CN108962630A - 一种蛋壳膜/石墨烯/聚合物复合柔性超级电容器的制备方法 - Google Patents

一种蛋壳膜/石墨烯/聚合物复合柔性超级电容器的制备方法 Download PDF

Info

Publication number
CN108962630A
CN108962630A CN201810814291.6A CN201810814291A CN108962630A CN 108962630 A CN108962630 A CN 108962630A CN 201810814291 A CN201810814291 A CN 201810814291A CN 108962630 A CN108962630 A CN 108962630A
Authority
CN
China
Prior art keywords
egg shell
graphene
shell membrane
preparation
supercapacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810814291.6A
Other languages
English (en)
Other versions
CN108962630B (zh
Inventor
金玲
查杰诚
陈至立
翟春雨
夏友谊
张贺新
乔红斌
张奎
何利芳
高宏
雷智平
吴胜华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Technology AHUT
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CN201810814291.6A priority Critical patent/CN108962630B/zh
Publication of CN108962630A publication Critical patent/CN108962630A/zh
Application granted granted Critical
Publication of CN108962630B publication Critical patent/CN108962630B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种以蛋白膜为柔性基底,与氧化石墨烯/聚合物相结合的柔性超级电容器的制备方法,首先将氧化石墨烯超声分散均匀,将纯化后的蛋壳膜完全浸入到氧化石墨烯溶液中,在水热条件下氧化石墨烯通过静电自组装于蛋壳膜表面,将还原后的蛋壳膜/石墨烯基底上生长聚合物,将复合蛋壳膜进行洗涤、烘干,以PVA‑磷酸为电解质,滤纸为隔膜,以“三明治”结构组装而成,本发明提供的蛋壳膜/石墨烯/聚合物复合柔性超级电容器制备方法简单,原料成本低廉,所制备出的超级电容器比电容大,可以有效建设好传输电阻,有利于电解液中的电子传输,有利于提高柔性超级电容器的电化学性能。

Description

一种蛋壳膜/石墨烯/聚合物复合柔性超级电容器的制备方法
技术领域
本发明涉及柔性超级电容器技术领域,具体涉及一种蛋壳膜/石墨烯/聚合物复合柔性超级电容器的制备方法。
背景技术
由于可穿戴电子器件的发展,人们对柔性储能器件的要求也逐渐增大,柔性超级电容器必须轻便、廉价、柔性、可拉伸,即使反复变形也能保持其功能。天然合成纤维具有理想的单轴结构使其有优良的力学性能,另外纤维可以多纳米结构组装成多孔膜。同时研究者们开发了3D支撑材料为柔性超级电容器的基底,能够提高电子传输和离子扩散速度,存在的缺点是生产过程繁杂,有些需要大量的有毒溶剂。蛋壳膜是一种可靠的可持续资源,可用于清洁能源存储。蛋壳膜来源于日常生物垃圾,具有独特的3D大孔纤维网络结构,富有柔性、生物可降解性和多孔性等,富含羧基、氨基和羟基氮、氧原子能够增加其导电性。蛋壳膜作为一种生物模板自支撑材料应用于传感器、吸附剂、催化剂、燃料电池等方面。Jing Geng等研究工作者(Jing Geng,Hao Wu,A M.Al-Enizi,et al.Nanoscale,2015,7:14378-14384)将蛋壳膜/碳纳米管高温800℃碳化后生长NiCo2O4作为超级电容器的电极材料,表现出高的比电容,10000循环之后仍然保持90%的电容。Zhi Li曾报道(Zhi Li,Li Zhang,B SAmirkhiz,et al.Adv.Energy Mater.,2012,2:431-437)将蛋壳膜进行碳化,得到三维多孔碳纤维结构作为超级电容器的电极材料,在碱性电解质中测得297F g-1的比电容,并且表现出良好的循环稳定性,在电流密度为4A/g的条件下,10000次循环后,只观察到3%的电容衰落。迄今为止,未有蛋壳膜/石墨烯/聚合物柔性超级电容器制备方法的报道。
发明内容
针对现有技术的不足,本发明提供了一种蛋壳膜/石墨烯/聚合物复合柔性超级电容器的制备方法,所述制备方法包括如下步骤,
(1)通过Hummers方法制备氧化石墨烯,将46-100mL浓硫酸加入500mL三口烧瓶中,置于0-3℃冰水浴中搅拌,依次加入0.5-4g天然墨粉和0.25-2g硝酸钠,再加入6-12g高锰酸钾,控制反应体系温度≤20℃,继续搅拌反应2-4h,升温至35℃并保温30-60min;滴加90-180mL去离子水,并使反应体系温度≤100℃,反应15-30min后,加入去离子水,再加入5-10mL30%的H2O2去除过量的高锰酸钾,反应溶液为亮黄色;最后用盐酸和去离子水洗涤,直至无SO4 2-,用BaCl2溶液检测;
(2)通过超声处理将氧化石墨烯分散形成均一的悬浊液,将纯化的蛋壳膜(1×1cm2)通过简易的浸渍方法于氧化石墨烯溶液中适当时间,制备的蛋壳膜/氧化石墨烯并加入适量的水合肼,用氨水调节溶液的pH为10,反应1-3h,得到蛋壳膜/石墨烯;
(3)将附着石墨烯的蛋白膜浸渍于三氯化铁溶液中24h,然后滴加吡咯单体,于冰水浴中反应6-12h,得到蛋壳膜/石墨烯/聚吡咯复合材料;
(4)将上述的蛋壳膜/石墨烯/聚吡咯复合材料作为超级电容器的电极材料,浸渍于聚合物电解质中5-10min后将其干燥,以滤纸为隔膜,组装成对称超级电容器。
优选地,上述步骤(2)中电极材料以蛋白膜为模板和石墨烯充分结合。
优选地,上述步骤(2)中蛋白膜与石墨烯充分结合时间2-4h。
优选地,上述步骤(3)中聚合物材料为纳米聚吡咯。
优选地,上述步骤(3)中吡咯单体与氧化剂三氯化铁的物质量比为1:1-4:1。
优选地,上述步骤(4)中所述的超级电容器的极耳为100-200目的钛网。
优选地,上述步骤(4)中电解质为PVA-磷酸溶胶。
本发明的有益效果为:
(1)通过静电组装首次将石墨烯结合蛋壳膜表面,在相同面积下大大提高了超级电容器的比电容,该方法简单,原料成本低廉,快速,易于推广。
(2)采用化学氧化法将聚吡咯直接生长在蛋壳膜/石墨烯的表面上,电极材料无需添加胶黏剂,可以有效建设好传输电阻,有利于电解液中的电子传输,有利于提高柔性超级电容器的电化学性能。
(3)制得的对称柔性超级电容器与传统的块状结构电容器相比厚度超薄,体积小,质量轻,便于携带。具有较大的比表面积,极大地提高了电容器的比电容。
附图说明
图1为施例1制备得到的蛋壳膜/聚吡咯的场发射电镜图;
图2为实施例2制备得到的蛋壳膜/石墨烯/聚吡咯的场发射电镜图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明的实施例,对本发明实施例中的技术方案进行清楚、完整地描述。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
将蛋壳置于1M的盐酸中,除去外层CaCO3,得到蛋壳膜,用丙酮乙醇混合液将其洗净,于50℃条件下烘干。纯化后的蛋壳膜置于三氯化铁溶液中,2h后于冰水浴中滴加吡咯单体后,反应6h后,得到蛋壳膜/聚吡咯复合电极,采用电化学工作站测其单电极的比电容Cs为110F/g。
实施例2:
将后处理后的蛋壳膜将纯化的蛋壳膜(1×1cm2)通过简易的浸渍方法于0.4wt%氧化石墨烯溶液中30min,制备的蛋壳膜/氧化石墨烯并加入适量的水合肼,用氨水调节溶液的pH约为10,反应1-3h,得到蛋壳膜/石墨烯。干燥后将其浸渍于三氯化铁溶液中24h,然后滴加吡咯单体,于冰水浴中反应6h,得到蛋壳膜/石墨烯/聚吡咯复合材料。取等质量的两份电极材料,以PVA-磷酸为电解质,组装成“三明治”式固态超级电容器,采用电化学工作站测其单电极的比电容Cs为152F/g。
实施例3
将后处理后的蛋壳膜将纯化的蛋壳膜(1×1cm2)通过简易的浸渍方法于0.4wt%氧化石墨烯溶液中60min,制备的蛋壳膜/氧化石墨烯并加入适量的水合肼,用氨水调节溶液的pH约为10,反应1-3h,得到蛋壳膜/石墨烯。干燥后将其浸渍于三氯化铁溶液中24h,然后滴加吡咯单体,于冰水浴中反应6h,得到蛋壳膜/石墨烯/聚吡咯复合材料。取等质量的两份电极材料,以PVA-磷酸为电解质,组装成“三明治”式固态超级电容器,采用电化学工作站测其单电极的比电容Cs为196F/g。
实施例4
将后处理后的蛋壳膜将纯化的蛋壳膜(1×1cm2)通过简易的浸渍方法于0.4wt%氧化石墨烯溶液中90min,制备的蛋壳膜/氧化石墨烯并加入适量的水合肼,用氨水调节溶液的pH约为10,反应1-3h,得到蛋壳膜/石墨烯。干燥后将其浸渍于三氯化铁溶液中24h,然后滴加吡咯单体,于冰水浴中反应6h,得到蛋壳膜/石墨烯/聚吡咯复合材料。取等质量的两份电极材料,以PVA-磷酸为电解质,组装成“三明治”式固态超级电容器,采用电化学工作站测其单电极的比电容Cs为212F/g。
实施例5
将后处理后的蛋壳膜将纯化的蛋壳膜(1×1cm2)通过简易的浸渍方法于0.4wt%氧化石墨烯溶液中120min,制备的蛋壳膜/氧化石墨烯并加入适量的水合肼,用氨水调节溶液的pH约为10,反应1-3h,得到蛋壳膜/石墨烯。干燥后将其浸渍于三氯化铁溶液中24h,然后滴加吡咯单体,于冰水浴中反应6h,得到蛋壳膜/石墨烯/聚吡咯复合材料。取等质量的两份电极材料,以PVA-磷酸为电解质,组装成“三明治”式固态超级电容器,采用电化学工作站测其单电极的比电容Cs为236F/g。
实施例6
将后处理后的蛋壳膜将纯化的蛋壳膜(1×1cm2)通过简易的浸渍方法于0.4wt%氧化石墨烯溶液中240min,制备的蛋壳膜/氧化石墨烯并加入适量的水合肼,用氨水调节溶液的pH约为10,反应1-3h,得到蛋壳膜/石墨烯。干燥后将其浸渍于三氯化铁溶液中24h,然后滴加吡咯单体,于冰水浴中反应6h,得到蛋壳膜/石墨烯/聚吡咯复合材料。取等质量的两份电极材料,以PVA-磷酸为电解质,组装成“三明治”式固态超级电容器,采用电化学工作站测其单电极的比电容Cs为146F/g。
采用电化学工作站测量实施例1-6制备出的复合电极的单电极比电容,结果如表1所示。由表1可知,蛋壳膜/石墨烯/聚合物柔性超级三层超级电容器的比电容明显优于蛋壳膜/聚吡咯双层复合电极。且蛋壳膜/石墨烯/聚合物柔性超级三层超级电容器制备方法中蛋白膜与石墨烯结合时间2-4h最佳。
表1实施例1-6制备出复合电极的单电极比电容
操作条件 单电极比电容(F/g)
实施例1 110
实施例2 152
实施例3 192
实施例4 212
实施例5 236
实施例6 146
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (7)

1.一种蛋壳膜/石墨烯/聚合物复合柔性超级电容器的制备方法,其特征在于,所述制备方法包括如下步骤,
(1)通过Hummers方法制备氧化石墨烯,将46-100mL浓硫酸加入500mL三口烧瓶中,置于0-3℃冰水浴中搅拌,依次加入0.5-4g天然墨粉和0.25-2g硝酸钠,再加入6-12g高锰酸钾,控制反应体系温度≤20℃,继续搅拌反应2-4h,升温至35℃并保温30-60min;滴加90-180mL去离子水,并使反应体系温度≤100℃,反应15-30min后,加入去离子水,再加入5-10mL30%的H2O2去除过量的高锰酸钾,反应溶液为亮黄色;最后用盐酸和去离子水洗涤,直至无SO4 2-,用BaCl2溶液检测;
(2)通过超声处理将氧化石墨烯分散形成均一的悬浊液,将纯化的蛋壳膜(1×1cm2)通过简易的浸渍方法于氧化石墨烯溶液中适当时间,制备的蛋壳膜/氧化石墨烯并加入适量的水合肼,用氨水调节溶液的pH为10,反应1-3h,得到蛋壳膜/石墨烯;
(3)将附着石墨烯的蛋白膜浸渍于三氯化铁溶液中24h,然后滴加吡咯单体,于冰水浴中反应6-12h,得到蛋壳膜/石墨烯/聚吡咯复合材料;
(4)将上述的蛋壳膜/石墨烯/聚吡咯复合材料作为超级电容器的电极材料,浸渍于聚合物电解质中5-10min后将其干燥,以滤纸为隔膜,组装成对称超级电容器。
2.根据权利要求1所述的蛋壳膜/石墨烯/聚合物复合柔性超级电容器的制备方法,其特征在于,所述步骤(2)中电极材料以蛋白膜为模板和石墨烯充分结合。
3.根据权利要求1所述的蛋壳膜/石墨烯/聚合物复合柔性超级电容器的制备方法,其特征在于,所述步骤(2)中蛋白膜与石墨烯充分结合时间2-4h。
4.根据权利要求1所述的蛋壳膜/石墨烯/聚合物复合柔性超级电容器的制备方法,其特征在于,所述步骤(3)中聚合物材料为纳米聚吡咯。
5.根据权利要求1所述的蛋壳膜/石墨烯/聚合物复合柔性超级电容器的制备方法,其特征在于,所述步骤(3)中吡咯单体与氧化剂三氯化铁的物质量比为1:1-4:1。
6.根据权利要求1所述的蛋壳膜/石墨烯/聚合物复合柔性超级电容器的制备方法,其特征在于,所述步骤(4)中所述的超级电容器的极耳为100-200目的钛网。
7.根据权利要求5所述的蛋壳膜/石墨烯/聚合物复合柔性超级电容器的制备方法,其特征在于,所述步骤(4)中电解质为PVA-磷酸溶胶。
CN201810814291.6A 2018-07-23 2018-07-23 一种蛋壳膜/石墨烯/聚合物复合柔性超级电容器的制备方法 Active CN108962630B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810814291.6A CN108962630B (zh) 2018-07-23 2018-07-23 一种蛋壳膜/石墨烯/聚合物复合柔性超级电容器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810814291.6A CN108962630B (zh) 2018-07-23 2018-07-23 一种蛋壳膜/石墨烯/聚合物复合柔性超级电容器的制备方法

Publications (2)

Publication Number Publication Date
CN108962630A true CN108962630A (zh) 2018-12-07
CN108962630B CN108962630B (zh) 2020-02-04

Family

ID=64464121

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810814291.6A Active CN108962630B (zh) 2018-07-23 2018-07-23 一种蛋壳膜/石墨烯/聚合物复合柔性超级电容器的制备方法

Country Status (1)

Country Link
CN (1) CN108962630B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642239A (zh) * 2019-11-05 2020-01-03 武汉工程大学 一种蛋壳膜衍生碳/石墨烯/硫化铜复合材料的制备方法及其应用
CN110911175A (zh) * 2019-11-12 2020-03-24 武汉工程大学 碳化蛋壳膜、MXene和聚吡咯的复合凝胶及其制备方法和应用
CN110931260A (zh) * 2019-11-12 2020-03-27 武汉工程大学 碳化蛋壳膜、MXene和聚苯胺的复合凝胶材料及其制备方法和应用
CN111508731A (zh) * 2020-03-23 2020-08-07 天津科技大学 基于鸡蛋内膜的聚苯胺复合导电薄膜及其制备方法与应用
CN116084089A (zh) * 2022-12-07 2023-05-09 江南大学 以废弃蛋壳内膜为原料的纳米纤维膜制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101691214A (zh) * 2009-09-29 2010-04-07 同济大学 一种碳网络超结构的制备方法
CN102737851A (zh) * 2011-04-15 2012-10-17 国家纳米科学中心 一种柔性超级电容器及其制备方法
CN105428080A (zh) * 2015-12-25 2016-03-23 哈尔滨工业大学 一种细菌纤维素基聚吡咯/石墨烯柔性电极材料的制备方法及其应用
CN105513818A (zh) * 2015-12-28 2016-04-20 宁国市龙晟柔性储能材料科技有限公司 一种石墨烯-聚苯胺超级电容器电极材料的制备方法
CN106935415A (zh) * 2017-05-03 2017-07-07 王馨瑜 提高双电层电容器比电容的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101691214A (zh) * 2009-09-29 2010-04-07 同济大学 一种碳网络超结构的制备方法
CN102737851A (zh) * 2011-04-15 2012-10-17 国家纳米科学中心 一种柔性超级电容器及其制备方法
CN105428080A (zh) * 2015-12-25 2016-03-23 哈尔滨工业大学 一种细菌纤维素基聚吡咯/石墨烯柔性电极材料的制备方法及其应用
CN105513818A (zh) * 2015-12-28 2016-04-20 宁国市龙晟柔性储能材料科技有限公司 一种石墨烯-聚苯胺超级电容器电极材料的制备方法
CN106935415A (zh) * 2017-05-03 2017-07-07 王馨瑜 提高双电层电容器比电容的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RAHIM MOHAMMAD-REZAEI: ""Preparation of graphene oxide doped eggshell membrane bioplatform modified Prussian blue nanoparticles as a sensitive hydrogen peroxide sensor"", 《COLLOIDS AND SURFACES B:BIOINTERFACES》 *
SUNHO PARK: ""Engineering nanowrinkled microfibers composed of eggshell membrane and graphene"", 《MATERIALS LETTERS》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642239A (zh) * 2019-11-05 2020-01-03 武汉工程大学 一种蛋壳膜衍生碳/石墨烯/硫化铜复合材料的制备方法及其应用
CN110642239B (zh) * 2019-11-05 2022-09-27 武汉工程大学 一种蛋壳膜衍生碳/石墨烯/硫化铜复合材料的制备方法及其应用
CN110911175A (zh) * 2019-11-12 2020-03-24 武汉工程大学 碳化蛋壳膜、MXene和聚吡咯的复合凝胶及其制备方法和应用
CN110931260A (zh) * 2019-11-12 2020-03-27 武汉工程大学 碳化蛋壳膜、MXene和聚苯胺的复合凝胶材料及其制备方法和应用
CN110911175B (zh) * 2019-11-12 2021-09-14 武汉工程大学 碳化蛋壳膜、MXene和聚吡咯的复合凝胶及其制备方法和应用
CN110931260B (zh) * 2019-11-12 2021-09-14 武汉工程大学 碳化蛋壳膜、MXene和聚苯胺的复合凝胶材料及其制备方法和应用
CN111508731A (zh) * 2020-03-23 2020-08-07 天津科技大学 基于鸡蛋内膜的聚苯胺复合导电薄膜及其制备方法与应用
CN111508731B (zh) * 2020-03-23 2021-09-03 天津科技大学 基于鸡蛋内膜的聚苯胺复合导电薄膜及其制备方法与应用
CN116084089A (zh) * 2022-12-07 2023-05-09 江南大学 以废弃蛋壳内膜为原料的纳米纤维膜制备方法

Also Published As

Publication number Publication date
CN108962630B (zh) 2020-02-04

Similar Documents

Publication Publication Date Title
CN108962630A (zh) 一种蛋壳膜/石墨烯/聚合物复合柔性超级电容器的制备方法
Wei et al. Advanced porous hierarchical activated carbon derived from agricultural wastes toward high performance supercapacitors
Li et al. Hydrothermally activated graphene fiber fabrics for textile electrodes of supercapacitors
Xue et al. Recent progress on flexible and wearable supercapacitors
Liang et al. Highly compressible carbon sponge supercapacitor electrode with enhanced performance by growing nickel–cobalt sulfide nanosheets
Sun et al. Carbonized cotton fabric in-situ electrodeposition polypyrrole as high-performance flexible electrode for wearable supercapacitor
Zhao et al. Facile preparation of NO codoped hierarchically porous carbon from alginate particles for high performance supercapacitor
Wu et al. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors
Xu et al. Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors
Hu et al. Hierarchical manganese dioxide/poly (3, 4-ethylenedioxythiophene) core–shell nanoflakes on ramie-derived carbon fiber for high-performance flexible all-solid-state supercapacitor
Yu et al. Promising high-performance supercapacitor electrode materials from MnO2 nanosheets@ bamboo leaf carbon
Li et al. Hierarchically nanostructured Ni (OH) 2–MnO2@ C ternary composites derived from Ni-MOFs grown on nickel foam as high-performance integrated electrodes for hybrid supercapacitors
CN109216048B (zh) 基于细菌纤维素膜的柔性电极及其制备方法
Park et al. Hollow activated carbon nanofibers prepared by electrospinning as counter electrodes for dye-sensitized solar cells
WO2021036219A1 (zh) 一种二硫化钼/石墨烯/碳复合材料及其应用
CN103450682B (zh) 一种碳纳米管/聚吡咯复合海绵及其制备方法
Fang et al. Construction of carbon nanorods supported hydrothermal carbon and carbon fiber from waste biomass straw for high strength supercapacitor
Pathak et al. Ti3C2Tx MXene integrated hollow carbon nanofibers with polypyrrole layers for MOF-derived freestanding electrodes of flexible asymmetric supercapacitors
Sun et al. Wood-inspired compressible, mesoporous, and multifunctional carbon aerogel by a dual-activation strategy from cellulose
Yuan et al. Efficient utilization of the active sites in defective graphene blocks through functionalization synergy for compact capacitive energy storage
Luo et al. MnO2-decorated 3D porous carbon skeleton derived from mollusc shell for high-performance supercapacitor
Hu et al. Lignin-based/polypyrrole carbon nanofiber electrode with enhanced electrochemical properties by electrospun method
Chen et al. Dexterous and friendly preparation of N/P co-doping hierarchical porous carbon nanofibers via electrospun chitosan for high performance supercapacitors
Wu et al. High flexibility and large energy density asymmetric fibered-supercapacitor based on unique NiCo2O4@ MnO2 core-shell nanobrush arrays electrode
Zheng et al. Ultralight PPy@ PVA/BC/MXene composite aerogels for high-performance supercapacitor eltrodes and pressure sensors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant