CN109001276B - 基于COFs材料的电化学传感器的构建和应用 - Google Patents

基于COFs材料的电化学传感器的构建和应用 Download PDF

Info

Publication number
CN109001276B
CN109001276B CN201811103805.3A CN201811103805A CN109001276B CN 109001276 B CN109001276 B CN 109001276B CN 201811103805 A CN201811103805 A CN 201811103805A CN 109001276 B CN109001276 B CN 109001276B
Authority
CN
China
Prior art keywords
cofs
electrode
mwcnts
nrs
cooh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811103805.3A
Other languages
English (en)
Other versions
CN109001276A (zh
Inventor
郭昊
贾雪艳
王雪娇
杨武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201811103805.3A priority Critical patent/CN109001276B/zh
Publication of CN109001276A publication Critical patent/CN109001276A/zh
Application granted granted Critical
Publication of CN109001276B publication Critical patent/CN109001276B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明公开了一种基于COFs材料的电化学传感器的构建,依次包括COOH‑MWCNTs@NRs混合液的制备、COOH‑MWCNTs@NRs/GCE电极的构建、AuNPs/COOH‑MWCNTs@NRs/GCE电极的构建及基于COFs材料的电化学传感器的构建。以基于COFs材料的电化学传感器为工作电极,铂电极为对电极,饱和甘汞电极为参比电极,通过差分脉冲伏安法同时对对乙酰氨基酚、多巴胺进行电化学检测,测得最大峰电流,依据最大峰电流与多巴胺浓度的线性关系计算得到对乙酰氨基酚、多巴胺的浓度。具有灵敏度高,检测范围宽,检测限低,稳定性好,抗干扰能力强等优点。

Description

基于COFs材料的电化学传感器的构建和应用
技术领域
本发明涉及一种基于COFs材料的电化学传感器的构建方法,主要作为电化学传感器用于检测对乙酰氨基酚(AMP)、多巴胺(DA),属于电化学传感器领域和分子检测领域。
背景技术
近年来,随着各种新型材料和检测仪器的不断发展,新材料,新检测方法,新理论的探究,电化学传感器也得到了迅速的发展。具有新性能的材料不断涌入电化学传感器的研究方向并进入实际应用。
共价有机骨架(COF)是一类结晶性的有机多孔材料,基于可逆化学反应将功能单元以共价键的形式连接成高度有序的二维层叠层结构或特定的三维拓扑结构。这种新型COFs材料以其高度有序的多孔结构和其可调节的多功能等特点,拥有大的比较面积。因此在质子传输,气体分离储存,吸附,催化,电化学储能和超级电容器等方面有着广泛的应用研究。目前将COFs材料应用于电化学传感器几乎没有的。COFs材料多应用于储能和超级电容器方向。
对乙酰氨基酚(AMP)是一种苯胺类药物,临床多用于发热,头痛等症状,但是滥用或者过量服用将引起肝损害。多巴胺(DA)作为哺乳动物神经系统中一种重要的神经传导递质,帕金森综合症,神经分裂症等一些重要疾病与机体内多巴胺的浓度密切相关。所以同时检测对乙酰氨基酚和多巴胺具有重要的意义。目前为止,检测对乙酰氨基酚和多巴胺的方法主要有高效液相色谱,固相色谱,电化学发光,荧光分光光度法等。这些检测方法耗时较长,价格昂贵,样品前处理繁琐,因此研究出快速,准确,灵敏并且同时测定对乙酰氨基酚和多巴胺的电化学传感器就变得尤为重要。
发明内容
本发明的目的是提供一种基于COFs材料的电化学传感器的构建方法;
本发明的另一目的是提供一种上述电化学传感器用于检测对乙酰氨基酚和多巴胺的具体应用。
一、基于COFs材料的电化学传感器的构建
基于COFs材料的电化学传感器的构建方法,包括下述步骤:
(1)COOH-MWCNTs @NRs混合液的制备:将羧基多壁碳纳米管分散在浓硫酸中,室温搅拌0.5~1h;加入H3PO4溶液继续搅拌8~15min;然后加入高锰酸钾,在55~65℃下搅拌1~2h;混合物冷却至室温后用含有过氧化氢的冰水将反应猝灭;反应混合物用 0.22 μm的滤膜进行抽滤,去离子水反复洗涤直至中性,真空干燥,得到混酸割裂的羧基多壁碳纳米管;最后将混酸割裂的羧基多壁碳纳米管、壳聚糖分散在乙酸水溶液中,搅拌1.5~2h,即得到混合液COOH-MWCNTs @NRs。
浓硫酸(H2SO4)的浓度为93~98wt%,浓硝酸(H3PO4)的浓度为65~85 wt%,浓硫酸与浓硝酸的体积比为9:1~8:1;高锰酸钾的加入量为羧基多壁碳纳米管质量的5~2倍;混酸割裂的羧基多壁碳纳米管与壳聚糖的质量比为1:1~1:3;混酸割裂的羧基多壁碳纳米管与壳聚糖分散于乙酸溶液中的量为0.5~1mg/mL;乙酸溶液的质量浓度为2~5%。
(2)修饰电极COOH-MWCNTs@NRs/GCE的制备:用微量移液枪移取混合液COOH-MWCNTs@NRs,滴涂于经抛光处理干净的玻碳电极表面,干燥,制得修饰电极COOH-MWCNTs @NRs/GCE。
(3)修饰电极AuNPs/COOH-MWCNTs@NRs/GCE的制备:将修饰电极COOH-MWCNTs@NRs/GCE置于含HAuCl4的0.1M H2SO4溶液中,采用恒电位沉积法,在-0.1V~-0.5V下电沉积110~150s,制得AuNPs/COOH-MWCNTs @NRs/GCE。
上述H2SO4溶液中,HAuCl4含量为2.43 mM~3.64mM。
(4)电极COFs/AuNPs/COOH-MWCNTs@NRs/GCE的制备:将修饰电极AuNPs/COOH-MWCNTs @NRs/GCE置于0.5~1mg/mL的COFs溶液中,采用循环伏安法进行扫描,在修饰电极AuNPs/COOH-MWCNTs @NRs/GCE上电聚合COFs材料,得到基于COFs材料的电化学传感器。
COFs溶液是将COFs材料溶于DMF溶液中形成的溶液;COFs材料可选择含硼类COFs材料、三嗪类COFs材料、亚胺类COFs材料。上述循环伏安法扫描条件:电压范围为-0.4V~2V,扫描圈数6~10圈,扫描速度20~25mv/s。
图1为不同修饰电极GCE(a)、COOH-MWCNTs@NRs/GCE(b)、AuNPs/COOH-MWCNTs @NRs/GCE(c)、COFs/AuNPs/COOH-MWCNTs@NRs/GCE(d)为不同修饰电极在1 mM Fe(CN)6 3-/4-和0.10 M KCl溶液中CV曲线的伏安图。可以看出,图a~d的氧化峰电流的响应信号逐渐增大,说明COOH-MWCNTs @NRs,AuNPs,COFs纳米复合材料可以有效地增强导电性,更有利于Fe(CN)6 3-/4-电子的转移。
二、基于COFs材料的电化学传感器检测多巴胺和对乙酰氨基酚
以修饰电极为工作电极,铂电极为对电极,饱和甘汞电极为参比电极,在优化的实验条件下在(将待测溶液的pH值调节为4.6~8.0),通过差分脉冲伏安法对对乙酰氨基酚和多巴胺进行电化学检测,依据峰电流和浓度的关系,绘制工作曲线。
图2为不同修饰电极GCE(a)、COOH-MWCNTs@NRs/GCE(b)、AuNPs/COOH-MWCNTs @NRs/GCE(c)、COFs/AuNPs/COOH-MWCNTs @NRs/GCE(d)对多巴胺(DA)和对乙酰氨基酚(AMP)同时检测的伏安响应图。由图2可知,当不同修饰电极浸入到DA和AMP混合溶液时,有两对明显的氧化还原峰出现并且两种物质的峰值被很好的分离,表明COFs/AuNPs/COOH-MWCNTs @NRs/GCE修饰电极对DA和AMP具有良好的电催化性能曲线(d)。因此,COFs/AuNPs/COOH-MWCNTs @NRs/GCE修饰电极可以用于对DA和AMP的同时测定。
改变对乙酰氨基酚的浓度,多巴胺的浓度为10μmol/L;绘制同时检测对乙酰氨基酚的差分脉冲伏安图。得出最大峰电流值与对乙酰氨基酚浓度的线性关系如下(图3A):
Ipa/μA =-1.0879C1/2-4.4381( n=3,R=0.9984)
C——对乙酰氨基酚浓度:单位:mg/mL
Ipa——最大峰电流:单位:μA
对乙酰氨基酚的浓度范围0.01~800μmol,检测限为1.18 nmol/L (S/N=3)。
改变多巴胺的浓度,对乙酰氨基酚的浓度为10μmol/L,绘制同时检测多巴胺的差分脉冲伏安图。得出最大峰电流值与多巴胺浓度的浓度的线性关系如下(图3B):
Ipa/μA =-0.9930C1/2-1.7880( n=3,R=0.9978)
C——多巴胺浓度:单位:mg/mL
Ipa——最大峰电流:单位:μA
多巴胺的浓度范围0.8~800μmol,检测限为42 nmol/L(S/N=3)。
稳定性测试:将电极COFs/AuNPs/COOH-MWCNTs @NRs/GCE在对乙酰氨基酚和多巴胺的混合溶液中扫描100圈,其响应信号分别保持原来的94%,93%,说明该传感器具有良好的稳定性(图4)。
抗干扰能力测试:在优化实验条件的前提下,100倍的干扰物质评估制备的电极对于乙酰氨基酚、多巴胺的选择性。结果制备的电极COFs/AuNPs/COOH-MWCNTs @NRs/GCE对葡萄糖,抗坏血酸,尿酸,叶酸和各种阴阳离子(Na+、Mg2+、k+、Zn2+、Ga2+、Cu+、NO2 -、SO4 2-、CO3 2-、Cl-等)具有强的抗干扰能力,说明修饰电极的选择性好(图5)。 附图说明
图1为不同修饰电极GCE(a)、COOH-MWCNTs@NRs/GCE(b)、AuNPs/COOH-MWCNTs @NRs/GCE(c)、COFs/AuNPs/COOH-MWCNTs@NRs/GCE(d)的伏安图。
图2为不同修饰电极GCE(a)、COOH-MWCNTs@NRs/GCE(b)、AuNPs/COOH-MWCNTs @NRs/GCE(c)、COFs/AuNPs/COOH-MWCNTs @NRs/GCE(d)对多巴胺(DA)和对乙酰氨基酚(AMP)同时检测的伏安响应图。
图3为电极COFs/AuNPs/COOH-MWCNTs @NRs/GCE对同时检测对乙酰氨基酚和多巴胺的线性关系图。
图4为电极COFs/AuNPs/COOH-MWCNTs @NRs/GCE对多巴胺和对乙酰氨基酚的稳定性伏安响应图。
图5为电极COFs/AuNPs/COOH-MWCNTs @NRs/GCE对葡萄糖,抗坏血酸,尿酸,叶酸和各种阴阳离子(Na+、Mg2+、k+、Zn2+、Ga2+、Cu+、NO2-、SO4 2-、CO3 2-、Cl-等)的抗干扰能力的示意图。
具体实施方式
下面通过具体实施例对本发明基于COFs材料的电化学传感器的制备,性能和应用作进一步说明。
1、基于COFs材料的电化学传感器的构建
(1)COOH-MWCNTs @NRs混合液的制备:称取55mg羧基多壁碳纳米管,分散在 36 mLH2SO4(98wt%)中室温下搅拌1h;然后再加入4 mL 的 H3PO4(85 wt%)继续搅拌 15 min,然后加入 150 mg 的高锰酸钾,在65℃下搅拌 2h;待混合物冷却至室温,加入150ml 含有过氧化氢(2mL 30%)的冰水将反应猝灭。反应混合物用 0.22 μm的滤膜进行抽滤,用大量的去离子水反复洗涤直至中性,放入真空干燥箱中在 60℃下干燥12h;将混酸处理后的割裂的羧基多壁碳纳米管5mg、壳聚糖5mg和乙酸溶液5mL(2%)混合,搅拌2h,即得到混合液COOH-MWCNTs @NRs;
(2)COOH-MWCNTs@NRs/GCE电极的构建:用微量移液枪移取适量混合液COOH-MWCNTs@NRs,滴涂于抛光处理干净的玻碳电极表面,干燥,制得COOH-MWCNTs @NRs/GCE;
(3)AuNPs/COOH-MWCNTs @NRs/GCE的构建:将COOH-MWCNTs@NRs/GCE修饰的电极置于含HAuCl4的0.1M H2SO4溶液中(HAuCl4含量为2.43 mM),采用电流-时间曲线的方法在-0.3V下电沉积130s,电沉积纳米金,制得AuNPs/COOH-MWCNTs @NRs/GCE;
(4)基于COFs材料的电化学传感器的构建:取COFs(2,4,6-三氯-1,3,5-三嗪)溶于DMF溶液中得到浓度1mg/mL的COFs溶液;将AuNPs/COOH-MWCNTs @NRs/GCE修饰电极置于COFs溶液,采用循环伏安法进行扫描(电压范围为-0.4V~2V,扫描速度25mv/s,扫描圈数6圈),在修饰电极AuNPs/COOH-MWCNTs @NRs/GCE上电聚合COFs,即得基于COFs材料的电化学传感器。
2、基于COFs材料的电化学传感器用于同时检测对乙酰氨基酚和多巴胺
(1)样品溶液的配制
分别配制1×10-3 mol/L,25mL的对乙酰氨基酚和多巴胺标准溶液,称取0.0038g对乙酰氨基酚和0.0047g多巴胺,用pH值为5.0的缓冲溶液溶解,定容于25mL的容量瓶。
测定对乙酰氨基酚的线性关系:固定多巴胺的浓度为10 μmol•L-1(1×10-3mol/L的多巴胺溶液为母液),不同浓度的对乙酰氨基酚:0.01, 0.2, 0.4,2, 5, 30, 80, 150,400, 800 µmol•L-1(1×10-3 mol/L的对乙酰氨基酚溶液为母液),均用pH值为5.0的缓冲溶液配置。
测定多巴胺的线性关系:固定对乙酰氨基酚的浓度为10 μmol•L-1(1×10-3 mol/L的对乙酰氨基酚溶液为母液),不同浓度的多巴胺:0.8,2,4,8,20,40,80,200,400,800 µmol•L-1(1×10-3 mol/L的多巴胺溶液为母液),均用pH值为5.0的缓冲溶液配置。
(2)通过差分脉冲伏安法进行电化学检测:以基于COFs材料的电化学传感器为工作电极,铂电极为对电极,饱和甘汞电极为参比电极,在将待测溶液的pH值调节为5.0,通过差分脉冲伏安法对对乙酰氨基酚进行电化学检测,测得最大氧化峰电流为32.33μA;依据最大峰电流与对乙酰氨基酚浓度的线性关系计算得到乙酰氨基酚的浓度和多巴胺的浓度分别为1.18 nmol/L,4.2nmol/L。

Claims (9)

1.一种用于检测多巴胺和对乙酰氨基酚的基于COFs材料的电化学传感器的构建方法,包括下述步骤:
(1)COOH-MWCNTs @NRs混合液的制备:将羧基多壁碳纳米管分散在浓硫酸中,室温搅拌0.5~1h;加入H3PO4溶液继续搅拌8~15 min ;然后加入高锰酸钾,在55~65℃下搅拌1~2h;混合物冷却至室温后用含有过氧化氢的冰水将反应猝灭;反应混合物用 0.22 μm的滤膜进行抽滤,去离子水反复洗涤直至中性,真空干燥,得到混酸割裂的羧基多壁碳纳米管;最后将混酸割裂的羧基多壁碳纳米管、壳聚糖分散在乙酸水溶液中,搅拌1.5~2h,即得到混合液COOH-MWCNTs @NRs;混酸割裂的羧基多壁碳纳米管与壳聚糖的质量比为1:1~1:3;
(2)COOH-MWCNTs@NRs/GCE电极的构建:用微量移液枪移取混合液COOH-MWCNTs@NRs,滴涂于经抛光处理干净的玻碳电极表面,干燥,制得修饰电极COOH-MWCNTs @NRs/GCE;
(3)AuNPs/COOH-MWCNTs@NRs/GCE电极的构建:将修饰电极COOH-MWCNTs@NRs/GCE置于含有HAuCl4的0.1M H2SO4溶液中,采用恒电位沉积法,在-0.1V~-0.5V下电沉积110~150s,制得AuNPs/COOH-MWCNTs @NRs/GCE;
(4)电极COFs/AuNPs/COOH-MWCNTs@NRs/GCE的制备:将修饰电极AuNPs/COOH-MWCNTs @NRs/GCE置于0.5~1mg/mL的COFs溶液中,采用循环伏安法进行扫描,在修饰电极AuNPs/COOH-MWCNTs @NRs/GCE上电聚合COFs材料,得到基于COFs材料的电化学传感器;其中的COFs溶液是将COFs材料溶于DMF溶液中形成的溶液;COFs材料为含硼类COFs材料、三嗪类COFs材料、亚胺类COFs材料。
2.如权利要求1所述用于检测多巴胺和对乙酰氨基酚的基于COFs材料的电化学传感器的构建方法,其特征在于:步骤(1)中,浓硫酸的浓度为93~98wt%,浓硝酸的浓度为65~85wt%,浓硫酸与浓硝酸的体积比为9:1~8:1。
3.如权利要求1所述用于检测多巴胺和对乙酰氨基酚的基于COFs材料的电化学传感器的构建方法,其特征在于:步骤(1)中,高锰酸钾的加入量为羧基多壁碳纳米管质量的2~5倍。
4.如权利要求1所述用于检测多巴胺和对乙酰氨基酚的基于COFs材料的电化学传感器的构建方法,其特征在于:步骤(1)中,混酸割裂的羧基多壁碳纳米管与壳聚糖分散于乙酸溶液中的量为0.5~1mg/mL;乙酸溶液的质量浓度为2~5%。
5.如权利要求1所述用于检测多巴胺和对乙酰氨基酚的基于COFs材料的电化学传感器的构建方法,其特征在于:步骤(3)的H2SO4溶液中,HAuCl4含量为2.43 mM~3.64mM。
6.如权利要求1所述用于检测多巴胺和对乙酰氨基酚的基于COFs材料的电化学传感器的构建方法,其特征在于:步骤(4)中循环伏安法的具体扫描条件为:电压范围为-0.8V~2.5V,扫描圈数6~10圈,扫描速度20~50mv/s。
7.如权利要求1所述方法构建的基于COFs材料的电化学传感器在检测多巴胺和对乙酰氨基酚含量中的应用。
8.如权利要求7所述基于COFs材料的电化学传感器的应用,其特征在于:将待测溶液的pH值调节为4.6~8.0;以基于COFs材料的电化学传感器为工作电极,铂电极为对电极,饱和甘汞电极为参比电极,通过差分脉冲伏安法对对乙酰氨基酚进行电化学检测,测得最大峰电流;依据最大峰电流与对乙酰氨基酚浓度的线性关系计算得到对乙酰氨基酚浓度;最大峰电流与对乙酰氨基酚浓度的线性关系为:
Ipa =-1.0879C1/2-4.4381;n=3,R=0.9984
C——对乙酰氨基酚浓度:单位:mg/mL
Ipa——最大峰电流:单位:μA。
9.如权利要求7所述基于COFs材料的电化学传感器的应用,其特征在于:将待测溶液的pH值调节为4.6~8.0;以基于COFs材料的电化学传感器为工作电极,铂电极为对电极,饱和甘汞电极为参比电极,通过差分脉冲伏安法对多巴胺进行电化学检测,测得最大峰电流,依据最大峰电流与多巴胺浓度的线性关系计算得到多巴胺;最大峰电流与多巴胺浓度的线性关系为:
Ipa =-0.9930C1/2-1.7880; n=3,R=0.9978
C——多巴胺浓度:单位:mg/mL
Ipa——最大峰电流:单位:μA。
CN201811103805.3A 2018-09-21 2018-09-21 基于COFs材料的电化学传感器的构建和应用 Expired - Fee Related CN109001276B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811103805.3A CN109001276B (zh) 2018-09-21 2018-09-21 基于COFs材料的电化学传感器的构建和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811103805.3A CN109001276B (zh) 2018-09-21 2018-09-21 基于COFs材料的电化学传感器的构建和应用

Publications (2)

Publication Number Publication Date
CN109001276A CN109001276A (zh) 2018-12-14
CN109001276B true CN109001276B (zh) 2021-03-02

Family

ID=64592684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811103805.3A Expired - Fee Related CN109001276B (zh) 2018-09-21 2018-09-21 基于COFs材料的电化学传感器的构建和应用

Country Status (1)

Country Link
CN (1) CN109001276B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110426434B (zh) * 2019-09-02 2021-12-17 西北师范大学 一种基于铜卟啉基共价有机框架材料电化学传感器的构建及其应用
CN112630274A (zh) * 2020-07-31 2021-04-09 华南理工大学 一种用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极及其制备方法与应用
CN112147197B (zh) * 2020-10-16 2022-06-28 山东理工大学 基于三维多孔共价有机骨架电化学传感器的制备方法
CN112858407B (zh) * 2021-01-19 2022-06-07 山东农业大学 一种检测环丙沙星的电化学传感器及其检测方法
CN114636738B (zh) * 2022-02-21 2023-01-06 华南理工大学 一种酶生物传感器及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104730124A (zh) * 2015-03-20 2015-06-24 福州大学 一种具有葡萄糖检测性能的碳纳米材料及其制备方法
CN105348303B (zh) * 2015-11-13 2017-07-21 中国科学院化学研究所 一种卟啉二维共价有机框架共轭聚合物、其制备方法和应用
CN107195480A (zh) * 2017-04-11 2017-09-22 国家纳米科学中心 一种柔性多孔碳材料及其制备方法与应用
CN107129583B (zh) * 2017-05-25 2019-11-15 西北师范大学 具有三嗪结构的多孔有机共价框架材料的合成方法
CN107064277B (zh) * 2017-06-23 2018-03-20 湖北民族学院 一种电化学传感器的制备方法及应用
CN107585752B (zh) * 2017-09-26 2019-06-21 东莞理工学院 一种二茂铁基碳纳米管及其制备方法
CN108362750B (zh) * 2018-03-07 2020-05-05 扬州大学 一种基于金纳米粒子掺杂共价有机骨架复合材料电极的制备方法

Also Published As

Publication number Publication date
CN109001276A (zh) 2018-12-14

Similar Documents

Publication Publication Date Title
CN109001276B (zh) 基于COFs材料的电化学传感器的构建和应用
Zhuang et al. Manganese dioxide nanosheet-decorated ionic liquid-functionalized graphene for electrochemical theophylline biosensing
Hira et al. Ultrasensitive detection of hydrogen peroxide and dopamine using copolymer-grafted metal-organic framework based electrochemical sensor
Sha et al. Biomass waste derived carbon nanoballs aggregation networks-based aerogels as electrode material for electrochemical sensing
Zhang et al. Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid with helical carbon nanotubes
Zhang et al. A simple strategy based on lanthanum–multiwalled carbon nanotube nanocomposites for simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite
Ensafi et al. Simultaneous determination of guanine and adenine in DNA based on NiFe2O4 magnetic nanoparticles decorated MWCNTs as a novel electrochemical sensor using adsorptive stripping voltammetry
Afkhami et al. Gold nanoparticles modified carbon paste electrode as an efficient electrochemical sensor for rapid and sensitive determination of cefixime in urine and pharmaceutical samples
Sheng et al. Electrodeposition of Prussian blue nanoparticles on polyaniline coated halloysite nanotubes for nonenzymatic hydrogen peroxide sensing
Hu et al. Electrospun rhodium nanoparticle-loaded carbon nanofibers for highly selective amperometric sensing of hydrazine
Ni et al. In-situ growth of Co 3 O 4 nanoparticles on mesoporous carbon nanofibers: a new nanocomposite for nonenzymatic amperometric sensing of H 2 O 2
Xu et al. Facile fabrication of nanoporous platinum by alloying–dealloying process and its application in glucose sensing
Lee et al. A coral-like macroporous gold–platinum hybrid 3D electrode for enzyme-free glucose detection
Dai et al. Voltammetric uric acid sensor based on a glassy carbon electrode modified with a nanocomposite consisting of polytetraphenylporphyrin, polypyrrole, and graphene oxide
CN105628764A (zh) 一种检测尿酸的电化学传感器及其制备和应用
Zaidi Graphene: a comprehensive review on its utilization in carbon paste electrodes for improved sensor performances
Zhang et al. Amperometric sensing of hydrogen peroxide using a glassy cabon electode modified with silver nanoparticles on poly (alizarin yellow R)
Şenocak et al. Crosslinker polycarbazole supported magnetite MOF@ CNT hybrid material for synergetic and selective voltammetric determination of adenine and guanine
Wang et al. Determination of adenine and guanine by a dopamine-melanin nanosphere–polyaniline nanocomposite modified glassy carbon electrode
Sun et al. Silica‐Templated Metal Organic Framework‐Derived Hierarchically Porous Cobalt Oxide in Nitrogen‐Doped Carbon Nanomaterials for Electrochemical Glucose Sensing
CN110487866A (zh) 一种多孔中空碳纳米球材料的制备及其检测亚硝酸盐的应用
Li et al. Sensitive and low-potential detection of NADH based on boronic acid functionalized multi-walled carbon nanotubes coupling with an electrocatalysis
Guo et al. Electrochemical behavior of MOF-801/MWCNT-COOH/AuNPs: A highly selective electrochemical sensor for determination of guanine and adenine
Ren et al. Nitrobenzene electrochemical sensor based on silver nanoparticle supported on poly-melamine functional multi-walled carbon nanotube
Zhao et al. Synthesis of a CuNP/chitosan/black phosphorus nanocomposite for non-enzymatic hydrogen peroxide sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210302

Termination date: 20210921

CF01 Termination of patent right due to non-payment of annual fee