CN112630274A - 一种用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极及其制备方法与应用 - Google Patents

一种用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极及其制备方法与应用 Download PDF

Info

Publication number
CN112630274A
CN112630274A CN202010761423.0A CN202010761423A CN112630274A CN 112630274 A CN112630274 A CN 112630274A CN 202010761423 A CN202010761423 A CN 202010761423A CN 112630274 A CN112630274 A CN 112630274A
Authority
CN
China
Prior art keywords
electrode
dopamine
nano
acetaminophen
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010761423.0A
Other languages
English (en)
Inventor
田雨
赵杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinlu Electronic Technology Co ltd
South China University of Technology SCUT
Original Assignee
Jinlu Electronic Technology Co ltd
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinlu Electronic Technology Co ltd, South China University of Technology SCUT filed Critical Jinlu Electronic Technology Co ltd
Priority to CN202010761423.0A priority Critical patent/CN112630274A/zh
Publication of CN112630274A publication Critical patent/CN112630274A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本发明提供了一种用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极及其制备方法与应用。该方法包括:将基底浸泡在银锡镀液电沉积,浸泡在盐酸溶液中,进行电化学去合金处理,制备得到的多孔银具有三维有序多孔结构。这种结构有助于电极和电解液充分接触,可以实现快速的电子转移和离子传输。纳米多孔银电极对对乙酰氨基酚和多巴胺具有良好的电化学响应性能,可应用于对乙酰氨基酚检测传感器和多巴胺检测传感器。电极对多巴胺的检测范围为0~180μM,灵敏度为790.8μA mM‑1cm‑2;电极对对乙酰氨基酚的检测范围为0~160μM,灵敏度为568μA mM‑1cm‑2

Description

一种用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极 及其制备方法与应用
技术领域
本发明属于生物化学传感器领域,具体涉及一种用于同时检测对乙酰氨基酚和多巴胺的纳米多孔银电极及其制备方法与应用。
背景技术
现今材料科学发展迅速,各种制备纳米多孔材料的方法被大量报道,应用纳米合成技术可以设计出各种纳米孔洞状金属结构,这种表面存在大量缺陷的金属孔洞结构拥有更多的活性位点,表现出更强的电子特性。
在过去的几十年里,纳米多孔金属的制备策略得到了广泛的研究,目前主要有模板合成法、表面活性剂介导合成法和脱合金法。纳米孔金属是纳米结构材料的子领域,由于纳米孔不仅增加了比表面积,而且为反应物分子提供了通道,因此在能源体系、催化、传感等领域具有广泛的应用前景。几乎所有纳米多孔金属的普遍高催化活性,与它们的块状同类物相比,都是台阶边缘和扭结等表面缺陷位点增加的结果。一般认为纳米尺度的金属/金属氧化物的性质不同于块体材料,是因为多孔纳米材料具有非常小的尺寸,大的表面积与体积比,更大程度的结晶度并且德拜长度(λD)表面缺陷部位的形成与孔隙度密切相关。
脱合金,也称为选择性溶解,是基于合金成分腐蚀性能的差异所衍生的方法。通常情况下,脱合金所需要的前驱体通常是由熔纺、溅射和电子束蒸发所制备。而上述方法需要使用复杂而昂贵的高真空设备,而电沉积由于其制备方法较温和、设备成本低、可调性高,成为一种更有吸引力的沉积合金的方法。并且其高可调性意味着只要适当改变沉积条件,沉积薄膜的组成、厚度和基底都是可调的。因此电沉积是制备纳米多孔金属合金前驱体的理想制备方法。
为了发展灵敏的多巴胺与对乙酰氨基酚同时检测传感器,已有大量文献报道了已经探索的一系列各种金属和金属氧化物、双金属纳米材料或者合金、以及金属/金属氧化物-碳纳米管复合材料也已提出。但是,目前此类传感器中使用的材料主要是贵金属(Pt,Au,Pd)或过渡金属(Fe,Co,Ni)及一些碳基材料。然而,由于诸多贵金属及其合金的成本太高并且大多数金属氧化物导电性差,选择性低或难制备等缺点,极大地限制了它们的应用。如Wenqin Yao,Hao Guo等人(Yao,W.Q.;Guo,H.;Liu,H.;Li,Q.;Xue,R.;Wu,N.;Li,L.;Wang,M.Y.;Yang,W.Simultaneous Electrochemical Determination of Acetaminophenand Dopamine Based on Metal-Organic Framework/Multiwalled Carbon Nanotubes-Au@Ag Nanocomposites.J.Electrochem.Soc.2019,166 (14),B1258-B1267)制备了碳纳米管与铜金属有机框架构建的新型传感器,对多巴胺和对乙酰氨基酚同时具有较好的传感特性,但其制备方法十分苛刻,处理条件比较繁琐,很难应用到实际生产之中。QianLi Zhang,JinXia Feng等人 (Zhang,Q.L.;Feng,J.X.;Wang,A.J.;Wei,J.;Lv,Z.Y.;Feng,J.J. Aglassy carbon electrode modified with porous gold nanosheets for simultaneousdetermination of dopamine and acetaminophen.Microchimica Acta 182(3-4),589-595)研制了金层修饰的玻碳电极,也同样对多巴胺及对乙酰氨基酚检测比较灵敏,但金层制备的高成本问题同样限制了此电极的规模性生产。因此,选用多孔银基传感电极材料检测多巴胺与对乙酰氨基酚的优势在于,一方面,银是电导率最高的金属,作为电化学传感器的电极材料具有先天的优势,另一方面银属于贵金属中储量较丰,价格最低的,仍具有贵金属通有的化学性质稳定的优点,是研发电极的理想材料,并且多孔银的制备过程相对简便,易于规模性生产。因此推测,多孔纳米结构的金属/金属氧化物或者金属氧化物复合材料,大大提高了灵敏度和/或者选择性,并且在电化学传感器的应用上也可能最大限度的减少毒性中间体的吸附。综上所述,通过电化学沉积和电化学去合金所制备的多孔银应是作为多巴胺及对乙酰氨基酚分子检测的理想电极材料。
发明内容
为了克服现有技术存在的上述不足,本发明的目的是提供一种用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极及其制备方法与应用。
本发明的目的是提供一种用于同时检测多巴胺和对乙酰氨基酚的纳米多孔银电极。
本发明提供的纳米多孔银电极包括叉指电极以及纳米多孔银物修饰层。
本发明的所述纳米多孔银物具有三维连续多孔结构,这种结构有助于电极和电解液充分接触,可以实现快速的电子转移和离子传输。
本发明的另一目的是提供一种纳米多孔银电极的制备方法。
本发明的另一目的是提供一种纳米多孔银电极的应用。
所述纳米多孔银电极对对乙酰氨基酚和多巴胺均具有良好的电化学响应性能,可应用对乙酰氨基酚和多巴胺的同时检测传感器。
本发明的目的至少通过如下技术方案之一实现。
本发明提供的一种用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极的制备方法,包括如下步骤:
(1)前驱体银锡合金的制备:将基底(优选叉指电极)的金表面浸泡在银锡镀液中进行电沉积,得到银锡镀层,然后置入去离子水中清洗,烘干,得到前驱体;
(2)纳米多孔银电极的制备:将步骤(1)所述前驱体浸泡在盐酸溶液中,采用电化学去合金的方法施加恒定电压进行电化学去合金处理,去除所述银锡合金中的锡后,得到所述用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极(三维连续纳米多孔银电极)。
优选地,步骤(1)中,基底使用前,对其进行预先清洗以及干燥,所述清洗包括依次用丙酮、去离子水清洗。
进一步地,步骤(1)所述银锡镀液中,锡元素的含量为9-13g/L,银元素的含量为27-33g/L。
优选地,在步骤(1)所述银锡镀液中,锡元素的含量为11g/L。
进一步优选地,步骤(1)所述银锡镀液为商用银锡镀液,购自日本大和化成株式会社,型号为DAIN SISTA ver 2。
进一步地,步骤(1)所述基底为叉指电极。
进一步地,步骤(1)所述电沉积的电流密度为2-4ASD。
优选地,步骤(1)所述电沉积的电流密度为2ASD。
进一步地,步骤(1)所述电沉积的时间为8-12min。
优选地,步骤(1)所述电沉积的时间为10min。
进一步地,步骤(2)所述盐酸溶液的浓度为1-1.4mol/L。
优选地,步骤(2)所述盐酸溶液的浓度为1.2mol/L。
进一步地,步骤(2)所述电化学去合金处理的电压为-0.025~0.025V。
优选地,步骤(2)所述电化学去合金处理的电压为0.025V。
进一步地,步骤(2)所述电化学去合金处理的时间为10-20min。
优选地,步骤(2)所述电化学去合金时间为15min。
本发明提供一种由上述的制备方法制得的用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极,包括电极及纳米多孔银物修饰层;所述纳米多孔银物修饰层具有三维连续多孔结构,银纯度为100%。该电极对乙酰氨基酚和多巴胺具有电化学响应性能。
本发明提供的的用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极能够应用在制备乙酰氨基酚检测传感器和多巴胺检测传感器中。该电极对乙酰氨基酚和多巴胺的同时检测具有良好的电化学响应性能。
为了得到合适性能的三维连续纳米多孔银,需要对电沉积的电镀液进行大量的实验筛选,镀液中主盐的浓度、电沉积的工艺条件均能影响镀层的性质。如果镀液中主盐的比例过低,则难以形成连续的具有较高孔隙率的有序多孔形貌,若其比例过高,形成多孔框架的组分会因为含量过低而难以支撑三维多孔结构,从而导致材料结合力太差。因此,所述步骤(2)中,所述电沉积溶液中锡元素含量为11g/L。
电沉积银锡合金镀层时,电流密度过高或过低均会导致镀层表面粗糙且不均匀,电流密度减小导致多孔结构的孔隙小而少,电流密度过高则不利于维持稳定有序结构。
本发明制备的纳米多孔银电极对多巴胺和对乙酰氨基酚同时检测的检测范围较宽且灵敏度较高高。
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明采用简易可行的方法制备了三维连续纳米多孔银结构,大幅提升了电极性能,制备成本较低,无需特别环境和大型仪器;在叉指电极上修饰多孔银层,并用于对乙酰氨基酚和多巴胺的检测,电极总体具有良好的重现性和选择性,检出限较低;
(2)本发明的电极用于对乙酰氨基酚时,拥有较宽的检测范围,较高的灵敏度、优异的选择性;
(3)本发明的电极用于多巴胺时,拥有较宽的检测范围,较高的灵敏度、良好的抗干扰性能。
附图说明
图1a和图1b分别是本发明制备的电化学沉积银锡合金镀层不同放大倍数下的扫描电镜图;
图2a和图2b分别是本发明实施例1制备的三维纳米多孔银电极不同放大倍数下的扫描电镜图;
图3a和图3b分别是本发明实施例2制备的三维纳米多孔银电极不同放大倍数下的扫描电镜图;
图4a和图4b分别是本发明实施例3制备的三维纳米多孔银电极不同放大倍数下的扫描电镜图;
图5是本发明制备的纳米多孔银电极在0.1M PBS溶液(pH=7.0)中加入多巴胺与对乙酰氨基酚前后的差分脉冲扫描曲线图;
图6是本发明制备的纳米多孔银电极对不同浓度多巴胺溶液的循环伏安扫描曲线图;
图7是本发明制备的纳米多孔银电极对不同浓度对乙酰氨基酚溶液的循环伏安扫描曲线图;
图8a和图8b分别是本发明制备的纳米多孔银电极对不同浓度多巴胺溶液的差分脉冲伏安扫描曲线图;
图9a和图9b是本发明制备的纳米多孔银电极对不同浓度对乙酰氨基酚溶液的差分脉冲伏安扫描曲线图;
图10和图11是本发明制备的纳米多孔银电极在0.1M PBS溶液(pH=7) 中同时加入不同浓度多巴胺和对乙酰氨基酚的差分脉冲伏安扫描曲线图;
图12是本发明制备的纳米多孔银电极对不同浓度对多巴胺溶液的响应电流密度与其对应浓度的线性拟合图;
图13是本发明制备的纳米多孔银电极对不同浓度对乙酰氨基酚溶液的响应电流密度与其对应浓度的线性拟合图。
具体实施方式
以下结合实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。所用试剂或仪器未注明生产厂商者,视为可以通过市售购买得到的常规产品。
以下银锡镀液为商用银锡镀液,购自日本大和化成株式会社,型号为DAIN SISTAver 2。
实施例1
三维连续纳米多孔银电极的制备:
S1、银锡合金前驱体的制备:将叉指电极在丙酮中超声震荡30min除油,用去离子水将除油后的基底清洗干净,放置于恒温60℃的烘箱内烘干。
将叉指电极的待镀区域作为工作电极,铂片为对电极,在商用的银锡镀液中进行电沉积,电沉积的电流密度为2ASD,时间为10min,将电极在60℃的烘箱中烘干即得到银锡合金的前驱体。
S2、三维连续纳米多孔银电极的制备:对之前步骤制备的银锡合金的前驱体进行电化学去合金,银锡合金的前驱体作为工作电极,铂片为对电极,银氯化银为参比电极,电压为0.025V,电化学去合金时间为10min,溶液为1.2M 稀盐酸溶液。
待电化学去合金结束后将电极取出并用去离子水冲洗干净后于烘箱中烘干后得三维连续纳米多孔银电极。制备所得电极SEM电镜扫描结构如图2a和图2b 所示。
实施例2
三维连续纳米多孔银电极的制备:
S1、银锡合金前驱体的制备:将叉指电极在丙酮中超声震荡30min除油,用去离子水将除油后的基底清洗干净,放置于恒温60℃的烘箱内烘干。
将叉指电极的待镀区域作为工作电极,铂片为对电极,在商用的银锡镀液中进行电沉积,电沉积的电流密度为4ASD,时间为5min,将电极在60℃的烘箱中烘干即得到银锡合金的前驱体。
S2、三维连续纳米多孔银电极的制备:对之前步骤制备的银锡合金进行电化学去合金,银锡合金作为工作电极,铂片为对电极,银氯化银为参比电极,电压为0.025V,电化学去合金时间为10min,溶液为1.2M稀盐酸溶液。
待电化学去合金结束后将电极取出并用去离子水冲洗干净后于烘箱中烘干后得三维连续纳米多孔银电极。制备所得电极SEM电镜扫描结构如图3a和图3b 所示。
实施例3
三维连续纳米多孔银电极的制备:
S1、银锡合金前驱体的制备:将叉指电极在丙酮中超声震荡30min除油,用去离子水将除油后的基底清洗干净,放置于恒温60℃的烘箱内烘干。
将叉指电极的待镀区域作为工作电极,铂片为对电极,在商用的银锡镀液中进行电沉积,电沉积的电流密度为3ASD,时间为8min,将电极在60℃的烘箱中烘干即得到银锡合金的前驱体。
S2、三维连续纳米多孔银电极的制备:对之前步骤制备的银锡合金的前驱体进行电化学去合金,银锡合金的前驱体作为工作电极,铂片为对电极,银氯化银为参比电极,电压为0.025V,电化学去合金时间为10min,溶液为1.2M 稀盐酸溶液。
待电化学去合金结束后将电极取出并用去离子水冲洗干净后于烘箱中烘干后得三维连续纳米多孔银电极。制备所得电极SEM电镜扫描结构如图4a和图4b 所示。
如附图1a和图1b所示,对本发明制备的银锡镀层进行SEM检测后得到扫描电镜图。其中图1a是银锡镀层的低倍扫描电镜图;图1b为银锡镀层的高倍扫描电镜图,可以观察到在优选条件下镀层表面较为均匀平整,有利于后续电去合金形成三维连续结构。
如附图2a和图2b、图3a和图3b、图4a和图4b所示,是本发明根据不同实施例条件所制备的三维连续纳米多孔银电极的不同倍数的扫描电镜图。其中实施例1为最佳实验条件。从图2a和图2b中可以观察到均匀有序的多孔结构,其中金属银孔径约为100nm左右。这样的多级孔结构有利于电极和电解液的充分接触,加快离子转移,而连接孔洞的“韧带”有利于电子传输,保证了在充放电过程中电子的快速转移。
采用差分脉冲伏安扫描、循环伏安曲线等方法对本发明制备的多孔银电极分别进行对乙酰氨基酚和多巴胺的响应性能测试。
如附图5所示,将本发明实施例1制备的纳米多孔银电极置入0.1M PBS 溶液(pH=7.0)中并进行差分脉冲伏安法扫描。从图5中可看出,当加入120 μM多巴胺(DA)和对乙酰氨基酚(Ace)后,纳米多孔银电极的阳极电流从 0.08V左右开始增大,并在0.1V和0.4V处剧增,在0.15V和0.48V左右出现氧化峰,而且电流增加值ΔI分别达到160μA cm-2以及140μAcm-2,由此可见,纳米多孔银的电化学响应显著,同时证明了本发明制备的多孔结构可以极大提高电极对多巴胺及对乙酰氨基酚的催化性能。
如附图6所示,将本发明实施例1制备的纳米多孔银电极置入不同浓度多巴胺(DA)溶液并进行循环伏安扫描。多巴胺溶液范围为0-1000μM。从图中可看出,随着多巴胺浓度的增加,多孔银电极的阳极电流递增,说明本发明制备的多孔银电极对多巴胺具有良好电化学响应,可用于多巴胺的电化学检测。
如附图7所示,将本发明实施例1制备的纳米多孔银电极置入不同浓度对乙酰氨基酚(Ace)溶液并进行循环伏安扫描。对乙酰氨基酚溶液范围为0-1000 μM。从图中可看出,随着对乙酰氨基酚浓度的增加,多孔银电极的阳极电流递增,说明本发明制备的多孔银电极对对乙酰氨基酚具有良好电化学响应,可用于对乙酰氨基酚的电化学检测。
如图8a和图8b所示,将本发明实施例1制备的纳米多孔银电极置入0.1M PBS缓冲溶液(pH=7.0)中,在持续搅拌条件下每次滴加一定浓度梯度的多巴胺(DA)溶液,选定测试电位范围为0-0.4V,进行差分脉冲伏安法检测。从图中可看出,响应电流随着浓度的多巴胺增加呈阶梯状递增。因此可说明本发明制备的多孔银电极可检测特定低浓度的多巴胺。
如附图9a和图9b所示,将本发明实施例1制备的纳米多孔银电极置入0.1 M PBS缓冲溶液(pH=7.0)中,在持续搅拌条件下每次滴加一定浓度梯度的对乙酰氨基酚(Ace)溶液,选定测试电位范围为0-0.7V,进行差分脉冲伏安法检测。从图中可看出,响应电流随着浓度的对乙酰氨基酚增加呈阶梯状递增。因此可说明本发明制备的多孔银电极可检测特定低浓度的对乙酰氨基酚。
如附图10和附图11所示,将本发明实施例1制备的纳米多孔银电极置入 0.1M PBS缓冲溶液(pH=7.0)中,在持续搅拌条件下每次滴加一定浓度梯度的多巴胺(DA)溶液和对乙酰氨基酚(Ace)溶液,选定测试电位范围为0-0.7V,进行差分脉冲伏安法检测。从图中可看出,随着多巴胺和对乙酰氨基酚浓度的阶梯型增加,响应电流也随着相应增加呈阶梯状递增。因此可说明本发明制备的多孔银电极可同时检测特定低浓度的多巴胺和对乙酰氨基酚。
如附图12所示,将本发明实施例1制备的纳米多孔银电极对不同浓度多巴胺溶液的响应电流密度数据与多巴胺浓度进行线性拟合。从图中可看出,当多巴胺浓度范围为0-180μM时,多孔银电极对多巴胺有良好的线性响应,线性拟合方程相关系数为0.9973,可计算出电极检测多巴胺的灵敏度为790.8μ A mM-1cm-2
如附图13所示,将本发明实施例1制备的纳米多孔银电极对不同浓度对乙酰氨基酚溶液的响应电流密度数据与对乙酰氨基酚浓度进行线性拟合。从图中可看出,当对乙酰氨基酚浓度范围为0-160μM时,多孔银电极对对乙酰氨基酚有良好的线性响应,线性拟合方程相关系数为0.9948,可计算出电极检测对乙酰氨基酚的灵敏度为568μA mM-1cm-2
以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。

Claims (10)

1.一种用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极的制备方法,其特征在于,包括如下步骤:
(1)前驱体银锡合金的制备:将基底浸泡在银锡镀液中进行电沉积,得到银锡镀层,然后清洗,烘干,得到前驱体;
(2)将步骤(1)所述前驱体浸泡在盐酸溶液中,施加恒定电压进行电化学去合金处理,得到所述用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极。
2.根据权利要求1所述的用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极的制备方法,其特征在于,步骤(1)所述银锡镀液中,锡元素的含量为9-13g/L,银元素的含量为27-33g/L。
3.根据权利要求1所述的用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极的制备方法,其特征在于,步骤(1)所述基底为叉指电极。
4.根据权利要求1所述的用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极的制备方法,其特征在于,步骤(1)所述电沉积的电流密度为2-4ASD。
5.根据权利要求1所述的用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极的制备方法,其特征在于,步骤(1)所述电沉积的时间为8-12min。
6.根据权利要求1所述的用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极的制备方法,其特征在于,步骤(2)所述盐酸溶液的浓度为1-1.4mol/L。
7.根据权利要求1所述的用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极的制备方法,其特征在于,步骤(2)所述电化学去合金处理的电压为-0.025~0.025V。
8.根据权利要求1所述的用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极的制备方法,其特征在于,步骤(2)所述电化学去合金处理的时间为10-20min。
9.一种由权利要求1-8任一项所述的制备方法制得的用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极,其特征在于,包括电极及纳米多孔银物修饰层;所述纳米多孔银物修饰层具有三维连续多孔结构。
10.权利要求9所述的用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极在制备乙酰氨基酚检测传感器和多巴胺检测传感器中的应用。
CN202010761423.0A 2020-07-31 2020-07-31 一种用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极及其制备方法与应用 Pending CN112630274A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010761423.0A CN112630274A (zh) 2020-07-31 2020-07-31 一种用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010761423.0A CN112630274A (zh) 2020-07-31 2020-07-31 一种用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN112630274A true CN112630274A (zh) 2021-04-09

Family

ID=75300027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010761423.0A Pending CN112630274A (zh) 2020-07-31 2020-07-31 一种用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN112630274A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115007861A (zh) * 2022-06-10 2022-09-06 山东大学 一种制备多孔锡的方法及其在钠离子电池中的应用
CN114137051B (zh) * 2021-11-26 2023-12-01 复旦大学 用于多巴胺特异性检测的异质结纳米通道及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064277A (zh) * 2017-06-23 2017-08-18 湖北民族学院 一种电化学传感器的制备方法及应用
CN107312131A (zh) * 2017-07-12 2017-11-03 辽宁大学 含有苯硼酸的聚合离子液体修饰的聚吡咯/氧化石墨烯复合材料及其制备方法和应用
CN108802140A (zh) * 2018-08-13 2018-11-13 广州钰芯传感科技有限公司 一种多孔金修饰的叉指电极及其制备方法和应用
CN109001276A (zh) * 2018-09-21 2018-12-14 西北师范大学 基于COFs材料的电化学传感器的构建和应用
CN110261454A (zh) * 2019-05-28 2019-09-20 广州钰芯传感科技有限公司 一种尿液检测多巴胺的纳米多孔金无酶传感电极及其制备方法与应用
CN110530944A (zh) * 2019-08-19 2019-12-03 广州钰芯传感科技有限公司 一种基于铜基纳米复合结构的便携式微型葡萄糖无酶传感电极及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064277A (zh) * 2017-06-23 2017-08-18 湖北民族学院 一种电化学传感器的制备方法及应用
CN107312131A (zh) * 2017-07-12 2017-11-03 辽宁大学 含有苯硼酸的聚合离子液体修饰的聚吡咯/氧化石墨烯复合材料及其制备方法和应用
CN108802140A (zh) * 2018-08-13 2018-11-13 广州钰芯传感科技有限公司 一种多孔金修饰的叉指电极及其制备方法和应用
CN109001276A (zh) * 2018-09-21 2018-12-14 西北师范大学 基于COFs材料的电化学传感器的构建和应用
CN110261454A (zh) * 2019-05-28 2019-09-20 广州钰芯传感科技有限公司 一种尿液检测多巴胺的纳米多孔金无酶传感电极及其制备方法与应用
CN110530944A (zh) * 2019-08-19 2019-12-03 广州钰芯传感科技有限公司 一种基于铜基纳米复合结构的便携式微型葡萄糖无酶传感电极及其制备方法与应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
S. DHANUSH ET AL: "Synthesis and electrochemical properties of silver dendrites and silver dendrites/rGO composite for applications in paracetamol sensing", 《MATERIALS RESEARCH BULLETIN》 *
S. MEENAKSHI ET AL: "Sunlight assisted synthesis of silver nanoparticles in zeolite matrix and study of its application on electrochemical detection of dopamine and uric acid in urine samples", 《MATERIALS SCIENCE AND ENGINEERING C》 *
V. SREENIVASULU ET AL: "Biosynthesis of Silver Nanoparticles using Mimosa Pudica Plant root extract: Characterization, Antibacterial Activity and Electrochemical Detection of Dopamine", 《INT. J. ELECTROCHEM. SCI.》 *
XILAI ZOU ET AL: "A novel dealloying strategy for fabricating nanoporous silver as an electrocatalyst for hydrogen peroxide detection", 《APPLIED SURFACE SCIENCE》 *
YULIN YANG ET AL: "Asynchronous Evolution of Nanoporous Silver on Dual-Phase Ag–Sn Alloys by Potentiostatic Dealloying in Hydrochloric Acid Solution", 《NANOMATERIALS》 *
张亚 等: "基于纳米银-石墨烯复合材料的增强效应电化学测定对乙酰氨基酚", 《分析测试学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137051B (zh) * 2021-11-26 2023-12-01 复旦大学 用于多巴胺特异性检测的异质结纳米通道及其制备方法
CN115007861A (zh) * 2022-06-10 2022-09-06 山东大学 一种制备多孔锡的方法及其在钠离子电池中的应用
CN115007861B (zh) * 2022-06-10 2023-10-17 山东大学 一种制备多孔锡的方法及其在钠离子电池中的应用

Similar Documents

Publication Publication Date Title
Zhu et al. Disposable and portable gold nanoparticles modified-laser-scribed graphene sensing strips for electrochemical, non-enzymatic detection of glucose
Hui et al. Nickel nanoparticles modified conducting polymer composite of reduced graphene oxide doped poly (3, 4-ethylenedioxythiophene) for enhanced nonenzymatic glucose sensing
Subramanian et al. Preparation of reduced graphene oxide–Ni (OH) 2 composites by electrophoretic deposition: application for non-enzymatic glucose sensing
Yu et al. Ni nanoparticles decorated titania nanotube arrays as efficient nonenzymatic glucose sensor
Ding et al. Electrospun Co3O4 nanofibers for sensitive and selective glucose detection
Suneesh et al. Co–Cu alloy nanoparticles decorated TiO2 nanotube arrays for highly sensitive and selective nonenzymatic sensing of glucose
Ko et al. A high performance non-enzymatic glucose sensor based on nickel hydroxide modified nitrogen-incorporated nanodiamonds
Guo et al. An ultrasensitive non-enzymatic amperometric glucose sensor based on a Cu-coated nanoporous gold film involving co-mediating
Ibupoto et al. Glycine-assisted synthesis of NiO hollow cage-like nanostructures for sensitive non-enzymatic glucose sensing
Jia et al. Electrodeposition of hydroxyapatite on nickel foam and further modification with conductive polyaniline for non-enzymatic glucose sensing
Huang et al. A novel dual-signal molecularly imprinted electrochemical sensor based on NiFe prussian blue analogue and SnS2 for detection of p-Hydroxyacetophenone
Zhou et al. Electrodeposition of platinum on poly (glutamic acid) modified glassy carbon electrode for non-enzymatic amperometric glucose detection
Mao et al. Depositing reduced graphene oxide on ZnO nanorods to improve the performance of enzymatic glucose sensors
Noorbakhsh et al. Amperometric detection of hydrogen peroxide at nano-nickel oxide/thionine and celestine blue nanocomposite-modified glassy carbon electrodes
WO2019015359A1 (zh) 金膜电极、电化学生物传感器电极、传感器及其制备方法
Suneesh et al. Tantalum oxide honeycomb architectures for the development of a non-enzymatic glucose sensor with wide detection range
Purohit et al. Electrodeposition of metallic nanostructures for biosensing applications in health care
Karuppusamy et al. Highly conductive nano-silver textile for sensing hydrogen peroxide
Naderi et al. Metal-organic framework-assisted Co3O4/CuO@ CoMnP with core-shell nanostructured architecture on Cu fibers for fabrication of flexible wire-typed enzyme-free micro-sensors
Jiang et al. Nanoporous gold microelectrode prepared from potential modulated electrochemical alloying–dealloying in ionic liquid
Zhu et al. Enzymeless electrochemical determination of hydrogen peroxide at a heteropolyanion-based composite film electrode
Zheng et al. Ni-P nanostructures on flexible paper for morphology effect of nonenzymatic electrocatalysis for urea
He et al. CVD graphene incorporating polymerized l-cysteine as an electrochemical sensing platform for simultaneous determination of dopamine and ascorbic acid
Shi et al. Bimetallic nano-structured glucose sensing electrode composed of copper atoms deposited on gold nanoparticles
CN112630274A (zh) 一种用于同时检测对乙酰氨基酚、多巴胺的纳米多孔银电极及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210409

RJ01 Rejection of invention patent application after publication