202110068578A CN 112909092 B CN112909092 B CN 112909092B
Authority
CN
China
Prior art keywords
channel
carbon nanotube
region
graphene
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110068578.0A
Other languages
English (en)
Other versions
CN112909092A (zh
Inventor
周文利
朱宇
程丽
龚清峰
庄严
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202110068578.0A priority Critical patent/CN112909092B/zh
Publication of CN112909092A publication Critical patent/CN112909092A/zh
Application granted granted Critical
Publication of CN112909092B publication Critical patent/CN112909092B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种碳纳米管‑石墨烯共价异质结隧穿场效应晶体管,属于隧穿场效应晶体管技术领域,包括:栅区,源区,漏区,沟道区;所述沟道区包括沿源区至漏区方向依次排布的沟道一段、沟道二段和沟道三段;所述沟道一段和沟道三段均为弯曲的zigzag型石墨烯纳米带,所述沟道二段为碳纳米管;所述源区与漏区均为armchair型石墨烯纳米带;所述源区、漏区以及沟道区组成石墨烯‑碳纳米管共价异质结。如此,在隧穿晶体管处于开态时,armchair型石墨烯(源区)中电子能够通过无带隙的zigzag型石墨烯直接输运到碳纳米管(沟道);此时,碳纳米管沟道与armchair型石墨烯之间不存在隧穿势垒,电子从源区输运到沟道的几率大大增加,隧穿晶体管器件的开态饱和电流增加一个量级。

Description

一种碳纳米管-石墨烯共价异质结隧穿场效应晶体管
技术领域
本发明属于隧穿场效应晶体管技术领域,更具体地,涉及一种碳纳米管-石墨烯共价异质结隧穿场效应晶体管。
背景技术
碳纳米管(CNT)是一种有着独特结构的一维纳米材料,由于其超小尺寸、高迁移率、高饱和速度和长平均自由程等显著优点而被认为是后摩尔时代最有潜力替代硅作为晶体管沟道的纳米材料之一。目前,碳纳米管作为沟道材料而广泛用于场效应晶体管领域。2019年,北京大学彭练矛课题组成功制备了5nm工艺节点下的碳纳米管金属氧化物半导体场效应晶体管(CNT MOSFET)。
随着CNT MOSFET的尺寸逐渐减小,CNT MOSFET的短沟道效应和量子效应问题变得日趋严重。在室温下,CNT MOSFET的亚阈值摆幅所能达到的最小极限是60mV/dec。为了解决CNT MOSFET所面临的问题,近些年逐渐发展出了一种碳纳米管隧穿场效应晶体管(CNTTFET),它是基于带间隧穿的量子效应而非电子和空穴的热注入效应工作的,因此其亚阈值摆幅可以突破60mV/dec的限制。CNT TFET从而成为一种具有超陡亚阈值斜率和更低亚阈值摆幅的低功耗器件。
然而,CNT TFET是基于能带间载流子的量子隧穿实现载流子输运,其开态饱和电流偏小,驱动能力较弱,这将会给由CNT TFET器件构成的电路带来极大的延迟,不利于大规模集成,导致其应用受到很大的局限。
发明内容
针对现有技术的缺陷和改进需求,本发明提供了一种碳纳米管-石墨烯共价异质结隧穿场效应晶体管,其目的在于解决现有碳纳米管隧穿场效应晶体管开态饱和电流偏小,驱动能力较弱的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种碳纳米管-石墨烯共价异质结隧穿场效应晶体管,包括栅区、源区、漏区和沟道区;
所述沟道区包括沿源区至漏区方向依次排布的沟道一段、沟道二段和沟道三段;所述沟道一段和沟道三段均为弯曲的zigzag型石墨烯纳米带;所述沟道二段为碳纳米管;
所述源区与漏区均为armchair型石墨烯纳米带;
所述源区、漏区以及沟道区组成石墨烯-碳纳米管共价异质结。
进一步地,所述栅区包括:顶栅电极、底栅电极、顶栅氧化层和底栅氧化层;
所述源区、漏区和沟道区位于所述顶栅氧化层及底栅氧化层之间;
所述底栅电极位于所述底栅氧化层下方,所述顶栅电极位于所述顶栅氧化层上方,且所述顶栅电极和底栅电极在长度方向上均与所述沟道区对齐。
进一步地,所述顶栅电极和底栅电极采用多晶硅材料或过渡金属材料。
进一步地,所述顶栅氧化层和底栅氧化层采用SiO2、Si3N4、Y2O3或HfO2等氧化物介电材料中的一种或多种,厚度为0.5~4.0nm。
进一步地,所述armchair型石墨烯纳米带为有带隙的单层石墨烯纳米带。
进一步地,所述zigzag型石墨烯纳米带为金属性单层石墨烯纳米带。
进一步地,所述碳纳米管为有带隙的半导体性单壁碳纳米管。
进一步地,所述栅区包括:顶栅电极和顶栅氧化层;
所述源区、漏区和沟道区位于所述顶栅氧化层下方;所述顶栅电极位于所述顶栅氧化层上方,且所述顶栅电极在长度方向上与所述沟道区对齐。
进一步地,所述栅区包括:底栅电极和底栅氧化层;
所述源区、漏区和沟道区位于所述底栅氧化层上方;所述底栅电极位于所述底栅氧化层下方,且所述底栅电极在长度方向上与所述沟道区对齐。
总体而言,通过本发明所构思的以上技术方案,能够取得以下有益效果:
(1)本发明通过利用碳纳米管-石墨烯共价异质结作为隧穿晶体管的沟道材料,提高电子隧穿几率和隧穿晶体管器件的开态饱和电流,改善隧穿器件的电学性能。碳纳米管-石墨烯共价异质结中,armchair型石墨烯通过金属性的zigzag型石墨烯与碳纳米管连接。在隧穿晶体管处于开态时,armchair型石墨烯(源区)中电子能够通过无带隙的zigzag型石墨烯直接输运到碳纳米管(沟道);此时,碳纳米管沟道与armchair型石墨烯之间不存在隧穿势垒,电子从源区输运到沟道的几率大大增加,隧穿晶体管器件的开态饱和电流增加一个量级。
(2)Armchair型和zigzag型石墨烯纳米带都具有较高的电子迁移率,与碳纳米管连接后形成碳-碳接触后,可以获得更低的肖特基势垒,降低了隧穿晶体管器件的接触电阻,从而降低了器件的功耗。
(3)本发明通过同时设置顶栅和底栅,降低了隧穿场效应晶体管的反馈电容和提高了隧穿晶体管的工作频率,因而能在甚高频和超高频范围内稳定地工作。
附图说明
图1是本发明提供的碳纳米管-石墨烯共价异质结的原子结构示意图。
图2是本发明提供的碳纳米管-石墨烯共价异质结的能带示意图。
图3是本发明提供的无势垒碳纳米管-石墨烯共价异质结隧穿场效应晶体管的正视示意图。
图4是本发明提供的无势垒碳纳米管-石墨烯共价异质结隧穿场效应晶体管的俯视示意图。
图5是基于单一碳纳米管的CNT TFET器件的正视示意图。
图6是本发明提供的无势垒碳纳米管-石墨烯共价异质结隧穿场效应晶体管和图5所示CNT TFET器件的输出特性曲线。
图7是本发明提供的无势垒碳纳米管-石墨烯共价异质结隧穿场效应晶体管和图5所示CNT TFET器件的转移特性曲线。
图8是图5所示CNT TFET器件在栅压为0.7V时开态的能带示意图。
图9是本发明提供的无势垒碳纳米管-石墨烯共价异质结隧穿场效应晶体管在栅压为0.7V时开态的能带示意图。
图10是本发明提供的无势垒碳纳米管-石墨烯共价异质结隧穿场效应晶体管和图5所示CNT TFET器件在栅压为0.7V时电子透射系数能谱示意图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:
1、6-源区;21-沟道一段、22-沟道二段、23-沟道三段、7-沟道区;3、8-漏区;41-顶栅氧化层、42-底栅氧化层;51-顶栅电极、52-底栅电极。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明以碳纳米管-石墨烯共价异质结双栅隧穿晶体管为例,采用图1所示的碳纳米管-石墨烯共价异质结,例证这一种无隧穿势垒的隧穿晶体管能够提升开态饱和电流。
碳纳米管-石墨烯共价异质结的能带结构如图2所示,armchair型石墨烯纳米带和碳纳米管表现半导体性,两者之间的zigzag石墨烯纳米带为金属性,这种“半导体性-金属性-半导体性”的异质结能够用于构建无势垒的隧穿晶体管,提升隧穿晶体管器件的开态饱和电流。本发明中,armchair型和zigzag型石墨烯纳米带是由碳纳米管两端解链形成的,碳纳米管与石墨烯纳米带共价连接。
以栅区包括顶栅电极、底栅电极、顶栅氧化层和底栅氧化层为例,如图3和4所示,无势垒的碳纳米管-石墨烯共价异质结隧穿晶体管,包括源区1、沟道区(21、22、23)、漏区3、顶栅氧化层41、底栅氧化层42、顶栅电极51和底栅电极52。其中:
栅氧化层采用SiO2、Si3N4、Y2O3或HfO2等氧化物介电材料的一种或多种;源区1、漏区3和沟道区(21、22、23)位于顶栅氧化层41和底栅氧化层42之间;底栅电极52位于底栅氧化层42下方,顶栅电极51位于顶栅氧化层41上方,且顶栅电极51和底栅52电极在长度方向上均与沟道区(21、22、23)对齐设置;源区1、漏区3以及源区1与漏区3之间的沟道区(21、22、23)组成石墨烯-碳纳米管-石墨烯共价异质结;源区1和漏区3为均为半导体性的armchair型石墨烯纳米带(本实施例中W为18.5nm);沟道由沿源区1至漏区3方向排布的沟道一段21、沟道二段22和沟道三段23组成;沟道一段21和沟道23均为无带隙的zigzag型石墨烯纳米带,它们的宽度与源区1、漏区3一致;沟道二段22为半导体性的碳纳米管(本实施例中碳纳米管手性指数为(8,0))。
在源区1与漏区3施加偏压,在顶栅电极51和底栅电极52施加栅压。调控栅压的大小在器件内形成沟道电流,电流大小随栅压变化关系如图6所示。调控偏压的大小改变沟道电流,电流大小随偏压变化关系如图7所示。VDS代表源区1与漏区3的偏压,VGS代表顶栅电极51和底栅电极52的栅压,Current代表沟道电流。本发明中沟道电流大小的数值通过NanoTCAD ViDES软件中仿真得到,源区1和漏区3均匀掺杂(本实施例中掺杂摩尔分数为0.005),沟道区(21、22、23)无掺杂,计算过程中器件各部分参数设置如表1所示。
表1
参数名称 L<sub>S</sub> L<sub>C1</sub> L<sub>C2</sub> L<sub>C3</sub> L<sub>G</sub> L<sub>D</sub> t<sub>OX</sub> W
长度(nm) 5 2 15 2 14 5 1 18.5
表中,LS为源区1的长度,LC1为沟道一段21的长度,LC2为沟道二段22的长度,LC3为沟道三段23的长度,LG为顶栅51或底栅52的长度,tox为顶部的栅氧化层41或底部的栅氧化层42的厚度。
如图5所示,为了对比分析,还构建基于单一碳纳米管的CNT TFET器件。CNT TFET器件穿晶体管包括:源区6、沟道区7、漏区8、栅氧化层(41、42)、顶栅电极51和底栅电极52。CNT TFET器件的器件参数与碳纳米管-石墨烯共价异质结隧穿晶体管保持一致。CNT TFET器件的输出特性曲线和转移特性曲线分别如图6和图7所示。
图6中空心符号组成的线代表CNT TFET器件的转移特性曲线,实心符号组成的线代表本发明提出的无势垒碳纳米管-石墨烯共价异质结隧穿晶体管的转移特性曲线。图7中空心符号组成的线代表CNT TFET器件的输出特性曲线,实心符号组成的线代表本发明提出的无势垒碳纳米管-石墨烯共价异质结隧穿晶体管的输出特性曲线。CNT TFET和本发明提出的无势垒碳纳米管-石墨烯共价异质结隧穿晶体管的关态泄漏电流(VGS=0.15对应的Current)都比较小。然而,本发明提出的无势垒碳纳米管-石墨烯共价异质结隧穿晶体管的开态饱和电流(VGS=0.7V对应的Current)高达4.8×10-6A,与CNT TFET器件相比,其开态饱和电流提高了一个量级。以上结果说明利用本发明提出的碳纳米管-石墨烯共价异质结构建无势垒碳纳米管-石墨烯共价异质结隧穿晶体管,能够大大提升隧穿晶体管的电学性能。
本发明提出的碳纳米管-石墨烯共价异质结隧穿晶体管具有更大开态饱和电流的原因是,在器件中沟道二段22通过无带隙的沟道一段21与源区1相连。开态情况下(VGS=0.7V),CNT TFET和本发明提出的无势垒碳纳米管-石墨烯共价异质结隧穿晶体管的能带图分别如图8和9所示。如图8所示,CNT TFET器件中源区的价带顶高于到沟道的导带底,源区的电子利用带间隧穿效应输运到沟道,此时由于隧穿势垒的存在,电子传输系数较低,图10对这点给出了证明。而本发明提出的无势垒碳纳米管-石墨烯共价异质结隧穿晶体管中沟道2段表现为金属性(图9中灰色区域代表沟道2段没有带隙),源区中电子借助于沟道2带直接漂移到沟道,此时器件不存在隧穿势垒,电子传输系数增大,图10对这点也给出了证明。图10为CNT TFET和本发明提出的无势垒碳纳米管-石墨烯共价异质结隧穿晶体管在开态时的电阻透射能谱,它显示出开态时无势垒碳纳米管-石墨烯共价异质结隧穿晶体管的电子传输系数明显高于CNT TFET器件。
需要说明的是,本发明提供的碳纳米管-石墨烯共价异质结隧穿场效应晶体管中栅区还可以仅包括顶栅电极和顶栅氧化层;或者,底栅电极和底栅氧化层。即仅在沟道区一侧设置栅电极和栅氧化层,关于源区、漏区、沟道区的设置与两侧均设置栅电极和栅氧化层一致,此处不再赘述。
本发明提出无势垒的碳纳米管-石墨烯隧穿场效应晶体管,利用开态时沟道一段21表现为金属性,消除了隧穿晶体管的隧穿势垒,提高电子传输几率,提升器件的开态饱和电流,进而提升了器件的驱动能力和降低了电路的延迟。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种碳纳米管-石墨烯共价异质结隧穿场效应晶体管,包括栅区、源区、漏区和沟道区,其特征在于,
所述沟道区包括沿源区至漏区方向依次排布的沟道一段、沟道二段和沟道三段;所述沟道一段和沟道三段均为弯曲的zigzag型石墨烯纳米带,所述沟道二段为碳纳米管;
所述源区与漏区均为armchair型石墨烯纳米带;
所述源区、漏区以及沟道区组成石墨烯-碳纳米管共价异质结,所述armchair型石墨烯纳米带和碳纳米管为半导体性,所述zigzag型石墨烯纳米带为金属性。
2.如权利要求1所述的碳纳米管-石墨烯共价异质结隧穿场效应晶体管,其特征在于,所述栅区包括:顶栅电极、底栅电极、顶栅氧化层和底栅氧化层;
所述源区、漏区和沟道区位于所述顶栅氧化层及底栅氧化层之间;
所述底栅电极位于所述底栅氧化层下方,所述顶栅电极位于所述顶栅氧化层上方,且所述顶栅电极和底栅电极在长度方向上均与所述沟道区对齐。
3.如权利要求2所述的碳纳米管-石墨烯共价异质结隧穿场效应晶体管,其特征在于,所述顶栅电极和底栅电极采用多晶硅材料或过渡金属材料。
4.如权利要求2所述的碳纳米管-石墨烯共价异质结隧穿场效应晶体管,其特征在于,所述顶栅氧化层和底栅氧化层采用SiO2、Si3N4、Y2O3或HfO2材料中的一种或多种,厚度为0.5~4.0nm。
5.如权利要求1所述的碳纳米管-石墨烯共价异质结隧穿场效应晶体管,其特征在于,所述armchair型石墨烯纳米带为有带隙的单层石墨烯纳米带。
6.如权利要求1所述的碳纳米管-石墨烯共价异质结隧穿场效应晶体管,其特征在于,所述zigzag型石墨烯纳米带为金属性单层石墨烯纳米带。
7.如权利要求1所述的碳纳米管-石墨烯共价异质结隧穿场效应晶体管,其特征在于,所述碳纳米管为有带隙的半导体性单壁碳纳米管。
8.如权利要求1所述的碳纳米管-石墨烯共价异质结隧穿场效应晶体管,其特征在于,所述栅区包括:顶栅电极和顶栅氧化层;
所述源区、漏区和沟道区位于所述顶栅氧化层下方;所述顶栅电极位于所述顶栅氧化层上方,且所述顶栅电极在长度方向上与所述沟道区对齐。
9.如权利要求1所述的碳纳米管-石墨烯共价异质结隧穿场效应晶体管,其特征在于,所述栅区包括:底栅电极和底栅氧化层;
所述源区、漏区和沟道区位于所述底栅氧化层上方;所述底栅电极位于所述底栅氧化层下方,且所述底栅电极在长度方向上与所述沟道区对齐。
CN202110068578.0A 2021-01-19 2021-01-19 一种碳纳米管-石墨烯共价异质结隧穿场效应晶体管 Active CN112909092B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110068578.0A CN112909092B (zh) 2021-01-19 2021-01-19 一种碳纳米管-石墨烯共价异质结隧穿场效应晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110068578.0A CN112909092B (zh) 2021-01-19 2021-01-19 一种碳纳米管-石墨烯共价异质结隧穿场效应晶体管

Publications (2)

Publication Number Publication Date
CN112909092A CN112909092A (zh) 2021-06-04
CN112909092B true CN112909092B (zh) 2022-08-02

Family

ID=76115462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110068578.0A Active CN112909092B (zh) 2021-01-19 2021-01-19 一种碳纳米管-石墨烯共价异质结隧穿场效应晶体管

Country Status (1)

Country Link
CN (1) CN112909092B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400859A (zh) * 2013-08-13 2013-11-20 中国科学院上海微系统与信息技术研究所 基于石墨烯的隧穿场效应管单元、阵列及其形成方法
CN109037321A (zh) * 2018-06-22 2018-12-18 杭州电子科技大学 石墨烯条带异质结双栅tfet及其开关特性提升方法
US10593778B1 (en) * 2019-02-27 2020-03-17 Cemalettin Basaran Electrostatic doping-based all GNR tunnel field-effect transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400859A (zh) * 2013-08-13 2013-11-20 中国科学院上海微系统与信息技术研究所 基于石墨烯的隧穿场效应管单元、阵列及其形成方法
CN109037321A (zh) * 2018-06-22 2018-12-18 杭州电子科技大学 石墨烯条带异质结双栅tfet及其开关特性提升方法
US10593778B1 (en) * 2019-02-27 2020-03-17 Cemalettin Basaran Electrostatic doping-based all GNR tunnel field-effect transistor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Edge-dependent ballistic transport through copper-decorated carbon-nanotube–graphene covalent junction with low Schottky barrier";Zhu Yu等;《Journal or Applied Physics》;20200810;第128064302-1至128064302-11页 *
"Performance Assessment of Partially Unzipped Carbon Nanotube Field-Effect Transistors";Youngki Yoon等;《2011 IEEE/ACM International Symposium on Nanoscale Architectures》;20110707;第157至161页 *

Also Published As

Publication number Publication date
CN112909092A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
Schwierz Graphene transistors
Guo et al. A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors
Heinze et al. Electrostatic engineering of nanotube transistors for improved performance
Singh et al. Analysis of electrostatic doped Schottky barrier carbon nanotube FET for low power applications
Tahaei et al. A computational study of a carbon nanotube junctionless tunneling field-effect transistor (CNT-JLTFET) based on the charge plasma concept
Priyadarshani et al. RF & linearity distortion sensitivity analysis of DMG-DG-Ge pocket TFET with hetero dielectric
Ellinger et al. Review of advanced and beyond CMOS FET technologies for radio frequency circuit design
Rawat et al. Analysis of graphene tunnel field-effect transistors for analog/RF applications
Shaker et al. Influence of gate overlap engineering on ambipolar and high frequency characteristics of tunnel-CNTFET
Saha et al. DC and RF/analog parameters in Ge‐source split drain‐ZHP‐TFET: drain and pocket engineering technique
Naderi et al. Novel carbon nanotube field effect transistor with graded double halo channel
Bhardwaj et al. Development and Analysis of Compact Model for Double Gate Schottky Barrier Carbon Nano Tube Field Effect Transistor
Naderi et al. The use of a Gaussian doping distribution in the channel region to improve the performance of a tunneling carbon nanotube field-effect transistor
Wang et al. Cold source engineering towards sub-60mV/dec p-type field-effect-transistors (pFETs): Materials, structures, and doping optimizations
Pourfath et al. Tunneling CNTFETs
CN112909092B (zh) 一种碳纳米管-石墨烯共价异质结隧穿场效应晶体管
Swain et al. InSb/Si heterojunction-based tunnelling field-effect transistor with enhanced drive current and steep switching
Tahaei et al. A computational study of a heterostructure tunneling carbon nanotube field-effect transistor
Soni et al. A novel approach for the improvement of electrostatic behaviour of physically doped TFET using plasma formation and shortening of gate electrode with hetero-gate dielectric
Sorée et al. Novel device concepts for nanotechnology: the nanowire pinch-off fet and graphene tunnelfet
Arefinia et al. Novel attributes in the performance and scaling effects of carbon nanotube field-effect transistors with halo doping
Perucchini et al. Physical insights into the operation of a 1-nm gate length transistor based on MoS2 with metallic carbon nanotube gate
Karimi et al. Ballistic (n, 0) carbon nanotube field effect transistors\'iv characteristics: A comparison of n= 3a+ 1 and n= 3a+ 2
Yadav et al. A systematic investigation of the integrated effects of gate underlapping, dual work functionality and hetero gate dielectric for improved performance of CP TFETs
Tirkey et al. Controlling ambipolar behavior and improving radio frequency performance of hetero junction double gate tfet by dual work-function, hetero gate dielectric, gate underlap: Assessment and optimization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant