CN109003702A - 一种氮杂石墨膜及其制备方法 - Google Patents

一种氮杂石墨膜及其制备方法 Download PDF

Info

Publication number
CN109003702A
CN109003702A CN201810746198.6A CN201810746198A CN109003702A CN 109003702 A CN109003702 A CN 109003702A CN 201810746198 A CN201810746198 A CN 201810746198A CN 109003702 A CN109003702 A CN 109003702A
Authority
CN
China
Prior art keywords
film
graphene oxide
azepine
graphene film
coagulating bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810746198.6A
Other languages
English (en)
Other versions
CN109003702B (zh
Inventor
高超
黄铁骑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Hangzhou Gaoxi Technology Co Ltd
Original Assignee
Zhejiang University ZJU
Hangzhou Gaoxi Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, Hangzhou Gaoxi Technology Co Ltd filed Critical Zhejiang University ZJU
Priority to CN201810746198.6A priority Critical patent/CN109003702B/zh
Publication of CN109003702A publication Critical patent/CN109003702A/zh
Application granted granted Critical
Publication of CN109003702B publication Critical patent/CN109003702B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明公开了一种氮杂石墨烯膜及其制备方法,该石墨烯膜具有高度掺杂的特点,密度高,离子传输性好。该石墨烯膜作为电极材料体积比容量可达413F cm‑3,质量比容量可达252F g‑1。通过这种方法可制得负载量达11.2mg cm‑2的石墨烯膜,组装成的有机系对称超级电容器显示了超高能量密度(138Wh L‑1),因此在轻量化电动车与便携式电子器件领域具备应用前景。

Description

一种氮杂石墨膜及其制备方法
技术领域
本发明涉及一种氮杂石墨烯膜及其制备方法。
背景技术
超级电容器主要通过在电极表面高度可逆的离子吸附和解吸来储存能量(Electrochim.Acta2000,45,2483)。碳材料具有制造成本低,电导率高,循环稳定性好等优点,在超级电容器的高性能电极中具有很大的应用潜力(J.Power Sources1998,74,99)。石墨烯被认为是真正的可组装材料,能够制备精细有序的宏观碳电极材料,表现出较高的理论比电容(550F g-1)(Nano Lett.2008,8,3498)。
现有的石墨烯基超级电容器的体积电化学性能低。考虑到消费电子和电动汽车轻量化和便携式设备日益增长的需求,大的体积阻碍了石墨烯超级电容器实际应用的发展。如果能通过特殊的手段获得高密度石墨烯薄膜,就能大大提高其能量密度,获得更高性能的储能器件。
发明内容
本发明的目的在于针对现有技术的不足,提供一种氮杂石墨烯膜及其制备方法。
本发明通过以下技术方案实现:一种氮杂石墨烯薄膜,其特征在于,碳酸氢铵作为交联剂和氮源,氧化石墨烯分散液通过刮膜技术后转移入碳酸氢铵溶液中进行凝结,然后在水热反应过程中进行还原,形成高度取向、高度褶皱的结构,掺杂入高浓度的氮。
一种氮杂石墨烯薄膜的制备方法,包括以下步骤:
(1)以浓度为10~20mgg-1氧化石墨烯分散液进行刮膜,膜厚度0.5~6mm。
(2)将得到的氧化石墨烯膜转移至凝固浴中,浸润0.5小时以上。所述凝固浴由碳酸氢铵、水按照质量比3~10:100组成。
(3)将氧化石墨烯膜在装有凝固浴的水热釜中进行水热处理,水热处理的温度为180℃,时间为0.5~18小时。
(4)去离子水洗后得到还原态氮杂石墨烯膜。
本发明与现有技术相比,具有以下有益效果:
(1)高密度氮杂石墨薄膜具备高度取向、高度褶皱、高度掺杂的特点,具有高密度(1.67~1.71g cm-3),同时可以有效地传输电解质离子。
(2)在离子液体中组装好的高密度氮杂石墨烯膜对称超级电容器显示了超高能量密度(138W h L-1),这是超级电容器的最佳容量性能,在多功能便携式电子产品的储能器件领域具有广泛的应用前景。
(3)可获得高负载量又保证质量比容量的电极材料。
(4)制备方法简单、普适、快速,可大规模制备。
附图说明
图1是高度取向、高度褶皱、高度掺杂的氮杂石墨烯膜不同放大倍数下的扫描电子显微镜照片。
图2是高度取向、高度褶皱、高度掺杂的氮杂石墨烯膜X射线光电子能谱测试结果图。
图3是高度取向、高度褶皱、高度掺杂的氮杂石墨烯膜在1A g-1恒流充放电图。
具体实施方式
本发明使用碳酸氢铵作为交联剂和氮源。氧化石墨烯分散液以适当浓度进行刮膜,转入含有大量离子(NH4 +,HCO3 -等)的凝固浴,石墨烯片交联成水凝胶膜。将该水凝胶膜在相同的水浴中水热处理后烘干,还原为导电性的黑色膜,由复卷机收集。
上述石墨烯膜具有高度取向、高度褶皱、高度掺杂的特点,可作为电极材料组装成超级电容器,在保证高导电性的同时显著降低了电极的体积。基于以上特征,本发明的氮杂石墨烯膜作为电极材料组装成超级电容器显著提高了超级电容器的体积能量密度,可获得高负载量的电极材料,同时循环稳定性好,有希望在轻量化电动车与便携式电子器件领域得到应用。
下面通过实施例对本发明进行具体描述,本实施例只用于对本发明做进一步的说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据上述发明的内容做出一些非本质的改变和调整,均属于本发明的保护范围。
实施例1:
(1)以浓度为15mg/g的氧化石墨烯分散液进行刮膜,膜厚为1mm。
(2)将得到的氧化石墨烯膜在凝固浴中浸泡0.5h,凝固浴为质量分数3%的碳酸氢铵溶液。
(3)将充分交联的氧化石墨烯膜浸泡在装有的凝固浴的水热釜中进行水热处理,水热处理的温度为180℃,时间为2小时。
(4)去离子水洗后得到高密度石墨烯薄膜。
经过以上步骤,得到的石墨烯膜具有明显的褶皱结构,密度为1.68g cm-3。X射线光电子能谱显示含氮原子摩尔比例为8.6%,以吡咯氮为主,见图2。质量比容量可达252Fg-1,见图3。
实施例2:
(1)以浓度为20mg/g的氧化石墨烯分散液进行刮膜,膜厚为2mm。
(2)将得到的氧化石墨烯膜在凝固浴中浸泡1h,凝固浴为质量分数3%的碳酸氢铵溶液。
(3)将得到的氧化石墨烯膜在装有碳酸氢铵水溶液(碳酸氢铵质量分数为3%)的水热釜中进行水热处理,水热处理的温度为180℃,时间为0.5小时。
(4)去离子水洗后得到高密度石墨烯膜。
经过以上步骤,得到的石墨烯膜柔性好,耐受200次弯折而保持结构稳定,密度1.71gcm-3。含氮原子摩尔比例为8.2%,以吡咯氮为主。质量比容量可达240F g-1
实施例3:
(1)以浓度为10mg g-1的氧化石墨烯分散液进行刮膜,膜厚为0.5mm。
(2)将得到的氧化石墨烯膜在凝固浴中浸泡1h,凝固浴为质量分数3%的碳酸氢铵溶液。
(3)将充分交联的氧化石墨烯膜浸泡在装有凝固浴的水热釜中进行水热处理,水热处理的温度为180℃,时间为18小时。
(4)去离子水洗后得到高密度石墨烯薄膜。
经过以上步骤,得到的石墨烯膜具有明显的褶皱结构,密度1.67gcm-3。以此为电极组装好的对称超级电容器的CV曲线呈现近似矩形的形状,没有明显的氧化还原峰。含氮原子摩尔比例为8.5%,以吡咯氮为主。质量比容量可达240F g-1
实施例4:
(1)以浓度为20mg g-1的氧化石墨烯分散液进行刮膜,膜厚为6mm。
(2)将得到的氧化石墨烯膜在凝固浴中浸泡12h,凝固浴为质量分数10%的碳酸氢铵水溶液。
(3)将充分交联的氧化石墨烯膜浸泡在装有凝固浴的水热釜中进行水热处理,水热处理的温度为180℃,时间为2小时。
(4)去离子水洗后得到高负载量的石墨烯膜。
经过以上步骤,得到高负载量的石墨烯膜(11.2mg cm-2),密度1.71gcm-3。使用离子液体作为电解液,将其组装成超级电容器,质量比容量可达352F cm-3或者215F g-1,功率密度可达138W h-1

Claims (5)

1.一种氮杂石墨烯膜,其特征在于,以吡咯氮形式掺杂,掺杂浓度8.2~8.6%,密度1.67~1.71gcm-3
2.一种氮杂石墨烯膜的制备方法,其特征在于,包括以下步骤:
(1)以浓度为10~20mgg-1氧化石墨烯分散液进行刮膜,膜厚度0.5~6mm。
(2)将得到的氧化石墨烯膜转移至凝固浴中,浸润0.5小时以上。所述凝固浴由碳酸氢铵、水按照质量比3~10:100组成。
(3)将氧化石墨烯膜在装有凝固浴的水热釜中进行水热处理,水热处理的温度为180℃,时间为0.5~18小时。
(4)去离子水洗后得到还原态氮杂石墨烯膜。
3.根据权利要求2所述的方法,其特征在于,所述步骤1中,氧化石墨烯分散液的浓度优选为15mg g-1
4.根据权利要求2所述的方法,其特征在于,所述步骤1中,膜的厚度优选为0.5mm。
5.根据权利要求2所述的方法,其特征在于,所述步骤2中,碳酸氢铵、水的比例优选为10:100。
CN201810746198.6A 2018-07-09 2018-07-09 一种氮杂石墨烯膜及其制备方法 Active CN109003702B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810746198.6A CN109003702B (zh) 2018-07-09 2018-07-09 一种氮杂石墨烯膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810746198.6A CN109003702B (zh) 2018-07-09 2018-07-09 一种氮杂石墨烯膜及其制备方法

Publications (2)

Publication Number Publication Date
CN109003702A true CN109003702A (zh) 2018-12-14
CN109003702B CN109003702B (zh) 2020-04-21

Family

ID=64598661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810746198.6A Active CN109003702B (zh) 2018-07-09 2018-07-09 一种氮杂石墨烯膜及其制备方法

Country Status (1)

Country Link
CN (1) CN109003702B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113205967A (zh) * 2021-05-13 2021-08-03 浙江大学 一种氮掺杂石墨烯膜其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406096A (zh) * 2013-07-17 2013-11-27 国家纳米科学中心 一种氮掺杂多孔炭材料、制备方法及其用途
CN103985884A (zh) * 2014-05-21 2014-08-13 华中科技大学 一种氮掺杂碳纳米材料、其制备方法及应用
CN106032273A (zh) * 2015-03-13 2016-10-19 中国科学院上海应用物理研究所 一种胺基增强石墨烯膜、氮掺杂石墨烯膜及其制备方法
CN107151009A (zh) * 2017-05-09 2017-09-12 中国科学院上海硅酸盐研究所 一种氮掺杂石墨烯及其制备方法和应用
KR20180024975A (ko) * 2016-08-31 2018-03-08 대주전자재료 주식회사 질소가 도핑된 그래핀의 제조 방법, 이에 의하여 제조된 질소가 도핑된 그래핀, 및 이를 포함하는 염료감응 태양전지용 상대 전극, 염료감응 태양전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406096A (zh) * 2013-07-17 2013-11-27 国家纳米科学中心 一种氮掺杂多孔炭材料、制备方法及其用途
CN103985884A (zh) * 2014-05-21 2014-08-13 华中科技大学 一种氮掺杂碳纳米材料、其制备方法及应用
CN106032273A (zh) * 2015-03-13 2016-10-19 中国科学院上海应用物理研究所 一种胺基增强石墨烯膜、氮掺杂石墨烯膜及其制备方法
KR20180024975A (ko) * 2016-08-31 2018-03-08 대주전자재료 주식회사 질소가 도핑된 그래핀의 제조 방법, 이에 의하여 제조된 질소가 도핑된 그래핀, 및 이를 포함하는 염료감응 태양전지용 상대 전극, 염료감응 태양전지
CN107151009A (zh) * 2017-05-09 2017-09-12 中国科学院上海硅酸盐研究所 一种氮掺杂石墨烯及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113205967A (zh) * 2021-05-13 2021-08-03 浙江大学 一种氮掺杂石墨烯膜其制备方法

Also Published As

Publication number Publication date
CN109003702B (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
Li et al. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification
Song et al. Metal–organic frameworks functionalized separators for robust aqueous zinc-ion batteries
Zhao et al. Unravelling H+/Zn2+ synergistic intercalation in a novel phase of manganese oxide for high‐performance aqueous rechargeable battery
Lee et al. High performance hybrid energy storage with potassium ferricyanide redox electrolyte
Portet et al. Electrical double-layer capacitance of zeolite-templated carbon in organic electrolyte
Li et al. A self‐standing and flexible electrode of Li4Ti5O12 nanosheets with a N‐doped carbon coating for high rate lithium ion batteries
Shivakumara et al. High specific surface area α-Fe2O3 nanostructures as high performance electrode material for supercapacitors
An et al. The preparation of PANI/CA composite electrode material for supercapacitors and its electrochemical performance
Calvo et al. Optimizing the electrochemical performance of aqueous symmetric supercapacitors based on an activated carbon xerogel
CN109354137A (zh) 碳纳米管/mof衍生多孔碳复合电极材料的制备及应用
Zou et al. N/S Co‐Doped 3 D Porous Carbon Nanosheet Networks Enhancing Anode Performance of Sodium‐Ion Batteries
CN109243853B (zh) 一种采用双模板制备高比容量纳米复合材料的方法
Huang et al. A hit-and-run strategy towards perylene diimide/reduced graphene oxide as high performance sodium ion battery cathode
Yuan et al. Cu-doped NiO for aqueous asymmetric electrochemical capacitors
CN108922790A (zh) 一种钠离子嵌入的二氧化锰/氮掺杂多孔碳复合材料的制备方法和应用
Zuo et al. A multifunctional catalytic interlayer for propelling solid–solid conversion kinetics of Li2S2 to Li2S in lithium–sulfur batteries
Muduli et al. Boron, nitrogen-doped porous carbon derived from biowaste orange peel as negative electrode material for lead-carbon hybrid ultracapacitors
Ma et al. Facile preparation of nitrogen-doped porous carbon for high performance symmetric supercapacitor
Praveena et al. Camphor sulphonic acid doped novel polycarbazole-gC 3 N 4 as an efficient electrode material for supercapacitor
Gilshtein et al. Superior environmentally friendly stretchable supercapacitor based on nitrogen-doped graphene/hydrogel and single-walled carbon nanotubes
Gao et al. Rationally fabricating nitrogen-doped carbon coated nanocrystalline Li2FeSiO4@ NC with excellent Li-ion battery performances
Yu et al. Porous activity of biomass-activated carbon enhanced by nitrogen-dopant towards high-performance lithium ion hybrid battery-supercapacitor
Yang et al. Different types of MnO 2 recovered from spent LiMn 2 O 4 batteries and their application in electrochemical capacitors
CN104124435B (zh) 多边缘MoS2纳米片/石墨烯电化学贮钠复合电极及制备方法
Sun et al. Physical and electrochemical characterization of CuO-doped activated carbon in ionic liquid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant