CN108981606B - 一种快照式全场白光干涉显微测量方法及其装置 - Google Patents

一种快照式全场白光干涉显微测量方法及其装置 Download PDF

Info

Publication number
CN108981606B
CN108981606B CN201811082777.1A CN201811082777A CN108981606B CN 108981606 B CN108981606 B CN 108981606B CN 201811082777 A CN201811082777 A CN 201811082777A CN 108981606 B CN108981606 B CN 108981606B
Authority
CN
China
Prior art keywords
white light
spectrum
axial
type
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811082777.1A
Other languages
English (en)
Other versions
CN108981606A (zh
Inventor
马锁冬
王钦华
曾春梅
许峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201811082777.1A priority Critical patent/CN108981606B/zh
Publication of CN108981606A publication Critical patent/CN108981606A/zh
Application granted granted Critical
Publication of CN108981606B publication Critical patent/CN108981606B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/04Measuring microscopes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种快照式全场白光干涉显微测量方法及其装置。它是在白光干涉显微测量法和快照式光谱成像探测术的基础上,利用复色平行光经过轴向色散型干涉光学系统后沿轴向依次色散并一一对应地聚焦于不同的轴向深度位置、以及光谱域上的白光干涉信号强度随波长变化且在轴向色散的某一单色光焦面位置附近达到极大值,建立了测量所需的“白光干涉信号—光谱—深度”三者之间的唯一性编码,仅需多帧或单帧快照式色散光谱编码白光干涉图像,即可实现对被测元件三维形貌分布的无机械式扫描、全场非接触、快速(动态甚至瞬态)高精度测量。

Description

一种快照式全场白光干涉显微测量方法及其装置
技术领域
本发明涉及一种微结构形貌的测量技术,特别是一种快照式全场白光干涉显微测量方法及其装置,属于先进制造与检测技术领域。
背景技术
在工业生产、国防军事、医疗卫生、生活服务等领域,诸如微机电系统(Microelectromechanical systems,MEMS)、衍射光学元件(Diffractive opticalelement,DOE)等有着广泛的应用。这些元件表面存在的复杂微观结构,与元件的残余应力、使用寿命、损伤阈值等内在特性密切相关。对其微结构形貌的超精密检测能够为元件相关性能的预评估与控制提供指导和帮助。因而,针对相关检测系统与技术的研究愈发受到人们的重视。
在众多的检测技术中,光干涉显微测量法因其具有全场非接触、高精度等优点,成为一种强有力的微观形貌精密检测工具。传统方案多以单色性较好的激光作为光源,结合移相干涉术,轴向面形测量精度可达亚纳米量级。然而,单波长激光的使用在一定程度上限制了其在表面具有复杂微结构(如阶梯状)的元件三维形貌检测方面的应用。虽然具有唯一零光程差位置的垂直扫描白光干涉显微术可以有效克服上述问题,但其检测需要借助高精度的微位移器(如压电陶瓷堆,Piezoelectric transducer,PZT)沿轴向作精细扫描实现。从而导致整个测量过程较长,极易受外界气流扰动、震动等的影响,仅适用于静态物面的检测,且系统的结构也较为复杂、检测成本较高。
为了克服上述问题,德国斯图加特大学应用光学中心的W. Lyda等人提出了一种彩色共聚焦光谱干涉仪(CCSI)。该测量方法结合了共聚焦和白光干涉各自在横向和轴向分辨率上的优势,将被测微结构的深度信息通过复色光的轴向色散和光干涉调制到波数域的白光干涉信号中,无需做轴向垂直扫描,即可实现与垂直扫描白光干涉显微术相近的轴向测量精度。然而由于传统狭缝型光谱仪的使用,CCSI的单次横向测量范围有限。虽然该中心的M. Gronle等人提出的横向色散光谱编码干涉仪(LCDSEI),通过横向线测量提升了检测效率,但是全场、单帧测量依旧困难。
如何实现对表面具有复杂微结构的元件三维形貌分布的无机械式扫描、全场非接触、快速(动态甚至瞬态)高精度测量,正逐步成为本领域的研究热点与趋势。
发明内容
本发明针对现有技术存在的不足,提供一种无需机械扫描部件,能够实现对微结构,特别是面形变化复杂、非连续的微结构元件表面微观形貌的全场非接触、快速(动态甚至瞬态)高精度测量的方法及其装置。
为实现上述发明目的,本发明采用的技术解决方案是提供一种快照式全场白光干涉显微测量装置,它包括宽光谱光源、准直扩束匀光镜头、分束器、轴向色散型干涉显微物镜、载物台、成像耦合镜头、快照式光谱成像探测器、数据传输控制线、计算机;
被测元件置于载物台上,被测元件与宽光谱光源各自的位置在测量所用光谱范围的中心波长下满足物像共轭关系;准直扩束匀光镜头、分束器、轴向色散型干涉显微物镜、成像耦合镜头和快照式光谱成像探测器之间呈共光路结构;
测量装置中各元件的具体结构为:宽光谱光源位于准直扩束匀光镜头的前焦面位置,宽光谱光源发出的复色光经准直扩束匀光镜头成为平行光均匀入射至分束器表面;所述分束器将平行、均匀的复色光反射进入轴向色散型干涉显微物镜,分别输出一路沿轴向色散并聚焦至不同深度位置的测量光和一路无轴向色散的复色参考光;轴向色散的测量光由被测元件反射返回,与复色参考光经轴向色散型干涉显微物镜混合形成干涉信号,再依次通过分束器和成像耦合镜头传输至快照式光谱成像探测器,快照式光谱成像探测器将采集到的图像数据经数据传输控制线传输至计算机。
本发明所述的快照式光谱成像探测器为多孔径光谱滤波相机、可调谐阶梯光栅成像仪、光谱分辨探测器阵列、计算层析成像光谱仪、快照式编码孔径光谱成像仪、堆栈滤波光谱分解仪、重组光纤成像光谱仪、透镜阵列积分场成像光谱仪、图像折叠成像光谱仪、图像映射光谱仪、多光谱萨格纳克光谱仪、快照式高光谱傅里叶变换成像仪中的一种。
所述的轴向色散型干涉显微物镜为基于轴向衍射光学元件的Michelson型、Mirau型、Linik型干涉显微物镜中的一种。
所述的宽光谱光源为卤素灯、白光LED、超连续谱激光器中的一种。
本发明技术方案还包括一种快照式全场白光干涉显微测量方法,步骤如下:
第一步,“光谱—深度”对应关系的预标定:
测量前,将轴向色散型干涉显微物镜中的参考光路遮挡,使其仅工作在轴向色散模式;宽光谱光源发出的复色光经准直扩束匀光镜头、分束器和轴向色散型干涉显微物镜照射至载物台上的标准平面反射镜;标准平面反射镜在微位移器的带动下,沿显微物镜的光轴方向做轴向扫描,将轴向色散的光信号反射进入显微物镜和分束器,再由光谱仪接收、测量得到各单色光信号的波长值,记录扫描过程中各单色光信号达到峰值时微位移器的轴向移动位置,得到一组“光谱—深度”数据;利用多项式或样条拟合方法得到“光谱—深度”对应关系曲线,完成系统预标定;
第二步,快照式色散光谱编码白光干涉图像的获取:
测量时,去除轴向色散型干涉显微物镜中参考光路的遮挡,使其同时工作在轴向色散和干涉模式;将被测元件置于载物台上,沿轴向和径向调整载物台的位置,使被测元件与宽光谱光源各自的位置在测量所用光谱范围的中心波长下满足物像共轭关系;宽光谱光源发出的复色光经准直扩束匀光镜头、分束器和轴向色散型干涉显微物镜形成一路沿轴向色散并聚焦至不同深度位置的测量光和一路无轴向色散的复色参考光;轴向色散的测量光由被测元件反射返回,并与复色参考光经轴向色散型干涉显微物镜混合形成光谱域上的白光干涉信号数据立方体;快照式光谱成像探测器采集与光谱域上的白光干涉信号数据立方体相对应的多帧或单帧快照式色散光谱编码白光干涉图像,并传输至计算机存储和处理;
第三步,快照式色散光谱编码白光干涉图像的解调:
依据测量装置所采用的快照式光谱成像探测器的具体结构形式,利用相应的快照式光谱成像数据处理算法,计算机对获得的多帧或单帧快照式色散光谱编码白光干涉图像进行解调,反演出光谱域白光干涉信号数据立方体;利用光谱域白光干涉信号处理算法,对光谱域白光干涉信号数据立方体进行处理,基于光谱域白光干涉信号强度随波长变化且在轴向色散的某一单色光焦面位置附近达到极大值,得到被测物上各点的深度编码光谱信息;依据第一步预标定获得的“光谱—深度”关系曲线,对对应的被测物上各点的深度信息进行解调,得到被测元件的微结构形貌。
本发明的测量所用光谱范围为紫外波段、可见光波段或红外波段。
本发明技术方案依据的原理是:在白光干涉显微测量法和快照式光谱成像探测术的基础上,利用复色平行光经过轴向色散型干涉光学系统后沿轴向依次色散并一一对应地聚焦于不同的轴向深度位置、以及光谱域上的白光干涉信号强度随波长变化且在轴向色散的某一单色光焦面位置附近达到极大值,建立了测量所需的“白光干涉信号—光谱—深度”三者之间的唯一性编码;该方法仅需多帧或单帧快照式色散光谱编码白光干涉图像,即可实现对被测元件三维形貌分布的无机械式扫描、全场非接触、快速(动态甚至瞬态)高精度测量。
与现有技术相比,本发明的显著优点在于:
1.所提供的测量装置无需轴向机械扫描部件,以横向面测量替代了现有的横向点/线测量、增大了系统单次横向可测范围,借助轴向色散型干涉显微物镜和快照式光谱成像探测器,从系统硬件上实现“白光干涉信号—光谱—深度”三者之间的唯一性编码,进而完成对微结构(特别是面形变化复杂、非连续的微结构)元件表面微观形貌的全场非接触、高精度测量数据的快速(动态甚至瞬态)获取,有效抑制因机械部件扫描移动引入的测量误差,提升系统的可控性与抗干扰能力。
2.本发明提供的测量方法是在白光干涉显微测量法和快照式光谱成像探测术的基础上,利用复色平行光经过轴向色散型干涉光学系统后沿轴向依次色散并一一对应地聚焦于不同的轴向深度位置、以及光谱域上的白光干涉信号强度随波长变化且在轴向色散的某一单色光焦面位置附近达到极大值,建立了测量所需的“白光干涉信号—光谱—深度”三者之间的唯一性编码,仅需多帧或单帧快照式色散光谱编码白光干涉图像即可完成相关形貌的全场非接触、快速(动态甚至瞬态)、高精度检测,从而避免了现有方法中耗时、易受外界干扰、柔性较低的轴向机械扫描和横向点/线扫描,降低由此引入的测量误差,显著提高检测效率。
附图说明
图1为本发明实施例提供的一种快照式全场白光干涉显微测量装置的结构示意图;
图2为本发明实施例提供的一种基于轴向衍射光学元件的Michelson型干涉显微物镜的结构示意图;
图3为本发明实施例提供的“光谱—深度”关系曲线;
图4为本发明实施例提供的快照式色散光谱编码白光干涉图像数据获取及处理流程示意图。
其中:1、宽光谱光源;2、准直扩束匀光镜头;3、分束器;4、轴向色散型干涉显微物镜;5、被测元件;6、载物台;7、成像耦合镜头;8、快照式光谱成像探测器;9、数据传输控制线;10、计算机;41、光束耦合成像镜头;42、分光棱镜;43、参考平面反射镜;44、轴向衍射光学元件。
具体实施方式
下面结合附图及实施例对本发明所述的一种快照式全场白光干涉显微测量装置及测量方法作进一步详细说明。
实施例1
参见附图1,它为本实施例提供的快照式全场白光干涉显微测量装置的结构示意图。该测量装置由宽光谱光源1、准直扩束匀光镜头2、分束器3、轴向色散型干涉显微物镜4、载物台6、成像耦合镜头7、快照式光谱成像探测器8、数据传输控制线9和计算机10构成。
计算机10经数据传输控制线9与快照式光谱成像探测器8相连;被测元件5置于载物台6上,被测元件5与宽光谱光源1各自的位置在测量所用光谱范围的中心波长下满足物像共轭关系;准直扩束匀光镜头2、分束器3、轴向色散型干涉显微物镜4、成像耦合镜头7和快照式光谱成像探测器8之间呈共光路结构;宽光谱光源1位于准直扩束匀光镜头2的前焦面位置,宽光谱光源1发出的复色光经准直扩束匀光镜头2成为平行光均匀入射至分束器3表面;所述分束器3将平行、均匀的复色光反射进入轴向色散型干涉显微物镜4,分别输出一路沿轴向色散并聚焦至不同深度位置的测量光和一路无轴向色散的复色参考光;轴向色散的测量光由被测元件5反射返回,与复色参考光经轴向色散型干涉显微物镜4混合形成干涉信号,再依次通过分束器3和成像耦合镜头7传输至快照式光谱成像探测器8,快照式光谱成像探测器8将采集到的图像数据经数据传输控制线9传输至计算机10。
在本实施例中,快照式光谱成像探测器8为多孔径光谱滤波相机(Multiaperturefiltered camera,MAFC)、可调谐阶梯光栅成像仪(Tunable echelle imager,TEI)、光谱分辨探测器阵列(Spectrally resolving detector arrays,SRDA)、计算层析成像光谱仪(Computed tomographic imaging spectrometry,CTIS)、快照式编码孔径光谱成像仪(Coded aperture snapshot spectral imager,CASSI)、堆栈滤波光谱分解仪(Filterstack spectral decomposer,FSSD)、重组光纤成像光谱仪(Fiber-reformatting imagingspectrometry,FRIS)、透镜阵列积分场成像光谱仪(Integral field spectroscopy withlenslet arrays,IFS-L)、图像折叠成像光谱仪(Image-replicating imagingspectrometry,IRIS)、图像映射光谱仪(Image mapping spectrometry,IMS)、多光谱萨格纳克光谱仪(Multispectral Sagnac interferometry,MSI)、快照式高光谱傅里叶变换成像仪(Snapshot hyperspectral imaging Fourier transform spectrometer,SHIFT)中的一种,实现对目标“空间—光谱”信息的快速获取与测量;轴向色散型干涉显微物镜4为基于轴向衍射光学元件(Axial diffractive optical elements,ADOE)的Michelson型、Mirau型、Linik型干涉显微物镜中的一种;宽光谱光源1为卤素灯、白光发光二极管(Lightemitting diode,LED)或超连续谱激光器;分束器为1:1半透半反分光棱镜。
在本实施例中,轴向色散型干涉显微物镜为基于轴向衍射光学元件的Michelson型干涉显微物镜,参见附图2,为基于轴向衍射光学元件的Michelson型干涉显微物镜的结构示意图;它包括光束耦合成像镜头41、分光棱镜42、参考平面反射镜43和轴向衍射光学元件44;入射的复色平行光经光束耦合成像镜头41和分光棱镜42一分为二;一路为无轴向色散的复色光,并由参考平面反射镜43反射返回形成参考光信号;另一路经过轴向衍射光学元件44成为沿轴向色散并聚焦至不同深度位置的各单色光,并由被测元件5反射返回形成测量光信号;复色参考光信号与轴向色散的测量光信号再经分光棱镜42混合形成光谱域上的白光干涉信号数据立方体。
本实施例采用附图1所示装置对微结构形貌进行测量,其方法包括以下三个步骤:
第一步,“光谱—深度”对应关系的预标定。
在测量前,需对系统装置进行“光谱—深度”对应关系的预标定:将轴向色散型干涉显微物镜4中的参考光路遮挡,使其仅工作在轴向色散模式;宽光谱光源1发出的复色光经准直扩束匀光镜头2、分束器3和轴向色散型干涉显微物镜4照射至载物台上的标准平面反射镜;标准平面反射镜在微位移器的带动下,沿显微物镜4的光轴方向做轴向扫描,将轴向色散的光信号反射进入显微物镜4和分束器3,再由光谱仪接收、测量得到各单色光信号的波长值,记录扫描过程中各单色光信号达到峰值时微位移器的轴向移动位置,得到一组“光谱—深度”数据;利用多项式或样条拟合方法得到“光谱—深度”对应关系曲线,完成系统预标定。
由于复色平行光经过轴向色散型干涉显微物镜4会沿轴向依次色散为不同波长的单色光,并一一对应地聚焦于不同的轴向深度位置,即“光谱—深度”之间具有如下式(1)的对应关系:
Figure DEST_PATH_IMAGE001
(1)
其中,
Figure 617886DEST_PATH_IMAGE002
为单值函数,
Figure DEST_PATH_IMAGE003
表示轴向深度。参见附图3,为本发明实施例提供的“光谱—深度”关系曲线
Figure 817923DEST_PATH_IMAGE001
,其横轴代表波长域
Figure 342445DEST_PATH_IMAGE004
(从左向右为短波至长波方向),纵坐标为深度
Figure 96775DEST_PATH_IMAGE003
。由于光学元件的装调误差、非线性轴向色散等因素的影响,“光谱—深度”之间往往呈现非线性的对应关系,在系统预标定过程中可利用多项式或样条拟合技术更为精确地表征得到该单值函数
Figure DEST_PATH_IMAGE005
第二步,快照式色散光谱编码白光干涉图像的获取。
测量时,去除轴向色散型干涉显微物镜4中参考光路的遮挡,使其同时工作在轴向色散和干涉模式;将被测元件5置于载物台6上,沿轴向和径向调整载物台6的位置,使被测元件5与宽光谱光源1各自的位置在测量所用光谱范围(紫外波段、可见光波段或红外波段)的中心波长下满足物像共轭关系;宽光谱光源1发出的复色光经准直扩束匀光镜头2、分束器3和轴向色散型干涉显微物镜4形成一路沿轴向色散并聚焦至不同深度位置的测量光和一路无轴向色散的复色参考光;轴向色散的测量光由被测元件5反射返回,并与复色参考光经轴向色散型干涉显微物镜4混合形成光谱域上的白光干涉信号数据立方体;快照式光谱成像探测器8采集与光谱域上的白光干涉信号数据立方体相对应的多帧或单帧快照式色散光谱编码白光干涉图像,并传输至计算机10存储和处理;
本实施例中,测量方法是在白光干涉显微测量法和快照式光谱成像探测术的基础上,利用复色平行光经过轴向色散型干涉显微物镜4后沿轴向依次色散并一一对应地聚焦于不同的轴向深度位置、以及光谱域上的白光干涉信号强度随波长变化且在轴向色散的某一单色光焦面位置附近达到极大值,建立了测量所需的“白光干涉信号—光谱—深度”三者之间的唯一性编码,仅需多帧或单帧快照式色散光谱编码白光干涉图像,即可实现对被测元件三维形貌分布的无机械式扫描、全场非接触、快速(动态甚至瞬态)高精度测量。
根据被测物5表面微观形貌变化是否连续、以及检测精度/速度要求的不同,测量过程可获得多帧或单帧快照式色散光谱编码白光干涉图像数据。本实施例中,以单帧快照式色散光谱编码白光干涉图像数据的获取为例,具体为:宽光谱光源1发出的复色光经准直扩束匀光镜头2、分束器3和轴向色散型干涉显微物镜4形成一路沿轴向色散并聚焦至不同深度位置的测量光和一路无轴向色散的复色参考光。轴向色散的测量光由被测元件5反射返回,并与复色参考光经轴向色散型干涉显微物镜4混合发生干涉,形成光谱域白光干涉信号数据立方体,其强度分布表达式由以下式(2)所示:
Figure DEST_PATH_IMAGE007
(2)
其中,
Figure 896104DEST_PATH_IMAGE008
为被测元件5表面的二维空间坐标,
Figure DEST_PATH_IMAGE009
是与被测元件5的三维面形分布相关的白光干涉条纹相位,
Figure 950647DEST_PATH_IMAGE010
表示第m个轴向色散单色光的中心波长,
Figure DEST_PATH_IMAGE011
M为测量所用光谱范围内轴向色散单色光的实际使用数目(需要说明的是,虽然复色光经轴向色散型干涉显微物镜4沿轴向依次色散为各连续单色光,但测量中实际使用的单色光数目M受限于快照式光谱成像探测器8的可探测光谱数,在本实施例中
Figure 911650DEST_PATH_IMAGE012
),
Figure DEST_PATH_IMAGE013
Figure 684434DEST_PATH_IMAGE014
分别表示白光干涉条纹的背景分量和调制度分布,
Figure DEST_PATH_IMAGE015
为与系统有关而与待测面形无关的相位偏置。因“光谱—深度”之间具有如式(1)所示的一一对应关系,故上述光谱域白光干涉信号数据立方体的强度分布可改写为式(3):
Figure 493646DEST_PATH_IMAGE016
(3)
其中,
Figure DEST_PATH_IMAGE017
为单值函数
Figure 668275DEST_PATH_IMAGE002
的反函数,
Figure 534600DEST_PATH_IMAGE018
为第m个轴向色散单色光中心波长
Figure DEST_PATH_IMAGE019
对应的轴向深度。因此,快照式光谱成像探测器8获得的单帧快照式色散光谱编码白光干涉图像数据为式(4):
Figure 794680DEST_PATH_IMAGE020
(4)
其中,
Figure DEST_PATH_IMAGE021
表示快照式光谱成像探测器8对原始光谱域上的白光干涉信号数据立方体的压缩变换,即将三维数据立方体压缩变换为二维编码图像数据。
第三步,快照式色散光谱编码白光干涉图像的解调:
根据所采用的快照式光谱成像探测器8的具体结构形式,利用相应的数据处理算法,借助计算机10对获得的多帧或单帧快照式色散光谱编码白光干涉图像进行解调,反演出光谱域白光干涉信号数据立方体
Figure 404653DEST_PATH_IMAGE022
;利用光谱域白光干涉信号处理算法,对光谱域白光干涉信号数据立方体
Figure 433789DEST_PATH_IMAGE022
进行处理,基于光谱域白光干涉信号强度
Figure 205436DEST_PATH_IMAGE022
随波长
Figure 687233DEST_PATH_IMAGE010
变化且在轴向色散的某一单色光焦面位置附近达到极大值,得到被测物上各点的深度编码光谱信息
Figure DEST_PATH_IMAGE023
;依据第一步预标定获得的“光谱—深度”关系曲线
Figure 100896DEST_PATH_IMAGE001
,解调出对应的待测面上各点的深度信息,最终完成被测元件5三维形貌分布的无机械式扫描、全场非接触、快速(动态甚至瞬态)高精度测量。
参见附图4,为本发明实施例提供的测量方法中步骤二和三相对应的快照式色散光谱编码白光干涉图像数据获取及解调处理的流程示意图。被测物5的三维形貌信息经本发明的测量装置调制成多帧或单帧快照式色散光谱编码白光干涉图像(二维)数据;利用相应的快照式光谱成像探测数据处理算法对该数据进行解调,反演出对应的光谱域白光干涉数据立方体(单帧);再借助光谱域白光干涉信号处理算法对光谱域白光干涉数据立方体进行处理,基于光谱域白光干涉信号强度随波长变化且在轴向色散的某一单色光焦面位置附近达到极大值,得到与被测物5三维面形相关的深度编码光谱信息,并结合预先标定获得的“光谱—深度”关系曲线,重构出被测元件5的三维形貌分布。

Claims (6)

1.一种快照式全场白光干涉显微测量装置,其特征在于:它包括宽光谱光源(1)、准直扩束匀光镜头(2)、分束器(3)、轴向色散型干涉显微物镜(4)、载物台(6)、成像耦合镜头(7)、快照式光谱成像探测器(8)、数据传输控制线(9)、计算机(10);
被测元件(5)置于载物台(6)上,被测元件(5)与宽光谱光源(1)各自的位置在测量所用光谱范围的中心波长下满足物像共轭关系;准直扩束匀光镜头(2)、分束器(3)、轴向色散型干涉显微物镜(4)、成像耦合镜头(7)和快照式光谱成像探测器(8)之间呈共光路结构;
宽光谱光源(1)位于准直扩束匀光镜头(2)的前焦面位置,宽光谱光源(1)发出的复色光经准直扩束匀光镜头(2)成为平行光均匀入射至分束器(3)表面;所述分束器(3)将平行、均匀的复色光反射进入轴向色散型干涉显微物镜(4),分别输出一路沿轴向色散并聚焦至不同深度位置的测量光和一路无轴向色散的复色参考光;轴向色散的测量光由被测元件(5)反射返回,与复色参考光经轴向色散型干涉显微物镜(4)混合形成干涉信号,再依次通过分束器(3)和成像耦合镜头(7)传输至快照式光谱成像探测器(8),快照式光谱成像探测器(8)将采集到的图像数据经数据传输控制线(9)传输至计算机(10);
其中,利用复色平行光经过轴向色散型干涉显微物镜后沿轴向依次色散并一一对应地聚焦于不同的轴向深度位置、以及光谱域上的白光干涉信号强度随波长变化且在轴向色散的某一单色光焦面位置附近达到极大值,建立了测量所需的“白光干涉信号—光谱—深度”三者之间的唯一性编码。
2.根据权利要求1所述的一种快照式全场白光干涉显微测量装置,其特征在于:所述的快照式光谱成像探测器为多孔径光谱滤波相机、可调谐阶梯光栅成像仪、光谱分辨探测器阵列、计算层析成像光谱仪、快照式编码孔径光谱成像仪、堆栈滤波光谱分解仪、重组光纤成像光谱仪、透镜阵列积分场成像光谱仪、图像折叠成像光谱仪、图像映射光谱仪、多光谱萨格纳克光谱仪、快照式高光谱傅里叶变换成像仪中的一种。
3.根据权利要求1所述的一种快照式全场白光干涉显微测量装置,其特征在于:所述的轴向色散型干涉显微物镜为基于轴向衍射光学元件的Michelson型、Mirau型、Linik型干涉显微物镜中的一种。
4.根据权利要求1所述的一种快照式全场白光干涉显微测量装置,其特征在于:所述的宽光谱光源为卤素灯、白光LED、超连续谱激光器中的一种。
5.一种快照式全场白光干涉显微测量方法,其特征在于包括如下步骤:
第一步,“光谱—深度”对应关系的预标定:
测量前,将轴向色散型干涉显微物镜中的参考光路遮挡,使其仅工作在轴向色散模式;宽光谱光源发出的复色光经准直扩束匀光镜头、分束器和轴向色散型干涉显微物镜照射至载物台上的标准平面反射镜;标准平面反射镜在微位移器的带动下,沿显微物镜的光轴方向做轴向扫描,将轴向色散的光信号反射进入显微物镜和分束器,再由光谱仪接收、测量得到各单色光信号的波长值,记录扫描过程中各单色光信号达到峰值时微位移器的轴向移动位置,得到一组“光谱—深度”数据;利用多项式或样条拟合方法得到“光谱—深度”对应关系曲线,完成系统预标定;
第二步,快照式色散光谱编码白光干涉图像的获取:
测量时,去除轴向色散型干涉显微物镜中参考光路的遮挡,使其同时工作在轴向色散和干涉模式;将被测元件置于载物台上,沿轴向和径向调整载物台的位置,使被测元件与宽光谱光源各自的位置在测量所用光谱范围的中心波长下满足物像共轭关系;宽光谱光源发出的复色光经准直扩束匀光镜头、分束器和轴向色散型干涉显微物镜形成一路沿轴向色散并聚焦至不同深度位置的测量光和一路无轴向色散的复色参考光;轴向色散的测量光由被测元件反射返回,并与复色参考光经轴向色散型干涉显微物镜混合形成光谱域上的白光干涉信号数据立方体;快照式光谱成像探测器采集与光谱域上的白光干涉信号数据立方体相对应的多帧或单帧快照式色散光谱编码白光干涉图像,并传输至计算机存储和处理;
第三步,快照式色散光谱编码白光干涉图像的解调:
计算机对获得的多帧或单帧快照式色散光谱编码白光干涉图像进行解调,反演出光谱域白光干涉信号数据立方体;利用光谱域白光干涉信号处理算法,对光谱域白光干涉信号数据立方体进行处理,基于光谱域白光干涉信号强度随波长变化且在轴向色散的某一单色光焦面位置附近达到极大值,得到被测物上各点的深度编码光谱信息;依据第一步预标定获得的“光谱—深度”关系曲线,对对应的待测物上各点的深度信息进行解调,得到被测元件的微结构形貌。
6.根据权利要求5所述的一种快照式全场白光干涉显微测量方法,其特征在于:所述的测量所用光谱范围为紫外波段、可见光波段或红外波段。
CN201811082777.1A 2018-09-17 2018-09-17 一种快照式全场白光干涉显微测量方法及其装置 Active CN108981606B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811082777.1A CN108981606B (zh) 2018-09-17 2018-09-17 一种快照式全场白光干涉显微测量方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811082777.1A CN108981606B (zh) 2018-09-17 2018-09-17 一种快照式全场白光干涉显微测量方法及其装置

Publications (2)

Publication Number Publication Date
CN108981606A CN108981606A (zh) 2018-12-11
CN108981606B true CN108981606B (zh) 2020-10-09

Family

ID=64545541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811082777.1A Active CN108981606B (zh) 2018-09-17 2018-09-17 一种快照式全场白光干涉显微测量方法及其装置

Country Status (1)

Country Link
CN (1) CN108981606B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020056566A1 (zh) * 2018-09-17 2020-03-26 苏州大学张家港工业技术研究院 一种快照式全场白光干涉显微测量方法及其装置
CN109343068A (zh) * 2018-12-13 2019-02-15 中国电子科技集团公司第三十四研究所 一种空间长度的测量装置及测量方法
CN110146467B (zh) * 2019-05-10 2020-06-02 清华大学 高光谱干涉非标记成像方法及活细胞定量断层成像系统
CN110608687A (zh) * 2019-06-04 2019-12-24 重庆大学 一种基于投影平面的彩色编码光栅串扰补偿方法
CN110530718B (zh) * 2019-08-29 2021-12-17 江苏大学 一种基于白光干涉测量表面形貌的双轴残余应力引入装置
CN111879239B (zh) * 2020-06-11 2022-09-02 东莞市神州视觉科技有限公司 光谱共焦测量装置及测量方法
CN113074665B (zh) * 2021-04-26 2022-06-28 中国石油大学(华东) 一种基于光谱分辨干涉的线轮廓测量方法
CN113587843B (zh) * 2021-07-27 2022-05-27 中国科学院长春光学精密机械与物理研究所 干涉共聚焦测量系统及测量方法
CN113654482A (zh) * 2021-08-30 2021-11-16 东北大学秦皇岛分校 一种基于色差和谱域干涉的光学3d成像装置及方法
CN114024189A (zh) * 2021-11-18 2022-02-08 深圳立仪科技有限公司 一种激光激发宽带线状结构光源

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101324422A (zh) * 2007-06-12 2008-12-17 西安普瑞光学仪器有限公司 白光干涉测量样品表面形状精细分布的方法及其装置
CN101872064A (zh) * 2009-04-24 2010-10-27 陈亮嘉 线型多波长共焦显微镜模块以及其共焦显微方法与系统
CN103162617A (zh) * 2011-12-09 2013-06-19 陈亮嘉 彩色共焦显微系统及其信号处理方法
CN103697832A (zh) * 2013-12-30 2014-04-02 镇江超纳仪器有限公司(中外合资) 一种白光干涉垂直扫描开环控制的方法
CN106500589A (zh) * 2016-12-05 2017-03-15 苏州大学 一种多波长可调谐显微干涉的测量方法及其装置
CN106643559A (zh) * 2017-03-06 2017-05-10 中国科学院光电技术研究所 一种基于混合干涉条纹的白光显微干涉形貌重建方法
CN106802129A (zh) * 2016-12-30 2017-06-06 中国科学院光电研究院 一种高分辨力与自校准光谱共焦位移测量系统
CN208704671U (zh) * 2018-09-17 2019-04-05 苏州大学 一种快照式全场白光干涉显微测量装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7483147B2 (en) * 2004-11-10 2009-01-27 Korea Advanced Institute Of Science And Technology (Kaist) Apparatus and method for measuring thickness and profile of transparent thin film using white-light interferometer
TWI414817B (zh) * 2010-07-23 2013-11-11 Univ Nat Taipei Technology 線型彩色共焦顯微系統

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101324422A (zh) * 2007-06-12 2008-12-17 西安普瑞光学仪器有限公司 白光干涉测量样品表面形状精细分布的方法及其装置
CN101872064A (zh) * 2009-04-24 2010-10-27 陈亮嘉 线型多波长共焦显微镜模块以及其共焦显微方法与系统
CN103162617A (zh) * 2011-12-09 2013-06-19 陈亮嘉 彩色共焦显微系统及其信号处理方法
CN103697832A (zh) * 2013-12-30 2014-04-02 镇江超纳仪器有限公司(中外合资) 一种白光干涉垂直扫描开环控制的方法
CN106500589A (zh) * 2016-12-05 2017-03-15 苏州大学 一种多波长可调谐显微干涉的测量方法及其装置
CN106802129A (zh) * 2016-12-30 2017-06-06 中国科学院光电研究院 一种高分辨力与自校准光谱共焦位移测量系统
CN106643559A (zh) * 2017-03-06 2017-05-10 中国科学院光电技术研究所 一种基于混合干涉条纹的白光显微干涉形貌重建方法
CN208704671U (zh) * 2018-09-17 2019-04-05 苏州大学 一种快照式全场白光干涉显微测量装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于白光干涉法测量微光栅形貌及相关几何参量的研究;牛渊 等;《光学仪器》;20170430;第39卷(第2期);第1-7页 *

Also Published As

Publication number Publication date
CN108981606A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
CN108981606B (zh) 一种快照式全场白光干涉显微测量方法及其装置
US9880377B1 (en) Multiple wavelengths real time phase shift interference microscopy
CN108775875B (zh) 一种基于色散光谱编码的微结构形貌测量方法及其装置
CN108844492B (zh) 一种基于光谱调制度深度编码的微结构形貌测量方法及其装置
US9557549B2 (en) Systems and methods for self-referenced quantitative phase microscopy
KR102580107B1 (ko) 반도체 디바이스 제조 중 분광 측정의 촉진
JP7082137B2 (ja) スペクトル制御干渉法による曲率半径測定
JP2006138854A (ja) 白色光干渉計を用いた透明薄膜の厚さ及び形状の測定装置及び方法
JP7138734B2 (ja) デュアル干渉法試料厚さ計
CN208704671U (zh) 一种快照式全场白光干涉显微测量装置
CN109000781B (zh) 一种结构微振动线域测量装置及方法
Upputuri et al. Multi-colour microscopic interferometry for optical metrology and imaging applications
CN107449361B (zh) 一种稳定的双波长实时干涉显微装置及其使用方法
CN106705856B (zh) 基于宽带光谱域显微干涉术的近红外位移传感装置及微位移量测量方法
CN210242710U (zh) 一种基于色散光谱编码的微结构形貌测量装置
CN108931207A (zh) Led照明的干涉显微装置和方法
CN103115583B (zh) 基于受激辐射的Mirau荧光干涉显微测量装置
US8269980B1 (en) White light scanning interferometer with simultaneous phase-shifting module
Kumar et al. Red-Green-Blue wavelength interferometry and TV holography for surface metrology
JP2018520337A (ja) 広視野顕微鏡を用いて試料の空間分解された高さ情報を確定するための方法および広視野顕微鏡
US8018601B2 (en) Method for determining vibration displacement and vibrating frequency and apparatus using the same
CN110926360B (zh) 一种全视场外差移相测量自由曲面的装置
Viskovatykh et al. Combined optical-coherence and spectral microscopy based on tunable acousto-optic filters of images
CN111121661A (zh) 用于光滑表面形貌测量的窄带非单色光n+1幅相移测试算法
CN109709037B (zh) 光源分段的三步移相去除光学相干层析复共轭镜像系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant