CN109012752A - 一种磁性ZnFe2O4/PANI/Au复合光催化剂的制备方法 - Google Patents

一种磁性ZnFe2O4/PANI/Au复合光催化剂的制备方法 Download PDF

Info

Publication number
CN109012752A
CN109012752A CN201811021342.6A CN201811021342A CN109012752A CN 109012752 A CN109012752 A CN 109012752A CN 201811021342 A CN201811021342 A CN 201811021342A CN 109012752 A CN109012752 A CN 109012752A
Authority
CN
China
Prior art keywords
znfe
pani
preparation
catalyst
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811021342.6A
Other languages
English (en)
Inventor
王秀芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Jianzhu University
Anhui University of Architecture
Original Assignee
Anhui University of Architecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Architecture filed Critical Anhui University of Architecture
Priority to CN201811021342.6A priority Critical patent/CN109012752A/zh
Publication of CN109012752A publication Critical patent/CN109012752A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种磁性ZnFe2O4/PANI/Au复合光催化剂的制备方法,具体包含以下步骤:(1).取0.219g(CH3COO)2Zn·2H2O,0.808gFe(NO3)3·9H2O,溶解在16mL甘油,60mL异丙醇混合溶液中;(2).将步骤(1)制备的溶液放置在反应釜中,温度控制在180℃,反应时间为12h;(3)将步骤(2)制备的溶液取出,用水和乙醇各洗三遍,烘干,在马弗炉中温度控制在400℃反应2h,制得ZnFe2O4粉末备用;(4).在ZnFe2O4存在下加入氯金酸和苯胺原位氧化还原制备磁性ZnFe2O4/PANI/Au纳米复合物。本发明合成纳米ZnFe2O4/PANI/Au复合物,通过使ZnFe2O4,聚苯胺和Au的复合使得ZnFe2O4光生电子-空穴有效分离,提升光生载流子的迁移速率,从而改善ZnFe2O4光催化剂性能。由于ZnFe2O4、PANI、Au三者的协同作用使得该纳米复合物在可见光下具有较高的光催化效果。

Description

一种磁性ZnFe2O4/PANI/Au复合光催化剂的制备方法
技术领域
本发明涉及一种磁性ZnFe2O4/PANI/Au复合光催化剂的制备方法。
背景技术
随着人类文明的不断发展进步,有机废水的排放量也日益增大。由于各类化工生产所使用的化工原料种类很多,因此废水中的成分很复杂,可生化性差,色度很高,COD居高不下。各种苯类、卤代烃等大分子物质及各种显色集团均溶解于水中,有的甚至和水形成氢键。燃料废水中的毒性可直接影响人体健康,破坏生态环境。每年有大于5.5万亿立方米的水的淡水受到污染,这样的形势非常严峻。因此,有机废水的处理一直受到国内外的广泛关注。但由于成分复杂,使废水的处理难度很大。
特别是进入20世纪以来,有毒,难降解有机污染物(如农药,染料等)导致了水体污染,现在环境水体的污染已经成为影响人类的生命健康的重大问题。然而传统的水处理方法,例如:混凝法、吸附法、膜过滤分离、化学沉淀法等方法在实际处理中还是存在一定的困难,且处理效果不是很理想。但通过光催化的方法利用太阳能,可以将对环境中有毒、难降解解有机污染物实现完全降解。这一方法被认为是解决人类环境问题最行之有效的技术方案之一。
近年来,在光催化制氢、光敏化太阳能电池、治理有机污染物等方面的研究半导体材料的应用极其广泛。在众多的半导体中,纳米级半导体材料更是倍受青睐。铁酸锌作为一种稳定的材料,在磁性材料、传感器、光催化降解有机物等方面被得到了广泛应用。由于其具有很小的带隙(约为1.9eV)和优质的光化学稳定性,这使得铁酸锌在光催化方面表现出很大的优越性,大量的研究表明,纳米铁酸锌材料具有良好的光催化特性。与普通的纳米材料相比,中空结构纳米微球具有比表面积大,表面渗透性强,密度低,光学性能优,稳定性强等优点,表现出更加优异的性能。迄今为止,许多学者成功地合成了SiO2,TiO2,Sb2S3,SnO2,MnO2,Fe3O4等中空微球,在这些中空结构中,磁性材料中空微球在许多领域中具有潜在的应用;
以TiO2为基础的的半导体光催化剂是目前最被广泛应用和接受的光催化剂,但有很多关键性的技术性难题有待解决,(1)量子效率低(~4%);难以处理量大且浓度高的废气和废水,难以实现光催化分解水制氢产业化;(2)太阳能利用率低;由于TiO2半导体的能带结构(Eg=3.2eV)决定了其只能吸收利用紫外光或太阳光中的紫外线部分(太阳光中紫外辐射仅占~5%);(3)多相光催化反应机理尚不十分明确;以半导体能带理论为基础的光催化理论难以解释许多实验现象,使得改进和开发新型高效光催化剂的研究工作盲目性大;(4)光催化应用中的技术难题;如在液相反应体系中光催化剂的负载技术和分离回收技术,在气相反应体系中光催化剂的成膜技术及光催化剂活性稳定性问题;上述关键问题也是目前国内外光催化领域的研究焦点,围绕这些问题开展进一步研究不仅可望在光催化基础理论方面获得较大的突破,而且有利于促进光催化技术真正能在上述众多领域得到大规模广泛工业应用。
发明内容
本发明目的是提供一种磁性ZnFe2O4/PANI/Au复合光催化剂的制备方法,它能有效地解决背景技术中所存在的问题。
一种磁性ZnFe2O4/PANI/Au复合光催化剂的制备方法,具体包含以下步骤:
(1).准备16mL的甘油,60mL的异丙醇,搅拌溶解备用;
(2).取0.219g(CH3COO)2Zn·2H2O,0.808gFe(NO3)3·9H2O,溶解在步骤(1)制备的溶液中;
(3).将步骤(2)制备的溶液放置在反应釜中,温度控制在180℃,反应时间为12h;
(4).将步骤(3)制备的溶液取出,实用离心机用水和乙醇各洗三遍,烘干,在马弗炉中温度控制在400℃反应2h,然后进行冷却研磨,即可制得ZnFe2O4粉末备用;
(5).取0.1928g步骤(4)制备的ZnFe2O4粉末放入到装有100ml的烧杯中,再将100ml的水倒入烧杯中,再加入4mL的苯胺,搅拌2h;
(6).在步骤(5)制备的溶液中加入1.2mLHAuCl4,继续搅拌4h;
(7)将步骤(6)制得的产物使用水和乙醇再各洗三遍,放在温度为60℃的烘箱中烘干,时间24h取出。
由于采用了以上技术方案,本发明具有以下有益效果:本发明合成纳米ZnFe2O4/PANI/Au复合物,通过使ZnFe2O4,聚苯胺和Au的复合使得ZnFe2O4光生电子-空穴的有效分离,提升光生载流子的迁移速率,并使其吸收波长范围得到扩展,从而改善ZnFe2O4光催化剂性能,研究了该复合物对有机污染物甲基橙的降解作用,结果表明由于ZnFe2O4、PANI、Au三者的协同作用使得该纳米复合物在可见光下具有较高的光催化效果。
附图说明
为了更清楚地说明本发明,下面将结合附图对实施例作简单的介绍。
图1是实施例2中ZnFe2O4的扫描电镜图(左低倍镜图,右高倍镜图);
图2是实施例3中ZnFe2O4/PANI/Au的扫描电镜图(左低倍镜图,右高倍镜图);
图3是实施例4中ZnFe2O4和ZnFe2O4/PANI/Au复合物的紫外光谱图;
图4是实施例5中ZnFe2O4和ZnFe2O4/PANI/Au红外谱图;
图5是实施例6中ZnFe2O4和ZnFe2O4/PANI/Au复合物XRD图;
图6是实施例7中磁铁吸附下和常态下的ZnFe2O4/PANI/Au溶液的对比图;
图7是实施例8中可见光照射下ZnFe2O4/PANI/Au样品光催化降解甲基橙(1×10- 5mol/L,50mL)过程的紫外—可见光谱图;
图8是实施例9中ZnFe2O4/PANI/Au复合光催化剂的可循环性检测图。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例
实验药品
硝酸铁(Ⅲ)九水合物(上海麦克林生物化学公司)
Zn(Ac)2·9H2O(烧杯盛放)
甘油(aladdin公司生产)
苯胺(国药集团化学试剂有限公司)
异丙醇(天津博迪化工股份有限公司)
实验仪器
陶瓷坩埚
马弗炉
SHA-B水浴恒温振荡器
KQ-250DB型数控超声波清洗器
BS224S电子天平
TGL16M离心机
DHG-9101A电热恒温鼓风干燥箱
量筒(10ml,100ml)、容量瓶、玻璃棒、磁力搅拌器、磁力搅拌子、一次性手套、标签、100ml烧杯、100ml高温加热反应釜。
实施例1
一种磁性ZnFe2O4/PANI/Au复合光催化剂的制备方法,具体包含以下步骤:
(1).准备16mL的甘油,60mL的异丙醇,搅拌溶解备用;
(2).取0.219g(CH3COO)2Zn·2H2O,0.808gFe(NO3)3·9H2O,溶解在步骤(1)制备的溶液中;
(3).将步骤(2)制备的溶液放置在反应釜中,温度控制在180℃,反应时间为12h;
(4).将步骤(3)制备的溶液取出,实用离心机用水和乙醇各洗三遍,烘干,在马弗炉中温度控制在400℃反应2h,然后进行冷却研磨,即可制得ZnFe2O4粉末备用;
(5).取0.1928g步骤(4)制备的ZnFe2O4粉末放入到装有100ml的烧杯中,再将100ml的水倒入烧杯中,再加入4mL的苯胺,搅拌2h;
(6).在步骤(5)制备的溶液中加入1.2mLHAuCl4,继续搅拌4h;
(7)将步骤(6)制得的产物使用水和乙醇再各洗三遍,放在温度为60℃的烘箱中烘干,时间24h取出。
实施例2
参看图1,ZnFe2O4的扫描电镜图,左图的倍数较低,从整体上看分布较为均匀,密集。球形大小在150nm左右,表面不光滑。右图是ZnFe2O4的高倍镜图,可以看到ZnFe2O4的较直观具体的形貌。与左图相比,球形的表面粗糙,可见ZnFe2O4纳米球是由更小的颗粒组装而成的。
实施例3
参看图2,ZnFe2O4/PANI/Au的扫描电镜图,从左图可以看出复合物的形貌跟ZnFe2O4相比变化很大,球的尺寸变大,这是因为复合上了Au和聚苯胺的缘故。右图是左图的放大图,在大颗粒的表面分布有一些小颗粒,应该是Au的纳米颗粒。聚苯胺和Au包裹在ZnFe2O4外面形成品相较好的复合光催化剂,可见前期的制备工作还是有成果的。
实施例4
参看图3,跟ZnFe2O4的紫外光谱图相比,ZnFe2O4/PANI/Au纳米复合物在可见光强的吸收明显增强,这是因为复合上了Au和聚苯胺的缘故,一方面表明成功制备了三者的复合物,另一面说明复合物可以做可见光催化剂。
实施例5
参看图4,ZnFe2O4/PANI/Au复合物的红外光谱图中出现了聚苯胺的特征峰,在1577cm-1和1494cm-1分别对应醌式结构和苯式结构的特征峰。3500cm-1左右的是氨基的特征峰。进一步证明了复合物中聚苯胺的存在。
实施例6
参看图5,ZnFe2O4的XRD图中出现了ZnFe2O4的特征峰,无杂质峰存在,表明了得到了纯的ZnFe2O4纳米晶体。而复合物ZnFe2O4/PANI/Au ZnFe2O4的特征峰外,出现了Au的几个特征峰,表明了Au的存在,但强度相对较弱,这可能与Au在复合物中的含量较少有关。另外在2θ为15°出现的峰是苯胺的特征峰。XRD图进一步证明了成功制备了ZnFe2O4/PANI/Au三者的纳米复合物。
实施例7
参看图6,对于这种催化剂,它的磁性是目前存在的很多光催化剂所不具备的。因此我们专门设计了实验来验证ZnFe2O4/PANI/Au具有磁性。实验如图,从实验的对比图可以看出ZnFe2O4/PANI/Au复合光催化剂具有很好的磁性。在右侧的磁铁吸附下,ZnFe2O4/PANI/Au几乎全部被吸附在试管右侧。
实施例8
参看图7,为了证明所制得的ZnFe2O4/PANI/Au纳米复合物在光催化降解有机污染物有潜在的应用,我们研究了室温下在水溶液中光催化降解甲基橙的实验。甲基橙分子在可见光下(无复合物样品)是稳定的。另外,在暗反应时ZnFe2O4/PANI/Au复合光催化剂对甲基橙几乎无催化降解活性。因此,为了有效地催化降解甲基橙,光照是必须的,甲基橙的降解是在复合物样品存在下由光反应引起的。甲基橙的特征吸收峰被用来监控光催化降解情况。图8为所合成的ZnFe2O4/PANI/Au样品纳米复合物在可见光照射下光催化降解甲基橙的活性。从图中可以看出,随时间的延长,特征吸收峰峰强度明显降低,100分钟后,几乎完全消失,这表明甲基橙彻底被降解。光催化结果表明,样品ZnFe2O4/PANI/Au纳米复合物显示出较好的光催化活性。
实施例9
参看图8,图8是检测ZnFe2O4/PANI/Au复合光催化剂能否被循环利用的检测图。一共做了五次对相同浓度1×10-3mol/L的甲基橙的降解实验。从图中看每次都可以将甲基橙基本全部降解,说明ZnFe2O4/PANI/Au复合光催化剂具有很好的催化性能且可循环性很好。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (1)

1.一种磁性ZnFe2O4/PANI/Au复合光催化剂的制备方法,其特征在于具体包含以下步骤:
(1).准备16mL的甘油,60mL的异丙醇,搅拌溶解备用;
(2).取0.219g(CH3COO)2Zn·2H2O,0.808gFe(NO3)3·9H2O,溶解在步骤(1)制备的溶液中;
(3).将步骤(2)制备的溶液放置在反应釜中,温度控制在180℃,反应时间为12h;
(4).将步骤(3)制备的溶液取出,实用离心机用水和乙醇各洗三遍,烘干,在马弗炉中温度控制在400℃反应2h,然后进行冷却研磨,即可制得ZnFe2O4粉末备用;
(5).取0.1928g步骤(4)制备的ZnFe2O4粉末放入到装有100ml的烧杯中,再将100ml的水倒入烧杯中,再加入4mL的苯胺,搅拌2h;
(6).在步骤(5)制备的溶液中加入1.2mLHAuCl4,继续搅拌4h;
(7)将步骤(6)制得的产物使用水和乙醇再各洗三遍,放在温度为60℃的烘箱中烘干,时间24h取出。
CN201811021342.6A 2018-09-03 2018-09-03 一种磁性ZnFe2O4/PANI/Au复合光催化剂的制备方法 Pending CN109012752A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811021342.6A CN109012752A (zh) 2018-09-03 2018-09-03 一种磁性ZnFe2O4/PANI/Au复合光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811021342.6A CN109012752A (zh) 2018-09-03 2018-09-03 一种磁性ZnFe2O4/PANI/Au复合光催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN109012752A true CN109012752A (zh) 2018-12-18

Family

ID=64622930

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811021342.6A Pending CN109012752A (zh) 2018-09-03 2018-09-03 一种磁性ZnFe2O4/PANI/Au复合光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN109012752A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111686808A (zh) * 2019-06-13 2020-09-22 河南理工大学 银-碘化银-聚苯胺-卤氧化铋-铁酸锌光催化剂制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102626658A (zh) * 2012-03-28 2012-08-08 南京理工大学 铁酸盐/聚苯胺磁性纳米催化剂及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102626658A (zh) * 2012-03-28 2012-08-08 南京理工大学 铁酸盐/聚苯胺磁性纳米催化剂及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CUIPING WANG ET AL.: "Synthesis of novel NiZn-ferrite/polyaniline nanocomposites and their microwave absorption properties", 《MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING》 *
M.KOOTI ET AL.: "Preparation and antibacterial activity of three-component NiFe2O4@PANI@Ag nanocomposite", 《J.MATER.SCI.TECHNOL.》 *
冉方等: "ZnFe2O4/聚苯胺复合材料的制备及光催化性能", 《浙江师范大学学报(自然科学版)》 *
王秀芳: "聚苯胺/无机纳米复合材料的制备及性能研究", 《中国博士学位论文全文数据库 工程科技I辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111686808A (zh) * 2019-06-13 2020-09-22 河南理工大学 银-碘化银-聚苯胺-卤氧化铋-铁酸锌光催化剂制备方法

Similar Documents

Publication Publication Date Title
Lam et al. A review on photocatalytic application of g-C3N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater
Dong et al. AgBr@ Ag/TiO2 core–shell composite with excellent visible light photocatalytic activity and hydrothermal stability
CN102580742B (zh) 一种活性炭负载氧化亚铜光催化剂及其制备方法
CN107020142B (zh) 泡沫镍负载碳氮/还原石墨烯光催化剂的制备方法
Zhu et al. Synthesis of novel ternary photocatalyst Ag3PO4/Bi2WO6/multi-walled carbon nanotubes and its enhanced visible-light photoactivity for photodegradation of norfloxacin
CN106944074B (zh) 一种可见光响应型复合光催化剂及其制备方法和应用
CN109967074A (zh) 一种银负载的二氧化钛光催化剂的制备方法与应用
Zhang et al. Microwave-assisted synthesis of ZnNiAl-layered double hydroxides with calcination treatment for enhanced PNP photo-degradation under visible-light irradiation
CN104525266A (zh) 一种金属有机骨架材料光催化剂的制备方法与应用
CN109675607A (zh) Fe3O4@ZnO@N-C复合光催化材料的制备方法
CN106311206A (zh) 二氧化钛/石墨烯复合纳米光催化剂及其制备方法与应用
CN108772092A (zh) 一种Ag3PO4/g-C3N4复合管状纳米粉体及其制备方法
CN110624594A (zh) 一种磁性Fe3O4/ZnO/g-C3N4复合光催化剂及其制备方法
Balgude et al. Succinate assisted synthesis of magnetically separable Fe2O3/g-C3N4 nano-heterostructure: A stable catalyst for environmental remediation
CN102671674A (zh) 一种磁载溴化银光催化材料及其制备方法
Song et al. Template assisted synthesis of Ag/AgBr/AgCl hollow microspheres with heterojunction structure as highly activity and stability photocatalyst
Yallur et al. Solar-light-sensitive Zr/Cu-(H2BDC-BPD) metal organic framework for photocatalytic dye degradation and hydrogen evolution
CN106268891A (zh) 一种莲藕状多孔碳/卤氧铋半导体复合光催化材料、制备及应用
Liu et al. Hollow microsphere TiO2/ZnO p–n heterojuction with high photocatalytic performance for 2, 4-dinitropheno mineralization
CN108579819A (zh) 一种Fe3O4-N掺杂Ni/Zn-MOFs/g-C3N4复合光催化材料的制备方法
Wu et al. Enhanced photocatalytic activity of Jamun-like Zn 2 V 2 O 7/C-dots/gC 3 N 4 nanocomposites for Rhodamine B degradation under the visible light radiation
CN106807413A (zh) 一种具有等离子体表面共振效应的Ag@AgBr/CaTiO3光催化剂及其制备方法
CN106111179B (zh) 一种小尺寸氮掺杂石墨烯光催化剂及其制备方法和应用
CN105879896B (zh) Cu3B2O6/g‑C3N4异质结光催化剂的制备方法及其降解亚甲基蓝染料废水的方法
CN107552038A (zh) 一种纳米线状氧化铋的制法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181218

RJ01 Rejection of invention patent application after publication