CN108956745A - 基于纳米多孔铂-氧化钴杂化材料的修饰电极的制备方法及其应用 - Google Patents

基于纳米多孔铂-氧化钴杂化材料的修饰电极的制备方法及其应用 Download PDF

Info

Publication number
CN108956745A
CN108956745A CN201810602265.7A CN201810602265A CN108956745A CN 108956745 A CN108956745 A CN 108956745A CN 201810602265 A CN201810602265 A CN 201810602265A CN 108956745 A CN108956745 A CN 108956745A
Authority
CN
China
Prior art keywords
electrode
platinum
cobalt oxide
nitrite
hybrid material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810602265.7A
Other languages
English (en)
Other versions
CN108956745B (zh
Inventor
卢璐
崔波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN201810602265.7A priority Critical patent/CN108956745B/zh
Publication of CN108956745A publication Critical patent/CN108956745A/zh
Application granted granted Critical
Publication of CN108956745B publication Critical patent/CN108956745B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4166Systems measuring a particular property of an electrolyte
    • G01N27/4168Oxidation-reduction potential, e.g. for chlorination of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明涉及食品检测技术,特别公开了一种基于纳米多孔铂‑氧化钴杂化材料的修饰电极的制备方法及其应用。该基于纳米多孔铂‑氧化钴杂化材料的修饰电极的制备方法,以玻碳电极为基底电极,其特征为,在基底电极表面修饰上纳米多孔铂‑氧化钴杂化材料,将纳米多孔铂‑氧化钴杂化材料、碳粉、乙醇和Nafion溶液超声混合,形成均匀的墨汁状悬浊液,将悬浊液滴涂于打磨光亮的玻碳电极表面,晾干,即得修饰电极。本发明产品检测过程快速,不需要任何样品标记和探针修饰,灵敏度高,检测限低;杂化材料是纳米多孔氧化钴和铂纳米粒子互相稳定的结合体,有效防止铂纳米粒子的团聚,材料铂的用量很低,大大降低了检测亚硝酸盐的成本。

Description

基于纳米多孔铂-氧化钴杂化材料的修饰电极的制备方法及 其应用
(一)技术领域
本发明涉及食品检测技术,特别涉及一种基于纳米多孔铂-氧化钴杂化材料的修饰电极的制备方法及其应用。
(二)背景技术
亚硝酸盐是一种常用的食品添加剂,在肉制品的制作中,可以保持或增强其亮红的色泽和风味,并能起到抑制细菌繁殖的作用。但亚硝酸盐进入人体后会与血液中的血红蛋白作用,是蛋白中的二价铁氧化为三价铁,形成高铁血红蛋白,从而抑制正常的携氧和放氧功能,导致组织缺氧而中毒。目前对食品中亚硝酸盐的实验室检测方法主要有比色法(参见Baiya Wang, Zhenglong Wu, Weidong Qin, Polyamidoamine dendrimer-armedfluorescent magnetic nanoparticles for sensitive and selective determinationof nitrite in beverages, Sensors and Actuators B: Chemical, 2017, 247, 774-779)、化学发光法(参见Jing Wu, Xiong Wang, Yitong Lin, Yongzan Zheng, JinmingLin, Peroxynitrous-acid-induced chemiluminescence detection of nitrite basedon Microfluidic chip, Talanta, 2016, 154, 73-79)、荧光法、色谱法等,这些方法一般检测过程较为繁琐,仪器配置要求高,且存在灵敏度不够、稳定性较低、耗时较长等问题。
电化学传感技术因灵敏度高、响应快速、易微型化、仪器设备简单等特点受到了关注。为了提高亚硝酸盐的检测性能,基于纳米材料的修饰电极发展迅速。其中,铂纳米粒子因比表面积大、粒径可控、电催化性能好等优势被应用于电化学传感器的制备和亚硝酸盐的检测中(参见(a) Jian Liu, Xiangjie Bo, Zheng Zhao, Liping Guo, Highlyexposed Pt nanoparticles supported on porous graphene for electrochemicaldetection of hydrogen peroxide in living cells, Biosensors andBioelectronics, 2015, 74, 71-77. (b) Zhenyuan Bai, Chunlei Zhou, Ning Gao,Haijun Pang, Huiyuan Ma, A chitosan-Pt nanoparticles/carbon nanotubesdopedphosphomolybdate nanocomposite as a platform for the sensitive detection ofnitrite in tap water, RSC Advances, 2016, 6, 937-946)。这些研究存在的关键问题是在操作过程中铂纳米粒子容易发生团聚,降低了其电催化活性和比表面积,而且大量使用贵金属铂提高了检测亚硝酸盐的成本,限制了大批量应用。
(三)发明内容
本发明为了弥补现有技术的不足,提供了一种灵敏度高、检测限低、成本低的基于纳米多孔铂-氧化钴杂化材料的修饰电极的制备方法及其应用。
本发明是通过如下技术方案实现的:
一种基于纳米多孔铂-氧化钴杂化材料的修饰电极的制备方法,以玻碳电极为基底电极,在基底电极表面修饰上纳米多孔铂-氧化钴杂化材料,具体制备步骤为:
(1)高温熔融纯铝、钴、铂成为合金,在冷却过程中利用冷轧技术将其做成薄片,将薄片在氢氧化钠溶液中腐蚀掉铝,记得纳米多孔铂-氧化钴杂化材料;
(2)将纳米多孔铂-氧化钴杂化材料、碳粉、乙醇和Nafion溶液超声混合,形成均匀的墨汁状悬浊液,将悬浊液滴涂于打磨光亮的玻碳电极表面,晾干,即得修饰电极。
本发明提供了一种整体具有纳米多孔结构的铂和氧化钴复合材料,详细的说,是铂纳米粒子镶嵌在氧化钴表面或内部的一种纳米复合材料,是在去合金过程中自组装形成的复合物;铂纳米粒子与氧化钴互相稳定,避免了纳米粒子的团聚,贵金属和过渡金属氧化物的结合可显著提高对亚硝酸盐的传感性能和检测能力。
本发明的更优技术方案为:
所述修饰电极为电流型传感器。
步骤(1)中,纯铝、钴、铂的摩尔比为80-90:9.5-17:0.5-3。
步骤(2)中,将纳米多孔铂-氧化钴杂化材料3-5mg、碳粉3-5mg、乙醇300-500μL和Nafion溶液80-130μL超声混合,形成均匀的墨汁状悬浊液。
上述修饰电极在食品中亚硝酸盐的电化学检测中的应用,包括如下步骤:
(1)配制亚硝酸盐标准溶液;
(2)采用三电极体系,以修饰电极为工作电极,铂电极为对电极,饱和甘汞电极为参比电极,在固定电位下,利用计时电流法测定不同浓度亚硝酸盐的电流-时间曲线,并绘制电流-亚硝酸盐浓度标准曲线;
(3)将食品样品进行前处理和亚硝酸提取处理,作为待测样品,对待测样品进行电流-时间电化学检测,读取电化学响应电流,根据电流-亚硝酸盐浓度标准曲线计算得出食品中亚硝酸盐的含量。
本发明采用基于纳米多孔铂-氧化钴稳定杂化材料构建的电化学修饰电极并作为工作电极,采用计时电流法检测食品中亚硝酸盐的含量。
优选的是,步骤(2)中,固定电位为相对于饱和甘汞电极的+0.80V~+1.00V,最佳检测电位为+0.90V。
本发明修饰电极在检测食品中亚硝酸盐的应用是基于纳米多孔铂-氧化钴杂化材料的修饰电极,具有相互稳定的铂纳米粒子与氧化钴纳米复合物,避免了纳米粒子的团聚,贵金属和过渡金属氧化物的结合对亚硝酸盐具有良好的电催化活性。本发明通过新型稳定的纳米材料和电化学检测技术相结合,检测食品中亚硝酸盐的含量,解决了当前食品领域亚硝酸盐检测中存在的样品处理繁琐、检测过程慢、灵敏度低等问题,具有快速、灵敏、检测限低、实时、成本低等优点。
本发明产品检测过程快速,不需要任何样品标记和探针修饰,灵敏度高,检测限低;杂化材料是纳米多孔氧化钴和铂纳米粒子互相稳定的结合体,有效防止铂纳米粒子的团聚,材料铂的用量很低,大大降低了检测亚硝酸盐的成本。
(四)附图说明
下面结合附图对本发明作进一步的说明。
图1为本发明去合金前Al85Co14Pt1及去合金后纳米多孔铂-氧化钴的XRD图;
图2为纳米多孔铂-氧化钴杂化材料的SEM图;
图3为修饰电极在空白和含10mM亚硝酸钠的磷酸盐缓冲液中的循环伏安图,以及裸玻碳电极在含10mM亚硝酸钠的磷酸盐缓冲液中的循环伏安图;
图4为裸玻碳电极和修饰电极对连续加入不同浓度的亚硝酸钠的计时电流曲线图;
图5为图4的局部放大图;
图6为图4得到的检测亚硝酸钠的i-c标准曲线图;
图7为修饰电极对持续搅拌的磷酸盐缓冲液的计时电流响应图。
(五)具体实施方式
下面通过具体实施例对本发明所述的技术方案给予进一步详细的说明,但有必要指出以下实施例只用于对发明内容的描述,并不构成对本发明保护范围的限制。
根据本发明的基于纳米多孔铂-氧化钴杂化材料的修饰电极,是在基底电极表面修饰纳米多孔铂-氧化钴杂化材料。
所述的纳米多孔铂-氧化钴杂化材料是在铝钴铂三元合金在去合金过程中自组装和氧化过程形成的互相稳定的纳米复合材料。可采用如下方法制备:高温熔融一定配比的纯铝、钴、铂成为合金,在冷却过程中利用冷轧技术将其做成薄片;取适量合金在氢氧化钠溶液中腐蚀掉铝,即可得到纳米多孔铂-氧化钴复合材料。
所述的修饰电极采用如下方法制备:将上述腐蚀后得到材料进行充分研磨,得到黑色粉末,并与碳粉、乙醇和Nafion进行超声混合,形成墨汁状悬浊液。将悬浊液滴涂在基底电极表面,晾干。
采用循环伏安法测定纳米多孔材料对亚硝酸盐的电催化活性,表明该修饰电极具有良好的电催化氧化能力,可用于亚硝酸盐的电化学检测。
基于所述的纳米多孔铂-氧化钴复合材料修饰电极检测亚硝酸盐的方法,包括以下步骤:
(1)配制亚硝酸钠标准溶液
(2)采用循环伏安技术检测亚硝酸钠
分别以裸的玻碳电极和纳米多孔铂-氧化钴复合材料修饰电极为工作电极,铂电极为对电极,饱和甘汞电极(SCE)为参比电极,扫描电位为0.2-1.2V (vs.SCE),扫速为0.1V/s,以pH为6.0的磷酸盐缓冲液为支持电解质。裸电极和修饰电极分别在无和有亚硝酸钠的溶液中进行循环伏安扫描,比较说明修饰电极对亚硝酸钠的响应情况。循环伏安峰电流增加说明修饰电极可应用于亚硝酸盐的检测。
(3)计时电流法(i-t)检测亚硝酸钠
以上述修饰电极为工作电极,铂电极为对电极,饱和甘汞电极(SCE)为参比电极,以pH为6.0的磷酸盐缓冲液为支持电解质,并持续搅拌。在+0.9V (vs.SCE)的检测电位下,记录修饰电极对连续滴加不同浓度的亚硝酸钠溶液后的响应电流,该电流呈阶梯状不断增大,即可得到i-t曲线,据此得出相应的电流-浓度(i-c)标准曲线,并得出线性范围、灵敏度和检测限(信噪比为3)。
(4)食品中亚硝酸盐的检测
通过样品在修饰电极上的响应电流值,通过标准曲线回归方程计算得出被测样品中亚硝酸钠的浓度。
实施例1:纳米多孔铂-氧化钴复合材料的制备
高温熔融纯铝、钴、铂(85:14:1)成为合金,在冷却过程中利用冷轧技术将其做成薄片;取100mg合金在0.1M氢氧化钠溶液中腐蚀掉铝,用超纯水进行清洗,直到清洗液呈中性,即可得到纳米多孔铂-氧化钴复合材料,干燥待用。
制备的纳米多孔铂-氧化钴复合材料的X射线衍射图(XRD)(图1中a曲线)显示,在去合金之前,可以观察到很多衍射峰,它们归属于金属铝和AlxCo相的面心立方结构。在去合金过程中,铝被氢氧化钠腐蚀,同时较活泼的钴被氧化为氧化钴,氧化钴和铂互相稳定。从图1中b曲线可以看出,之前的衍射峰消失并在37°和43°附近有较弱的宽峰,归属于氧化钴的(111)和(200)面,说明铝被完全腐蚀掉了。从扫描电子显微镜图(图2)腐蚀后的结果为纳米多孔结构。
实施例2:纳米多孔铂-氧化钴复合材料修饰电极的制备
(1)玻碳电极的抛光和清洗
将玻碳电极用超纯水冲洗两次,然后分别用0.5μm和0.05μm氧化铝粉浆打磨五分钟,用超纯水冲洗掉电极表面的粉浆,置于超纯水中超声一分钟,再用超纯水冲洗干净,晾干备用。
(2)电极修饰
将干燥的纳米材料研磨至均匀细致的粉末,取4mg纳米材料粉末、4mg碳粉、300μL 乙醇和100μL Nafion溶液进行超声混合,直至得到均匀的墨汁状悬浊液。取3μL悬浊液滴涂在玻碳电极表面,上方倒扣一烧杯,晾干至形成一层均匀的膜。
实施例3:修饰电极用于亚硝酸钠检测的循环伏安扫描
(1)配制亚硝酸钠标准溶液
称取0.0138g亚硝酸钠粉末,加入20mL磷酸盐缓冲液(0.1M,pH=6.0)溶解,得到0.01M的亚硝酸钠溶液。其它浓度的亚硝酸钠溶液按此方法配制。
(2)修饰电极对亚硝酸钠的循环伏安检测
附图3展示了修饰电极在空白的磷酸盐缓冲液(0.1M,pH6.0)中的循环伏安图(曲线a),裸玻碳电极(曲线b)和修饰电极(曲线c)在含0.01M亚硝酸钠的磷酸盐缓冲液中的循环伏安图。亚硝酸钠在修饰电极上的氧化峰电流大大高于在裸玻碳电极上的电流,而且氧化峰电位发生了负移,说明修饰的纳米多孔铂-氧化钴复合材料对亚硝酸盐具有良好的电氧化催化活性。
实施例4:修饰电极用于亚硝酸钠检测的计时电流检测
附图4是在+0.9V恒电位下,在持续搅拌的磷酸盐缓冲液中,连续滴加不容浓度的亚硝酸钠溶液,即可得到修饰电极对亚硝酸钠响应的i-t曲线,其中,支持电解质为磷酸盐缓冲液(0.1M, pH6.0)。玻碳电极的检测电位为+1.0V(vs.SCE),修饰电极的检测电位为+0.9V(vs.SCE)。为了更清晰的观察修饰电极对低浓度亚硝酸盐的电流响应,将160-500s和460-1250s放大图展示在附图5中。附图6是测量亚硝酸钠的标准曲线,可以看到标准曲线分为低浓度和高浓度两部分,曲线回归方程分别为:y=0.064x+1.71(R2=0.9949)和y=0.029x+135.3(R2=0.9936),线性范围为0.2μM-3.67mM和3.67-23.7mM,灵敏度分别为901.4 and408.5μAmM-1cm-2,最低检测限为0.067μM(信噪比为3),其中,曲线a为低浓度,曲线b为高浓度。
实施例5:修饰电极对亚硝酸钠检测的高选择性
附图7展示了各种盐类对修饰电极检测亚硝酸钠的影响,可以看出在磷酸盐缓冲液中依次加入0.04mM NaNO2、1mM NaCl、1mM MgCl2、1mM CaCl2、1mM NH4Cl、1mM NaH2PO4和0.04mMNaNO2,其中,检测电位为为+0.9 V (vs. SCE),只有亚硝酸盐响应非常迅速和灵敏,说明该修饰电极对亚硝酸盐的检测具有高选择性。

Claims (8)

1.一种基于纳米多孔铂-氧化钴杂化材料的修饰电极的制备方法,以玻碳电极为基底电极,其特征为,在基底电极表面修饰上纳米多孔铂-氧化钴杂化材料,具体制备步骤为:(1)高温熔融纯铝、钴、铂成为合金,在冷却过程中利用冷轧技术将其做成薄片,将薄片在氢氧化钠溶液中腐蚀掉铝,记得纳米多孔铂-氧化钴杂化材料;(2)将纳米多孔铂-氧化钴杂化材料、碳粉、乙醇和Nafion溶液超声混合,形成均匀的墨汁状悬浊液,将悬浊液滴涂于打磨光亮的玻碳电极表面,晾干,即得修饰电极。
2.根据权利要求1所述的基于纳米多孔铂-氧化钴杂化材料的修饰电极的制备方法,其特征在于:所述修饰电极为电流型传感器。
3.根据权利要求1所述的基于纳米多孔铂-氧化钴杂化材料的修饰电极的制备方法,其特征在于:步骤(1)中,纯铝、钴、铂的摩尔比为80-90:9.5-17:0.5-3。
4.根据权利要求1所述的基于纳米多孔铂-氧化钴杂化材料的修饰电极的制备方法,其特征在于:步骤(2)中,将纳米多孔铂-氧化钴杂化材料3-5mg、碳粉3-5mg、乙醇300-500μL和Nafion溶液80-130μL超声混合,形成均匀的墨汁状悬浊液。
5.根据权利要求1所述方法得到的修饰电极在食品中亚硝酸盐的电化学检测中的应用。
6.根据权利要求5所述的修饰电极在食品中亚硝酸盐的电化学检测中的应用,其特征为,包括如下步骤:(1)配制亚硝酸盐标准溶液;(2)采用三电极体系,以修饰电极为工作电极,铂电极为对电极,饱和甘汞电极为参比电极,在固定电位下,利用计时电流法测定不同浓度亚硝酸盐的电流-时间曲线,并绘制电流-亚硝酸盐浓度标准曲线;(3)将食品样品进行前处理和亚硝酸提取处理,作为待测样品,对待测样品进行电流-时间电化学检测,读取电化学响应电流,根据电流-亚硝酸盐浓度标准曲线计算得出食品中亚硝酸盐的含量。
7.根据权利要求6所述的修饰电极在食品中亚硝酸盐的电化学检测中的应用,其特征在于:步骤(2)中,固定电位为相对于饱和甘汞电极的+0.80V~+1.00V。
8.根据权利要求7所述的修饰电极在食品中亚硝酸盐的电化学检测中的应用,其特征在于:固定电位为相对于饱和甘汞电极的+0.90V。
CN201810602265.7A 2018-06-12 2018-06-12 基于纳米多孔铂-氧化钴杂化材料的修饰电极的制备方法及其应用 Active CN108956745B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810602265.7A CN108956745B (zh) 2018-06-12 2018-06-12 基于纳米多孔铂-氧化钴杂化材料的修饰电极的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810602265.7A CN108956745B (zh) 2018-06-12 2018-06-12 基于纳米多孔铂-氧化钴杂化材料的修饰电极的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN108956745A true CN108956745A (zh) 2018-12-07
CN108956745B CN108956745B (zh) 2021-03-16

Family

ID=64488590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810602265.7A Active CN108956745B (zh) 2018-06-12 2018-06-12 基于纳米多孔铂-氧化钴杂化材料的修饰电极的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN108956745B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522736A (zh) * 2020-12-07 2021-03-19 浙江工业大学 一种Co3O4纳米多孔阴极涂层的制备方法及其应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735733A (zh) * 2012-07-23 2012-10-17 重庆大学 测定溶液中亚硝酸盐浓度的电极及该电极的制作方法
CN202794099U (zh) * 2012-05-08 2013-03-13 长沙理工大学 一种用于检测亚硝酸盐的电化学修饰电极及检测装置
CN103406128A (zh) * 2013-08-13 2013-11-27 山东大学 一种具有纳米多孔结构的纳米颗粒的制备方法
CN103861582A (zh) * 2012-12-11 2014-06-18 浙江海洋学院 一种高晶面指数铂纳米催化剂的制备方法
CN104624200A (zh) * 2014-12-30 2015-05-20 西安交通大学 一种纳米多孔氧化铜负载贵金属催化材料的制备方法
CN105032385A (zh) * 2015-07-08 2015-11-11 华中科技大学 一种金属氧化物/铂纳米颗粒复合催化剂的制备方法
CN106000400A (zh) * 2016-05-12 2016-10-12 西安交通大学 三维稀土氧化物纳米棒构架负载贵金属纳米粒子制备方法
CN106053562A (zh) * 2016-05-12 2016-10-26 西北师范大学 一种检测亚硝酸钠的修饰电极及其制备方法和应用
CN107185553A (zh) * 2017-06-20 2017-09-22 浙江明华空气净化科技有限公司 一种室温下催化氧化去除甲醛的催化剂及其制备方法
CN107228889A (zh) * 2017-06-14 2017-10-03 上海海洋大学 一种氧化钴/介孔碳复合材料电化学传感器的制备及应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202794099U (zh) * 2012-05-08 2013-03-13 长沙理工大学 一种用于检测亚硝酸盐的电化学修饰电极及检测装置
CN102735733A (zh) * 2012-07-23 2012-10-17 重庆大学 测定溶液中亚硝酸盐浓度的电极及该电极的制作方法
CN103861582A (zh) * 2012-12-11 2014-06-18 浙江海洋学院 一种高晶面指数铂纳米催化剂的制备方法
CN103406128A (zh) * 2013-08-13 2013-11-27 山东大学 一种具有纳米多孔结构的纳米颗粒的制备方法
CN104624200A (zh) * 2014-12-30 2015-05-20 西安交通大学 一种纳米多孔氧化铜负载贵金属催化材料的制备方法
CN105032385A (zh) * 2015-07-08 2015-11-11 华中科技大学 一种金属氧化物/铂纳米颗粒复合催化剂的制备方法
CN106000400A (zh) * 2016-05-12 2016-10-12 西安交通大学 三维稀土氧化物纳米棒构架负载贵金属纳米粒子制备方法
CN106053562A (zh) * 2016-05-12 2016-10-26 西北师范大学 一种检测亚硝酸钠的修饰电极及其制备方法和应用
CN107228889A (zh) * 2017-06-14 2017-10-03 上海海洋大学 一种氧化钴/介孔碳复合材料电化学传感器的制备及应用
CN107185553A (zh) * 2017-06-20 2017-09-22 浙江明华空气净化科技有限公司 一种室温下催化氧化去除甲醛的催化剂及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LU LU: "Highly sensitive detection of nitrite at a novel electrochemical sensor based on mutually stabilized Pt nanoclusters doped CoO nanohybrid", 《SENSORS & ACTUATORS: B. CHEMICAL》 *
MUHAMMAD MEHMOOD SHAHID,ET AL.: "An electrochemical sensing platform based on a reduced graphene oxide-cobalt oxide nanocube@platinum nanocomposite for nitric oxide detection", 《J.MATER.CHEM.A》 *
TANTA SPATARU,ET AL.: "Electrochemical preparation and characterization of a cobalt oxide–platinum composite with promising capacitive and electrocatalytic features", 《J SOLID STATE ELECTROCHEM》 *
张锐 等: "Pt/Co3O4纳米复合材料的合成及其电催化性质", 《安庆师范学院学报(自然科学版)》 *
缪少军 等: "负载型Au(Pt)/Co3O4催化剂上H2与CO的共氧化行为", 《催化学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522736A (zh) * 2020-12-07 2021-03-19 浙江工业大学 一种Co3O4纳米多孔阴极涂层的制备方法及其应用
CN112522736B (zh) * 2020-12-07 2021-12-14 浙江工业大学 一种Co3O4纳米多孔阴极涂层的制备方法及其应用

Also Published As

Publication number Publication date
CN108956745B (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
Xu et al. Nanorod-aggregated flower-like CuO grown on a carbon fiber fabric for a super high sensitive non-enzymatic glucose sensor
Meng et al. Nonenzymatic biosensor based on CuxO nanoparticles deposited on polypyrrole nanowires for improving detectionrange
CN106226382B (zh) 纳米多孔铜/Cu(OH)2纳米线阵列传感器电极材料及其制备方法
Fu et al. An electrochemical sensor based on reduced graphene oxide and ZnO nanorods-modified glassy carbon electrode for uric acid detection
Zidan et al. Electrochemical oxidation of paracetamol mediated by nanoparticles bismuth oxide modified glassy carbon electrode
Chen et al. A portable micro glucose sensor based on copper-based nanocomposite structure
Chou et al. A Nonenzymatic Glucose Sensor Using Nanoporous Platinum Electrodes Prepared by Electrochemical Alloying/Dealloying in a Water‐Insensitive Zinc Chloride‐1‐Ethyl‐3‐Methylimidazolium Chloride Ionic Liquid
Li et al. Core–shell TiC/C nanofiber arrays decorated with copper nanoparticles for high performance non-enzymatic glucose sensing
Mazloum-Ardakani et al. Enhanced activity for non-enzymatic glucose oxidation on nickel nanostructure supported on PEDOT: PSS
CN103076375A (zh) 共轴实体/纳米多孔金/Co3O4复合电极材料的制备方法及应用
Salimi et al. Amperometric detection of dopamine in the presence of ascorbic acid using a nafion coated glassy carbon electrode modified with catechin hydrate as a natural antioxidant
Zhu et al. Bioanalytical application of the ordered mesoporous carbon modified electrodes
Fan et al. Highly sensitive electrochemical determination of cadmium (II) in environmental water based on the electrodeposited bismuth nanoparticles
Wang et al. A novel nitrite biosensor based on direct electron transfer of hemoglobin immobilized on a graphene oxide/Au nanoparticles/multiwalled carbon nanotubes nanocomposite film
Alkhawaldeh Platinum nanoparticle electrode modified iodine using cyclic voltammetry and chronoamperometry for determination of ascorbic acid
Shu et al. Electrochemical sensor for simultaneous determination of theophylline and caffeine based on a novel poly (folic acid)/graphene composite film modified electrode
Zheng et al. Nano-copper-MWCNT-modified glassy carbon electrode for selective detection of dopamine
Hu et al. Simultaneous determination of dopamine and ascorbic acid using the nano‐gold self‐assembled glassy carbon electrode
Wang et al. Electrochemical study of hydrogen peroxide detection on MnO2 micromaterials
Yin et al. Synthesis of an ordered nanoporous Fe 2 O 3/Au film for application in ascorbic acid detection
CN108956745A (zh) 基于纳米多孔铂-氧化钴杂化材料的修饰电极的制备方法及其应用
Can et al. Preparation of electrochemical sensor based on morphology-controlled platinum nanoparticles for determination of chemical oxygen demand
Lu et al. Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase entrapped in a self-supporting nanoporous gold electrode: a new strategy to improve the orientation of immobilized enzymes
Zhang et al. High performance metal oxide based sensing device using an electrode with a solid/liquid/air triphase interface
Ling et al. Electrochemical oxidation of dobutamine on a magnesium oxide microflowers–nafion composite film modified glassy carbon electrode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 250000 Science and Technology Park of Xincheng University in the West of Jinan City, Changqing District, Jinan City, Shandong Province

Patentee after: Qilu University of Technology (Shandong Academy of Sciences)

Country or region after: China

Address before: 250000 Science and Technology Park of Xincheng University in the West of Jinan City, Changqing District, Jinan City, Shandong Province

Patentee before: Qilu University of Technology

Country or region before: China