CN108949821B - 通过抑制cost1基因的表达提高植物抗旱性的方法 - Google Patents

通过抑制cost1基因的表达提高植物抗旱性的方法 Download PDF

Info

Publication number
CN108949821B
CN108949821B CN201810901473.7A CN201810901473A CN108949821B CN 108949821 B CN108949821 B CN 108949821B CN 201810901473 A CN201810901473 A CN 201810901473A CN 108949821 B CN108949821 B CN 108949821B
Authority
CN
China
Prior art keywords
gene
ser
cost1
leu
lys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810901473.7A
Other languages
English (en)
Other versions
CN108949821A (zh
Inventor
包岩
宋维萌
张洪霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ludong University
Original Assignee
Ludong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ludong University filed Critical Ludong University
Priority to CN201810901473.7A priority Critical patent/CN108949821B/zh
Priority to PCT/CN2018/119255 priority patent/WO2020029487A1/zh
Publication of CN108949821A publication Critical patent/CN108949821A/zh
Application granted granted Critical
Publication of CN108949821B publication Critical patent/CN108949821B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种通过抑制COST1基因的表达提高植物抗旱性的方法,所述COST1基因的核苷酸序列如SEQ ID NO:1所示,COST1基因编码的蛋白序列如SEQ ID No.2所示的氨基酸序列。COST1基因的同源基因包括番茄SlCOST1基因、水稻OsCOST1基因、杨树PtCOST1和PtCOST2基因以及其他物种中与COST1任何核苷酸或蛋白区域片段同源度在40%以上的其他基因,对于培育出更多抗旱的转基因植物打下基础,该方法可以应用于植物遗传改良。

Description

通过抑制COST1基因的表达提高植物抗旱性的方法
技术领域
本发明涉及基因工程技术领域,具体涉及一种通过敲除COST1基因或抑制COST1基因的表达提高植物抗旱性的方法。
背景技术
在当今全球变暖、淡水资源极端短缺的大环境下,如何保证粮食稳产并养活全球75亿人口是个极大挑战。培育更加高产、抗旱的植物新品种刻不容缓。
近年来,在二代测序的推动下,大量植物的基因组序列被公布。如何深度挖掘这些已有的基因组序列的功能,寻找新的有自主知识产权的功能基因成为新的挑战。如何将这些基因用于培育更加强大的新作物品种迫在眉睫。传统的遗传育种由于需要经过杂交、自交等多个世代,耗时且漫长,同时有遗传背景不清等问题。利用目前已经成熟的生物技术手段,包括目前非常成熟的RNAi干扰技术,可以迅速、精准地控制某些基因的表达来显著缩短育种时间,使之从而成为培育新品种的一个快速有效的手段。
发明内容
本发明的目的在于提供一种通过敲除COST1基因或抑制COST1基因的表达来提高植物抗旱性的方法。
具体地,本发明利用基因敲除和小RNA干扰技术,通过转基因实现敲除或者下调一个拟南芥DUF641家族COST1(基因ID:AT2G45260)及其类似基因在植物体内的表达量来诱导细胞自噬等逆境反应,从而提高抗旱性(气孔快速关闭,失水率降低)。
进一步的,通过小RNA干扰技术降低该基因在水稻、番茄和杨树等类似单、双子叶植物中的同源基因的表达,相应的转基因植物表现出抗旱的表型,因此利用该转基因技术获得的转基因植物均落入本发明的保护范围之内。
所述COST1基因的核苷酸序列如SEQ ID NO:1所示;COST1基因编码的蛋白序列如SEQ ID No.2所示的氨基酸序列。
番茄中COST1基因的同源基因为SlCOST1基因,所述SlCOST1基因的核苷酸序列如SEQ ID NO:3所示,SlCOST1基因编码的蛋白序列如SEQ ID No.4所示的氨基酸序列。
水稻中COST1基因的同源基因为OsCOST1基因,所述OsCOST1基因的核苷酸序列如SEQ ID NO:5所示,OsCOST1基因编码的蛋白序列如SEQ ID No.6所示的氨基酸序列。
杨树中COST1基因的同源基因为PtCOST1基因和PtCOST2基因,所述PtCOST1基因的核苷酸序列如SEQ ID NO:7所示,所述PtCOST2基因的核苷酸序列如SEQ ID NO:8所示。PtCOST1基因编码的蛋白序列如SEQ ID No.9所示的氨基酸序列,PtCOST2基因编码的蛋白序列如SEQ ID No.10所示的氨基酸序列。
并且,本发明所保护的COST1基因的同源基因不仅仅限于上述所列,还包括其他物种中与COST1任何核苷酸或蛋白区域片段同源度在40%以上的基因。
本发明具有如下优点:
本发明通过基因敲除和小RNA干扰技术,敲除拟南芥中的COST1基因,提高了植物抗旱性。COST1基因以及其他物种中与COST1任何核苷酸或蛋白区域片段同源度在40%以上的其他基因发现,对于培育出更多抗旱的转基因植物打下基础,该方法可以应用于植物遗传改良。
附图说明
图1是拟南芥COST1与其它三个高度同源蛋白COST2、COST3和COST4的蛋白序列比对;
图中,黑色线条下方指示COST蛋白的保守的DUF641/COST结构域。序列比对借助CLUSTALW软件(http://www.clustal.org/clustal2/);
图2是COST1突变体的的鉴定。
图中,(a)图形显示COST1的基因结构。灰色方块为非编码区,黑色方块为编码区,三角区显示T-DNA插入位置,F和R表示用于PCR鉴定的引物的位置。(b)为基因组PCR显示T-DN插入COST1突变体纯合,WT(Wild-type)表示野生型。LBal为T-DNA插入特异引物,ACT2(ID:AT3G18780)基因用于作为内标。(c)为定量PCR显示COST1突变体中的COST1基因转录被完全敲除。
图3是COST1基因家族的进化分析及拟南芥基因敲除突变体对发育的影响;图中,(a),COST1蛋白结构示意图,下方数字表示氨基酸位置。AT2G45260为COST1基因的ID号码;保守的COST/DUF641结构域位于COST1蛋白的氮端(N)的第31个氨基酸到第159个氨基酸;碳端(C)相对分化比较大。(b),COST1家族蛋白进化分析。下划线后面的名称为各个物种中对应基因的ID。圆圈表示四个拟南芥的COST蛋白,对应的基因ID的右侧为FPKM(FragmentsPer Kilobase of transcript per Million)值,其中拟南芥四个COST基因用圆圈表示。(c),对四个拟南芥COST基因的qPCR检测结果;(d),COST1突变体对拟南芥生长发育的影响。
图4是揭示COST1能够被其自身基因组DNA片段互补。
图中,(a),利用COST1基因的基因组序列互补cost1突变体,并对WT,cost1以及两个独立株系gCOST1#1和gCOST#5进行抗旱性检测。
(b),定量PCR检测突变体和两个互补株系中COST1基因的转录表达。
(c),对WT野生型和cost1突变体以及两个独立互补株系gCOST1#1和gCOST#5的失水率检测。
图5用来说明抑制COST1基因表达提高植物抗旱性;
(a),对WT,cost1以及两个COST1基因的RNAi转基因株系RNAi#1和RNAi#3进行抗旱性测试。
(b),对(a)中的WT,cost1以及两个RNAi转基因株系RNAi#1和RNAi#3中COST1基因的转录进行定量PCR检测。
(c),对WT,cost1以及两个RNAi转基因株系RNAi#1和RNAi#3的失水速率检测。
(d),对干旱处理前后的WT和cost1中的逆境相应基因进行定量PCR检测。
图6针对番茄中COST1同源基因SlCOST1(ID:Solyc01g091120)的三个RNAi独立转基因抑制表达株系与非转基因对照株系抗旱性比较。
图7针对水稻中COST1同源基因OsCOST1(ID:Os10g23220)的两个RNAi独立转基因抑制表达株系与非转基因对照株系的抗旱性比较。
图8同时抑制杨树中的COST1的两个同源基因PtCOST1(Potri.014G067600)和PtCOST2(Potri.002G145900)的表达,得到的三个RNAi独立转基因抑制表达株系与非转基因对照株系抗旱性比较。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明涉及的科学术语如下:
*“目的基因”,系指模式植物拟南芥COST1及其一系列同源基因。
*“类似基因”,系指任何同“目的基因”编码序列中的任何区域同源性在40%以上的DNA片段(基因片段),或任何DNA片段(基因片段),其编码的氨基酸序列同“目的基因”编码的氨基酸序列中任何区域有40%以上的同源率。“类似基因”可以是从任何生物基因组中克隆的,也可以是人工合成或用PCR在体外扩增的。
*“基因片段”,系指长度在300个碱基对(bp)以上的同“目的基因”或“类似基因”DNA序列中的任何域区同源率在40%以上的任何DNA片段,或任何编码100个氨基酸以上的DNA片段,其编码的氨基酸序列同“目的基因”或“类似基因”编码的氨基酸序列中的任何区域同源性在40%以上。该基因片段可以是从任何生物基因组中克隆的,也可以是人工合成的或用PCR在体外扩增的。
*“受体植物”系指水稻、番茄和杨树等单、双子叶植物。
*“转基因”,系指通过任何方法导入植物个体一段外源的双链脱氧核糖核苷酸(DNA)片段,可以是游离在染色体外,也可以整合到受体植物染色体的基因组上;可以通过生殖过程传递到后代,也可以不传递到后代。外源基因可以是从任何生物基因组中克隆的,也可以是人工合成的或用PCR在体外扩增的。
实施例1
一、COST1基因的筛选和获得
通过反向遗传学手段,利用转录组、基因组和蛋白组学等多种生物信息学手段筛选得到一个全新的拟南芥DUF641家族基因COST1(Constitutively Stressed 1),经过测序得到其核苷酸序列如序列SEQ ID NO.1所示,其蛋白序列如SEQ ID NO.2所示;蛋白序列比对显示,除了COST1,拟南芥中还有其它三个蛋白COST2、COST3和COST4与COST1高度同源(图1)。
二、COST1基因的同源分析及COST1功能验证
从ABRC(Arabidopsis Biological Research Center,www.arabidopsis.org)拟南芥突变体库订购得到COST1的T-DNA插入植株SALK_064001。该突变体的T-DNA的插入位置为第一个也是唯一一个外显子的内部且为纯合体(图2a,b)。拟南芥的的种植和突变体鉴定方法参照括号中的文献所述方法(Bao et al.,2014)。
经过实时定量PCR鉴定显示纯合的COST1突变体该基因的表达被完全敲除(图2c)。
对其蛋白结构分析显示,DUF641/COST结构域位于该蛋白的N(氮)端且高度保守(图3a)。
遗传进化分析显示COST1等UDF641家族蛋白属于植物特有的蛋白且广泛分布于包括苔藓及其它更加高等的植物中(图3b),图中显示的物种包括Arabidopsis thaliana,Arabidopsis lyrata,Capsella rubella,Brassica rapa,Populus trichocarpa,Solanumlycopersicum,Medicago truncatula,Aquilegia coerulea,Brachypodium distachyon,Oryza Sativa,Zea mays,Amborella trichopoda,Picea abies和Physcomitrellapatens。
通过对四个拟南芥COST基因的qPCR检测结果,显示只有COST1有表达,与COST1基因高度同源的其它三个基因COST2、COST3、COST4在转录水平都几乎没有表达(图3c)。同时,通过COST1突变体对发育影响研究表明COST1基因完全敲除的COST1突变体植株变小,矮化及叶色加深等(图3d)。
为了进步一证明该突变体的抗旱表型是由COST1基因敲除造成的,我们将COST1基因的基因组片段gCOST1克隆并转化到COST1突变体背景下。具体操作为设计引物扩增gCOST1全长编码序列,获得一个长约2502bp的DNA片段,然后将其连入EcoRV酶切的克隆载体pBlueScript II KS(pKS;Stratagene)中,酶切鉴定,将测序正确的质粒利用EcoRI和SalI进行酶切,酶切片段经回收后连入pcambia1300载体中。构建载体所用引物gCOST1F和gCOST1R(见表1):
gCOST1F:CGCCGGAGAAAGTGTAAGAAAC
gCOST1R:TCATTCATGCTCTGTTTTCCTCTC
结果显示,两个独立的转基因株系gCOST1#1和gCOST#5都能把COST1突变体的表型恢复到野生型(WT)的水平(图4a)。定量PCR也显示,两个互补株系中COST1的表达量和野生型对照非常接近(图4b)。四周大小的植株,剪下大约10片莲座叶,每隔30分钟测一次重量,叶片失水率的结果也表明COST1低失水率的表型能够被期自身基因组片段互补(图4c)。因此,我们得出结论,造成COST1突变体的抗旱表型确实是由COST1基因敲除引起的。
为了进一步确认COST1突变体表现出的极度抗旱和低叶片失水率低的表型(图4c)。我们通过构建植物RNAi干扰载体,载体构建具体做法为,设计引物从COST1的全长cDNA扩增获得一个长332bp的DNA片段,然后将其连入SmaI酶切的克隆载体pBlueScript II KS(pKS;Stratagene)中,酶切鉴定,将测序正确的质粒利用酶切并回收后连入pcambia1301-RNAi载体中。构建载体所用引物为(见表1):
RNAi-COST1F:CGCCGGAGAAAGTGTAAGAAAC
RNAi-COST1R:TCATTCATGCTCTGTTTTCCTCTC
利用根癌农杆菌介导将RNAi载体转入拟南芥中,获得的两个独立的转基因RNAi株系。
对四周大小的WT,COST1以及两个RNAi株系控水两周,突变体和RNAi株系明显抗旱(图5a)。
qPCR定量检测两个RNAi株系中COST1基因的表达量。结果表明在RNAi#1和RNAi#3两个转基因株系中COST1基因表达量分别有约50%和70%的降低(图5b)。
剪取四周大小植株的莲座叶约十片,于天平上每隔半个小时测定重量。结果显示COST1突变体和两个COST1基因的RNAi植株失水率降低(图5c)。
对十天大小的WT幼苗进行脱水6个小时处理,通过qPCR检测所显示内标基因的表达。对COST1突变体及其对应的野生型材料进行处理(干旱)和不处理,结果显示,与WT对比,在没有处理的COST1突变体中,经qPCR检测,大量逆境相关基因的表达量已经明显上调,这表明COST1是一个组成型逆境响应突变体。与干旱处理的WT对比,干旱处理的COST1突变体背景下,逆境响应基因的表达量上调的更多,也就是qPCR验证部分有代表性的逆境响应基因在COST1中更加明显的上调(图5d)。检测的逆境相应基因包括RD29A,ABI2,ABI5,PP2C,RD22,COR154,KIN1,COR414-TM1和LTP3。
三、抑制COST1基因的同源基因表达在其他物种抗旱性进行鉴定
为了更加广泛的验证COST1基因在其他物种应用的价值。我们通过蛋白同源序列比对,找到拟南芥COST1基因在其他物种中的同源基因(图4b)。选择进一步研究的植物为单子叶模式植物水稻,双子叶植物番茄和树类植物杨树。通过构建遗传转化的pCAMBIA系列载体(构建载体所用引物见附录9),利用RNAi干扰技术来抑制对相应的同源基因的表达量;并进一步对这些转基因植物作抗旱性检测。
首先,我们利用番茄SlCOST1(ID:Solyc01g091120,SEQ ID NO:3)基因特异引物RNAi-SlCOST1F和RNAi-SlCOST1R扩增得到一个316bp的DNA片段。通过构建遗传转化载体并转化番茄愈伤组织得到三个独立的番茄RNAi株系L1、L19和L2。对3周大小的野生型(WT)和三个独立转基因株系L19、L1和L2控水处理2周后拍摄具有代表性的照片并展示。对三个独立RNAi转基因株系的干旱实验显示,番茄COST1同源基因下调后的转基因植物的抗旱性明显提高(图6)。番茄的遗传转化方法参照括号中的文献所述方法(Zhang et al.,2001)。
其次,我们利用水稻中COST1同源基因OsCOST1(ID:Os10g23220,SEQ ID NO:5)基因特异引物RNAi-OsCOST1F和RNAi-OsCOST1R扩增得到一个391bp的DNA片段。通过构建遗传转化的pCAMBIA系列载体(构建载体所用引物序列见表1)并转化水稻愈伤组织得到三个独立的水稻RNAi株系。对4周大小的野生型(WT)和两个独立转基因株系RNAi-OsCOST1-2和RNAi-OsCOST1-11用20%的PEG处理2周后拍摄具有代表性的照片并展示。对水稻的两个独立RNAi转基因株系的干旱实验显示,水稻COST1同源基因下调后的植物的抗旱性明显提高(图7)。水稻的遗传转化参照括号中的文献所述方法(Toki et al.,2006)。
再次,我们利用杨树中COST1同源基因PtCOST1(Potri.014G067600,SEQ ID NO:7)和PtCOST2(Potri.002G145900,SEQ ID NO:8)基因特异引物RNAi-PtCOST1F和RNAi-PtCOST1R,RNAi-PtCOST2F和RNAi-PtCOST2R分别扩增得到一个128bp和299bp的DNA片段。通过构建遗传转化的pCAMBIA系列载体(构建载体所用引物见表1)并转化杨树愈伤组织得到三个独立的杨树RNAi株系。对六周大小的野生型(WT)和三个独立RNAi独立转基因株系RNAi-PtCOST1,2-1、RNAi-PtCOST1,2-5和RNAi-PtCOST1,2-9干旱处理三周后拍摄具有代表性的一张照片。对杨树的三个RNAi转基因株系的干旱检测显示,同时敲除杨树中的COST1的两个同源基因PtCOST1和PtCOST2后得到的三个RNAi独立转基因株系更加抗旱(图8)。杨树的遗传转化参照括号中的文献所述方法(Wang et al.,2011)。
表1实验中用到的引物
Figure BDA0001759144500000091
Figure BDA0001759144500000101
注:*小写字母表示加入到引物中的限制性酶切位点以及保护碱基。
虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,其使用范围也不限于本专利中所述的三个作物,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
本发明所引用的文献具体如下:
BaoY,Wang CT,Jiang CM,Pan J,Zhang GB,Liu H,Zhang HX(2014)The tumornecrosis factor receptor-associated factor(TRAF)-like family protein SEVEN INABSENTIA 2(SINA2)promotes drought tolerance in an ABA-dependent manner inArabidopsis.New Phytol.202(1):174-87.
Toki S,Hara N,Ono K,Onodera H,Tagiri A,Oka S,Tanaka H(2006).Earlyinfection of scutellum tissue with Agrobacterium allows high-speedtransformation of rice.Plant J.47(6):969-976.
Wang HH,Wang CT,LiuH,Tang RJ,Zhang HX(2011)An efficientAgrobacterium-mediated transformation and regeneration system for leafexplants of two elite aspen hybrid clones Populus alba×P.Berolinensis andPopulus Davidiana×P.Bolleana.Plant Cell Rep.30:2037-2044.
Zhang HX,Blumwald E(2001)Transgenic salt-tolerant tomato plantsaccumulate salt in foliage but not in fruit.Nat Biotechnol.19:765-768.
序列表
<110> 鲁东大学
<120> 通过抑制COST1基因的表达提高植物抗旱性的方法
<130> 2018
<160> 10
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1278
<212> DNA
<213> Arabidopsis thaliana
<400> 1
atgctaccaa gtgggttgaa agaaacccaa ctccgtgaga gcaacaacaa ccaaaaagtc 60
catcctcaac caatggaaga gtctatcaat cagaatcctg aagctatgga agcacttatc 120
tccaatctct tcggaaacat ctcgtctttg aaatctgctt atatcgagct tcaaagtgct 180
catactcctt acgatcccga gaagattcag gcagcggaca aagttgtcat ttctgaactc 240
aagaatcttt ccgaaatgaa gcatttttac agagagaata accccaaacc tgtatgtgtc 300
tctccacaag actctcgttt agctgcagag atccaagagc agcagagttt gttgaagact 360
tatgaggtta tggtgaagaa gtttcagtct gagattcaga acaaggattc tgagatcacg 420
cagatgctac agaagattga ggaagcaaac cagaaacggc ttaagcttga gaagaatctt 480
aagttaagag gaatgtctac aaacgaaggt tctaatggag atggaaatat gcagtttcct 540
gacttaacta ctgaactcta tgtatctact tacgaagctg ctgctaaagc cgtgcacgat 600
ttctccaagc cgctaatcaa catgatgaaa gcagcaggat gggatcttga ttctgcagcc 660
aattctattg agcctgatgt tgtttacgcc aagaggcctc acaagaaata tgcatttgaa 720
tcatacatat gccaaaggat gttcagtggg tttcagcaga agaacttctc agtaaactca 780
gagagtgctg cggttatggc caatgatgac acagacacct ttttccgcca gtttcttgct 840
ctcaaggaca tggatccact agatgctcta ggtacaaacc ctgattccaa ctttggtata 900
ttctgcagga gcaagtatct cctcttggtc cacccaaaga tggaagcttc tttctttgga 960
aatctagatc agcgtgacta cgtgacagga ggtgggcacc cgaggactgc gttttaccag 1020
gccttcttaa aacttgcaaa gtcgatatgg atcttgcaca ggcttgctta ctcttttgat 1080
ccagctgcaa agatcttcca agtgaaaaag ggtagtgagt tctctgattc atacatggaa 1140
agtgttgtga agaacatagt tgtggatgaa aaagaagaga acccaagagt tggtcttatg 1200
gttatgcctg ggttttggat tggtggcagt gtcattcaaa gccgagttta tgtttctggt 1260
gtgaaggtcc ttgagtga 1278
<210> 2
<211> 425
<212> PRT
<213> Arabidopsis thaliana
<400> 2
Met Leu Pro Ser Gly Leu Lys Glu Thr Gln Leu Arg Glu Ser Asn Asn
1 5 10 15
Asn Gln Lys Val His Pro Gln Pro Met Glu Glu Ser Ile Asn Gln Asn
20 25 30
Pro Glu Ala Met Glu Ala Leu Ile Ser Asn Leu Phe Gly Asn Ile Ser
35 40 45
Ser Leu Lys Ser Ala Tyr Ile Glu Leu Gln Ser Ala His Thr Pro Tyr
50 55 60
Asp Pro Glu Lys Ile Gln Ala Ala Asp Lys Val Val Ile Ser Glu Leu
65 70 75 80
Lys Asn Leu Ser Glu Met Lys His Phe Tyr Arg Glu Asn Asn Pro Lys
85 90 95
Pro Val Cys Val Ser Pro Gln Asp Ser Arg Leu Ala Ala Glu Ile Gln
100 105 110
Glu Gln Gln Ser Leu Leu Lys Thr Tyr Glu Val Met Val Lys Lys Phe
115 120 125
Gln Ser Glu Ile Gln Asn Lys Asp Ser Glu Ile Thr Gln Met Leu Gln
130 135 140
Lys Ile Glu Glu Ala Asn Gln Lys Arg Leu Lys Leu Glu Lys Asn Leu
145 150 155 160
Lys Leu Arg Gly Met Ser Thr Asn Glu Gly Ser Asn Gly Asp Gly Asn
165 170 175
Met Gln Phe Pro Asp Leu Thr Thr Glu Leu Tyr Val Ser Thr Tyr Glu
180 185 190
Ala Ala Ala Lys Ala Val His Asp Phe Ser Lys Pro Leu Ile Asn Met
195 200 205
Met Lys Ala Ala Gly Trp Asp Leu Asp Ser Ala Ala Asn Ser Ile Glu
210 215 220
Pro Asp Val Val Tyr Ala Lys Arg Pro His Lys Lys Tyr Ala Phe Glu
225 230 235 240
Ser Tyr Ile Cys Gln Arg Met Phe Ser Gly Phe Gln Gln Lys Asn Phe
245 250 255
Ser Val Asn Ser Glu Ser Ala Ala Val Met Ala Asn Asp Asp Thr Asp
260 265 270
Thr Phe Phe Arg Gln Phe Leu Ala Leu Lys Asp Met Asp Pro Leu Asp
275 280 285
Ala Leu Gly Thr Asn Pro Asp Ser Asn Phe Gly Ile Phe Cys Arg Ser
290 295 300
Lys Tyr Leu Leu Leu Val His Pro Lys Met Glu Ala Ser Phe Phe Gly
305 310 315 320
Asn Leu Asp Gln Arg Asp Tyr Val Thr Gly Gly Gly His Pro Arg Thr
325 330 335
Ala Phe Tyr Gln Ala Phe Leu Lys Leu Ala Lys Ser Ile Trp Ile Leu
340 345 350
His Arg Leu Ala Tyr Ser Phe Asp Pro Ala Ala Lys Ile Phe Gln Val
355 360 365
Lys Lys Gly Ser Glu Phe Ser Asp Ser Tyr Met Glu Ser Val Val Lys
370 375 380
Asn Ile Val Val Asp Glu Lys Glu Glu Asn Pro Arg Val Gly Leu Met
385 390 395 400
Val Met Pro Gly Phe Trp Ile Gly Gly Ser Val Ile Gln Ser Arg Val
405 410 415
Tyr Val Ser Gly Val Lys Val Leu Glu
420 425
<210> 3
<211> 1266
<212> DNA
<213> Solanum lycopersicum
<400> 3
atgcaaccca gtggtgcaaa agatacacaa ctccgtgaga gcaacagcca gaaggtccat 60
ccacaaccta tggaggaagc cgcaaaccaa aatcctgaag cagttgaagc tgtggtatct 120
aggattttta caaatatctc ttccctgaaa tctgcctaca ttcaactcca atctgctcat 180
actccttatg accctgacaa aatccaagct gccgataaac ttgtaatttc agagctgaag 240
aatctctctg aactgaagca cttctacagg gagcataatc ccaaacctgt gtgtgtttca 300
cctcaggatt ctcgcttggc tgcagagatc caagaacagc agagtttgtt gaaaacatat 360
gaagttatgg tgaagaagtt tcaatctgag attcagaaca aagattctga gattcttcag 420
ctgcagcagc agatactaga ggccagtcag aagcggatta aattggagaa aaaccttaag 480
ctcaggggct tgtcagagaa agaatcggag aatgcagtta acgaggatgg gcatttctct 540
gtggacctaa ctcctgagct tttcaggtca gccgtggaag gtgcttatag ggccattcac 600
gacttctcta agccactgat caacatgatg aaagctgctg gttgggatct tgatgctgca 660
gcaaactcca tagagccaga tctagtttat gcaaagagag ctcacaagaa atatgctttt 720
gaatcacata tctgccaaag aatgtttgct gaatttcaga atgagttctt ctctgtgaaa 780
tatgagaatt cagctgtccc caatgatagt ttttaccacc agtatcttgc attacgggaa 840
tcagatccac tggatgttgt agtccaaaat cccaagtccc tttttgggaa cttttgccgg 900
aagaaatatt tggaggtggt tcattcgaag atggagtctg cattttttgg gaacttggat 960
cagcgaaact atattatgag tggtggacac ccaagaacag ctttctatca ggcctttctg 1020
aaactaacca agtcaatttg gcttttgcat aggttggcat attcatttga tcctccagtc 1080
agggttttcc aagtccagag gggaaccgac ttctcagagg tttatatgga aagtgttctg 1140
gaaaatttca ctgtagatga aaacgagaag cctaaggttg gtctaatggt aatgcctggt 1200
ttctatgtcg ggggcagtgc gatcaagtgc caagtctacc taactggcgt gaaggttacc 1260
gaatga 1266
<210> 4
<211> 421
<212> PRT
<213> Solanum lycopersicum
<400> 4
Met Gln Pro Ser Gly Ala Lys Asp Thr Gln Leu Arg Glu Ser Asn Ser
1 5 10 15
Gln Lys Val His Pro Gln Pro Met Glu Glu Ala Ala Asn Gln Asn Pro
20 25 30
Glu Ala Val Glu Ala Val Val Ser Arg Ile Phe Thr Asn Ile Ser Ser
35 40 45
Leu Lys Ser Ala Tyr Ile Gln Leu Gln Ser Ala His Thr Pro Tyr Asp
50 55 60
Pro Asp Lys Ile Gln Ala Ala Asp Lys Leu Val Ile Ser Glu Leu Lys
65 70 75 80
Asn Leu Ser Glu Leu Lys His Phe Tyr Arg Glu His Asn Pro Lys Pro
85 90 95
Val Cys Val Ser Pro Gln Asp Ser Arg Leu Ala Ala Glu Ile Gln Glu
100 105 110
Gln Gln Ser Leu Leu Lys Thr Tyr Glu Val Met Val Lys Lys Phe Gln
115 120 125
Ser Glu Ile Gln Asn Lys Asp Ser Glu Ile Leu Gln Leu Gln Gln Gln
130 135 140
Ile Leu Glu Ala Ser Gln Lys Arg Ile Lys Leu Glu Lys Asn Leu Lys
145 150 155 160
Leu Arg Gly Leu Ser Glu Lys Glu Ser Glu Asn Ala Val Asn Glu Asp
165 170 175
Gly His Phe Ser Val Asp Leu Thr Pro Glu Leu Phe Arg Ser Ala Val
180 185 190
Glu Gly Ala Tyr Arg Ala Ile His Asp Phe Ser Lys Pro Leu Ile Asn
195 200 205
Met Met Lys Ala Ala Gly Trp Asp Leu Asp Ala Ala Ala Asn Ser Ile
210 215 220
Glu Pro Asp Leu Val Tyr Ala Lys Arg Ala His Lys Lys Tyr Ala Phe
225 230 235 240
Glu Ser His Ile Cys Gln Arg Met Phe Ala Glu Phe Gln Asn Glu Phe
245 250 255
Phe Ser Val Lys Tyr Glu Asn Ser Ala Val Pro Asn Asp Ser Phe Tyr
260 265 270
His Gln Tyr Leu Ala Leu Arg Glu Ser Asp Pro Leu Asp Val Val Val
275 280 285
Gln Asn Pro Lys Ser Leu Phe Gly Asn Phe Cys Arg Lys Lys Tyr Leu
290 295 300
Glu Val Val His Ser Lys Met Glu Ser Ala Phe Phe Gly Asn Leu Asp
305 310 315 320
Gln Arg Asn Tyr Ile Met Ser Gly Gly His Pro Arg Thr Ala Phe Tyr
325 330 335
Gln Ala Phe Leu Lys Leu Thr Lys Ser Ile Trp Leu Leu His Arg Leu
340 345 350
Ala Tyr Ser Phe Asp Pro Pro Val Arg Val Phe Gln Val Gln Arg Gly
355 360 365
Thr Asp Phe Ser Glu Val Tyr Met Glu Ser Val Leu Glu Asn Phe Thr
370 375 380
Val Asp Glu Asn Glu Lys Pro Lys Val Gly Leu Met Val Met Pro Gly
385 390 395 400
Phe Tyr Val Gly Gly Ser Ala Ile Lys Cys Gln Val Tyr Leu Thr Gly
405 410 415
Val Lys Val Thr Glu
420
<210> 5
<211> 1269
<212> DNA
<213> Oryza sativa
<400> 5
atggtactgc caggctctaa ggagtctcaa aattatgata gcaacaacca gaaggttcat 60
cctcaaccaa ttgacgaaaa catgaatcag aacatgggct caatggacac catgattgga 120
aggatattca acaatatatc ctctttaaag tctgcataca ttcagctgca ggaagctcac 180
accccatatg acccagacaa gatccaggct gcagatcagc ttgtcataga ggagctcacg 240
aagctctcag agctcaagca tgcttacaga gaaaagaatc ctaagcctgt agcggcaaca 300
cctcaagatg cacggctgct ttctgaaata caagagcaac agaacttgct gaagacatat 360
gaggtcatgg taaagaagtt ccagtcccaa atccagacta gagatactga gataacacat 420
ttacagcagc aaatcgatga ggctaaactt cggaaatcaa agcttgagaa gaaactgaaa 480
caaaggggct tactcaacaa ggaatctgag gaatctgatg atgaagacaa ctacttttcc 540
atcgagttga caccaagttt atttacatct gctgttgata atgcatacca atctatacat 600
gatttttcaa agcctttgat caacatgatg aaagctgcag ggtgggatct tgatgctgct 660
gctaatgcaa ttgaacctgc tgtggtttac acaaggaggg ctcacaaaaa gtatgctttc 720
gagtcatata tttgccaaag aatgtttggt ggtttccaag aagagagctt ttctgttaag 780
gctgctaaca ttactgtttc caatgaggct ttcttccatc agttccttgc agtacgagcc 840
atggatcctt tggatgtctt gagccaaaat cctgattcgg tttttgggaa gttttgcaga 900
agcaagtacc tattacttgt gcacccaaaa atggaaggct ctttctttgg taacatggat 960
cagagaaact atgtaatgag cggtggccat ccgaggacac ctttctatca agcatttctg 1020
aagttagcga agtcgatatg gttactgcac aggctggcat actcctttga tccaaaagtc 1080
aaggtctttc aagtgaagaa ggggagtgac ttctccgaaa ttcacatgga aagtgttgtc 1140
aagaacatca tcctagatga aggtgcagag aggcctaaag ttggcctaat ggtgatgcct 1200
gggttcttga ttgggactag tgtcatacaa tctcgggtgt atctttcagg tgtcaagtct 1260
gctgattga 1269
<210> 6
<211> 422
<212> PRT
<213> Oryza sativa
<400> 6
Met Val Leu Pro Gly Ser Lys Glu Ser Gln Asn Tyr Asp Ser Asn Asn
1 5 10 15
Gln Lys Val His Pro Gln Pro Ile Asp Glu Asn Met Asn Gln Asn Met
20 25 30
Gly Ser Met Asp Thr Met Ile Gly Arg Ile Phe Asn Asn Ile Ser Ser
35 40 45
Leu Lys Ser Ala Tyr Ile Gln Leu Gln Glu Ala His Thr Pro Tyr Asp
50 55 60
Pro Asp Lys Ile Gln Ala Ala Asp Gln Leu Val Ile Glu Glu Leu Thr
65 70 75 80
Lys Leu Ser Glu Leu Lys His Ala Tyr Arg Glu Lys Asn Pro Lys Pro
85 90 95
Val Ala Ala Thr Pro Gln Asp Ala Arg Leu Leu Ser Glu Ile Gln Glu
100 105 110
Gln Gln Asn Leu Leu Lys Thr Tyr Glu Val Met Val Lys Lys Phe Gln
115 120 125
Ser Gln Ile Gln Thr Arg Asp Thr Glu Ile Thr His Leu Gln Gln Gln
130 135 140
Ile Asp Glu Ala Lys Leu Arg Lys Ser Lys Leu Glu Lys Lys Leu Lys
145 150 155 160
Gln Arg Gly Leu Leu Asn Lys Glu Ser Glu Glu Ser Asp Asp Glu Asp
165 170 175
Asn Tyr Phe Ser Ile Glu Leu Thr Pro Ser Leu Phe Thr Ser Ala Val
180 185 190
Asp Asn Ala Tyr Gln Ser Ile His Asp Phe Ser Lys Pro Leu Ile Asn
195 200 205
Met Met Lys Ala Ala Gly Trp Asp Leu Asp Ala Ala Ala Asn Ala Ile
210 215 220
Glu Pro Ala Val Val Tyr Thr Arg Arg Ala His Lys Lys Tyr Ala Phe
225 230 235 240
Glu Ser Tyr Ile Cys Gln Arg Met Phe Gly Gly Phe Gln Glu Glu Ser
245 250 255
Phe Ser Val Lys Ala Ala Asn Ile Thr Val Ser Asn Glu Ala Phe Phe
260 265 270
His Gln Phe Leu Ala Val Arg Ala Met Asp Pro Leu Asp Val Leu Ser
275 280 285
Gln Asn Pro Asp Ser Val Phe Gly Lys Phe Cys Arg Ser Lys Tyr Leu
290 295 300
Leu Leu Val His Pro Lys Met Glu Gly Ser Phe Phe Gly Asn Met Asp
305 310 315 320
Gln Arg Asn Tyr Val Met Ser Gly Gly His Pro Arg Thr Pro Phe Tyr
325 330 335
Gln Ala Phe Leu Lys Leu Ala Lys Ser Ile Trp Leu Leu His Arg Leu
340 345 350
Ala Tyr Ser Phe Asp Pro Lys Val Lys Val Phe Gln Val Lys Lys Gly
355 360 365
Ser Asp Phe Ser Glu Ile His Met Glu Ser Val Val Lys Asn Ile Ile
370 375 380
Leu Asp Glu Gly Ala Glu Arg Pro Lys Val Gly Leu Met Val Met Pro
385 390 395 400
Gly Phe Leu Ile Gly Thr Ser Val Ile Gln Ser Arg Val Tyr Leu Ser
405 410 415
Gly Val Lys Ser Ala Asp
420
<210> 7
<211> 990
<212> DNA
<213> Populus trichocarpa
<400> 7
aaagtagata cgcaacccac tgggttgaaa gataatcaac cccgtgagaa caaatgtcag 60
aaggtccacc ctcaacccat ggaagattct gcaaatcaaa atccagaagc tggggaagcc 120
ttgatatcca aaatatttac caacatctcc tctctgaagt cagcatacat tcagctccaa 180
gctgctcata ctccctatga tcctgataaa atacaagctt ttgacaaagc tgtaatttct 240
gagctgaaaa atctatccga gctaaattat atctacaggg aaaataaccc caaaccaata 300
tgtgtttctc ctcaggactc tcggttagct gcagagatcc aagaacaact gagcctgctc 360
aaaacatacg agaataaaga ttctgagatt cttcagtctg agcagatgat tgaggaagca 420
aaccagaaac gagcaaaact ggaaaagaat cttaagctca ggggtttgtc aaccgaagaa 480
tcagaggcta actccattga atccaacgtt gtttatgcaa agagagctca caaacagtat 540
gcatttgagt ctcatatatc tcaaagaatg ttcattgggt ttcatcacga gaacttctca 600
attaaagcag acggcggggc agtttcaaag gagagtttct ttcatcaatt tcttgctacg 660
agggaaatgg atcctttaga catgctatgt cagaacccaa attctgtttt tgggaaattt 720
tgcacgagca agtacctggt ggtggttcac ccaaagggag ggcatccaag aacgcccttc 780
taccaggcct tcttgaaact ggccaagtcg atctggcttt ctcacaggct tgcttattcc 840
tttgacccaa atgtcaaggt cttccaagtt atgagaggaa gtgagttctc agagcctagg 900
gttggcctaa tggttatgcc tggtttttgg ataggaggca gtgtgattca gagccctgtt 960
tatctctcag gtgtgaaggt tgctgaatga 990
<210> 8
<211> 1269
<212> DNA
<213> Populus trichocarpa
<400> 8
atgctaccca ctgggttgaa agataatcaa ccccgcgaga gcaacaatca aaaggtccac 60
cctcaaccca tggaagattc tgcaaatcaa aatccagaag ctttggaagc cttgatatcc 120
aaaatattta ccaacatctc ctctctgaag tcagcttaca tccagctcca atctgctcat 180
actccctacg atcctgataa gatacaagct gctgacaaag atgtaatttc cgagctgaaa 240
aatctatccg agctcaagca tttctacagg gaaaacaacc ccaagccaat atgtgtttct 300
cctcaggact ctcggttagc tgcagagatc caagaacagc agagcctgct caaaacatac 360
gaggttatgg tgaagaaatt ccaatctgaa attcagaata aagattctga gattcttcag 420
ttgcagcaga tgattgagga ggcaaaccag aaaagagcaa aactggaaaa gaatcttaaa 480
ctcaggggct tgtcaaccaa agaatcagag ggttctggag atgaaagtgg tttttattct 540
gtggatctaa ccccggatct cttcatatct gccgtggaaa ctgctttcaa agccattcat 600
gatttttcta aaccattgat caacatgatg aaagcagccg ggtgggatct tgatgctgca 660
gctaactcca ttgaatccaa cgttgtttat gcaaagagag cccacaaaaa gtacgcattt 720
gagtctcata tatgtcaaag aatgttcagt gggtttcagc acgagaactt ctcaattaaa 780
gttgacagtg gggcagtttc aaaggagact ttcttccacc aatttctttc tatgagggaa 840
atggatcctt tggacatgct aggtcagaac ccagattctg cttttgggaa attttgcagg 900
agcaagtacc tggtggtggt tcacccaaag atggaggctt cattctttgg aaatttagat 960
cagcgaaatt atataaatgg gggagggcat ccaagaacgc ccttctacca ggtgttcttg 1020
aaactggcca agtcgatctg gcttttgcac aggctggctt attcctttga tccaaatgtt 1080
aaggtcttcc aggttaagag aggaaatgag ttctcagagg tttatatgga aagtgttgta 1140
aaaaacctga tattagatga aaatgatcca aaacctaggg ttggtctaat ggttatgcct 1200
gggttttgga taggaggcag tgtgattcag agccgtgttt atctctcagg tgtgaaggtt 1260
gccgaatga 1269
<210> 9
<211> 329
<212> PRT
<213> Populus trichocarpa
<400> 9
Lys Val Asp Thr Gln Pro Thr Gly Leu Lys Asp Asn Gln Pro Arg Glu
1 5 10 15
Asn Lys Cys Gln Lys Val His Pro Gln Pro Met Glu Asp Ser Ala Asn
20 25 30
Gln Asn Pro Glu Ala Gly Glu Ala Leu Ile Ser Lys Ile Phe Thr Asn
35 40 45
Ile Ser Ser Leu Lys Ser Ala Tyr Ile Gln Leu Gln Ala Ala His Thr
50 55 60
Pro Tyr Asp Pro Asp Lys Ile Gln Ala Phe Asp Lys Ala Val Ile Ser
65 70 75 80
Glu Leu Lys Asn Leu Ser Glu Leu Asn Tyr Ile Tyr Arg Glu Asn Asn
85 90 95
Pro Lys Pro Ile Cys Val Ser Pro Gln Asp Ser Arg Leu Ala Ala Glu
100 105 110
Ile Gln Glu Gln Leu Ser Leu Leu Lys Thr Tyr Glu Asn Lys Asp Ser
115 120 125
Glu Ile Leu Gln Ser Glu Gln Met Ile Glu Glu Ala Asn Gln Lys Arg
130 135 140
Ala Lys Leu Glu Lys Asn Leu Lys Leu Arg Gly Leu Ser Thr Glu Glu
145 150 155 160
Ser Glu Ala Asn Ser Ile Glu Ser Asn Val Val Tyr Ala Lys Arg Ala
165 170 175
His Lys Gln Tyr Ala Phe Glu Ser His Ile Ser Gln Arg Met Phe Ile
180 185 190
Gly Phe His His Glu Asn Phe Ser Ile Lys Ala Asp Gly Gly Ala Val
195 200 205
Ser Lys Glu Ser Phe Phe His Gln Phe Leu Ala Thr Arg Glu Met Asp
210 215 220
Pro Leu Asp Met Leu Cys Gln Asn Pro Asn Ser Val Phe Gly Lys Phe
225 230 235 240
Cys Thr Ser Lys Tyr Leu Val Val Val His Pro Lys Gly Gly His Pro
245 250 255
Arg Thr Pro Phe Tyr Gln Ala Phe Leu Lys Leu Ala Lys Ser Ile Trp
260 265 270
Leu Ser His Arg Leu Ala Tyr Ser Phe Asp Pro Asn Val Lys Val Phe
275 280 285
Gln Val Met Arg Gly Ser Glu Phe Ser Glu Pro Arg Val Gly Leu Met
290 295 300
Val Met Pro Gly Phe Trp Ile Gly Gly Ser Val Ile Gln Ser Pro Val
305 310 315 320
Tyr Leu Ser Gly Val Lys Val Ala Glu
325
<210> 10
<211> 422
<212> PRT
<213> Populus trichocarpa
<400> 10
Met Leu Pro Thr Gly Leu Lys Asp Asn Gln Pro Arg Glu Ser Asn Asn
1 5 10 15
Gln Lys Val His Pro Gln Pro Met Glu Asp Ser Ala Asn Gln Asn Pro
20 25 30
Glu Ala Leu Glu Ala Leu Ile Ser Lys Ile Phe Thr Asn Ile Ser Ser
35 40 45
Leu Lys Ser Ala Tyr Ile Gln Leu Gln Ser Ala His Thr Pro Tyr Asp
50 55 60
Pro Asp Lys Ile Gln Ala Ala Asp Lys Asp Val Ile Ser Glu Leu Lys
65 70 75 80
Asn Leu Ser Glu Leu Lys His Phe Tyr Arg Glu Asn Asn Pro Lys Pro
85 90 95
Ile Cys Val Ser Pro Gln Asp Ser Arg Leu Ala Ala Glu Ile Gln Glu
100 105 110
Gln Gln Ser Leu Leu Lys Thr Tyr Glu Val Met Val Lys Lys Phe Gln
115 120 125
Ser Glu Ile Gln Asn Lys Asp Ser Glu Ile Leu Gln Leu Gln Gln Met
130 135 140
Ile Glu Glu Ala Asn Gln Lys Arg Ala Lys Leu Glu Lys Asn Leu Lys
145 150 155 160
Leu Arg Gly Leu Ser Thr Lys Glu Ser Glu Gly Ser Gly Asp Glu Ser
165 170 175
Gly Phe Tyr Ser Val Asp Leu Thr Pro Asp Leu Phe Ile Ser Ala Val
180 185 190
Glu Thr Ala Phe Lys Ala Ile His Asp Phe Ser Lys Pro Leu Ile Asn
195 200 205
Met Met Lys Ala Ala Gly Trp Asp Leu Asp Ala Ala Ala Asn Ser Ile
210 215 220
Glu Ser Asn Val Val Tyr Ala Lys Arg Ala His Lys Lys Tyr Ala Phe
225 230 235 240
Glu Ser His Ile Cys Gln Arg Met Phe Ser Gly Phe Gln His Glu Asn
245 250 255
Phe Ser Ile Lys Val Asp Ser Gly Ala Val Ser Lys Glu Thr Phe Phe
260 265 270
His Gln Phe Leu Ser Met Arg Glu Met Asp Pro Leu Asp Met Leu Gly
275 280 285
Gln Asn Pro Asp Ser Ala Phe Gly Lys Phe Cys Arg Ser Lys Tyr Leu
290 295 300
Val Val Val His Pro Lys Met Glu Ala Ser Phe Phe Gly Asn Leu Asp
305 310 315 320
Gln Arg Asn Tyr Ile Asn Gly Gly Gly His Pro Arg Thr Pro Phe Tyr
325 330 335
Gln Val Phe Leu Lys Leu Ala Lys Ser Ile Trp Leu Leu His Arg Leu
340 345 350
Ala Tyr Ser Phe Asp Pro Asn Val Lys Val Phe Gln Val Lys Arg Gly
355 360 365
Asn Glu Phe Ser Glu Val Tyr Met Glu Ser Val Val Lys Asn Leu Ile
370 375 380
Leu Asp Glu Asn Asp Pro Lys Pro Arg Val Gly Leu Met Val Met Pro
385 390 395 400
Gly Phe Trp Ile Gly Gly Ser Val Ile Gln Ser Arg Val Tyr Leu Ser
405 410 415
Gly Val Lys Val Ala Glu
420

Claims (5)

1.一种通过抑制COST1基因的表达提高植物抗旱性的方法,其特征在于,所述COST1基因的核苷酸序列如SEQ ID NO:1所示,所述植物为拟南芥。
2.根据权利要求1所述的通过抑制COST1基因的表达来提高植物抗旱性的方法,其特征在于,所述方法在获得转基因植物中的应用。
3.通过抑制COST1基因的同源基因的表达提高植物抗旱性的方法,其特征在于,所述COST1基因的同源基因为SlCOST1,所述SlCOST1基因的核苷酸序列如SEQ ID NO:3所示,所述植物为番茄。
4.通过抑制COST1基因的同源基因的表达提高植物抗旱性的方法,其特征在于,所述COST1基因的同源基因为OsCOST1,所述OsCOST1基因的核苷酸序列如SEQ ID NO:5所示,所述植物为水稻。
5.通过抑制COST1基因的同源基因的表达提高植物抗旱性的方法,其特征在于,所述COST1基因的同源基因为PtCOST1和PtCOST2,所述PtCOST1基因的核苷酸序列如SEQ ID NO:7所示,所述PtCOST2基因的核苷酸序列如SEQ ID NO:8所示,所述植物为杨树。
CN201810901473.7A 2018-08-09 2018-08-09 通过抑制cost1基因的表达提高植物抗旱性的方法 Active CN108949821B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810901473.7A CN108949821B (zh) 2018-08-09 2018-08-09 通过抑制cost1基因的表达提高植物抗旱性的方法
PCT/CN2018/119255 WO2020029487A1 (zh) 2018-08-09 2018-12-05 通过抑制cost1基因的表达提高植物抗旱性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810901473.7A CN108949821B (zh) 2018-08-09 2018-08-09 通过抑制cost1基因的表达提高植物抗旱性的方法

Publications (2)

Publication Number Publication Date
CN108949821A CN108949821A (zh) 2018-12-07
CN108949821B true CN108949821B (zh) 2020-01-07

Family

ID=64468468

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810901473.7A Active CN108949821B (zh) 2018-08-09 2018-08-09 通过抑制cost1基因的表达提高植物抗旱性的方法

Country Status (2)

Country Link
CN (1) CN108949821B (zh)
WO (1) WO2020029487A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110283241B (zh) * 2019-07-24 2022-06-28 鲁东大学 PtTST1.1和PtTST2.1在制备促进植物生长物质中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7569389B2 (en) * 2004-09-30 2009-08-04 Ceres, Inc. Nucleotide sequences and polypeptides encoded thereby useful for modifying plant characteristics

Also Published As

Publication number Publication date
CN108949821A (zh) 2018-12-07
WO2020029487A1 (zh) 2020-02-13

Similar Documents

Publication Publication Date Title
Koh et al. T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses
US9809827B2 (en) Transgenic maize
US20090144850A1 (en) Generation of plants with improved drought tolerance
CN107779468B (zh) 水稻nrt1.1a基因及其编码蛋白在提高植物产量育种中的应用
CN111073873B (zh) Pp84蛋白及其编码基因在调控植物抗旱性中的应用
CN110713526B (zh) 小麦抗逆蛋白TaBZR2D及其编码基因与应用
US20120240292A1 (en) Proteins relating to grain shape and leaf shape of rice, coding genes and uses thereof
CN110656113B (zh) 一种与水稻抗逆相关的基因OsERF65及其编码蛋白与应用
CN107022015B (zh) 马蔺重金属ATP酶转运蛋白IlHMA2及其编码基因与应用
CN111087457A (zh) 提高氮素利用率和作物产量的蛋白ngr5及其编码基因与应用
CN108103076B (zh) 一种抑制叶片衰老的黑麦草转录因子基因LpNACL及其应用
CN110713994B (zh) 一种植物耐逆性相关蛋白TaMAPK3及其编码基因和应用
US7754945B2 (en) Generation of plants with improved drought tolerance
EP1685242B1 (en) Generation of plants with improved drought tolerance
CN106867979B (zh) NtRLK2基因在烟草抗青枯病中的应用
CN108949821B (zh) 通过抑制cost1基因的表达提高植物抗旱性的方法
CN101250220A (zh) 一种植物抗逆相关蛋白及其编码基因与应用
CN109734786B (zh) 植物花粉育性恢复相关蛋白TaDMT25及其编码基因和应用
CN103614385B (zh) 一个基因kt525在提高植物耐逆性上的应用
CN108103075B (zh) 一种延缓植物衰老的柳枝稷基因PvC3H29及其应用
CN111808864A (zh) GmMYB48基因在提高植物磷饥饿胁迫耐受的新应用
CN111808180A (zh) 植物抗旱杂种优势相关蛋白TaNF-YB3及其编码基因和应用
CN100357319C (zh) 一个麻疯树冷诱导转录因子及其编码基因与应用
CN104844699A (zh) 大豆GmNEK1蛋白及其编码基因与应用
CN112321695B (zh) OsSEC3B基因在控制水稻抗旱性中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Method for improving plant drought resistance by inhibiting cost1 gene expression

Effective date of registration: 20211216

Granted publication date: 20200107

Pledgee: Yantai financing guarantee Group Co.,Ltd.

Pledgor: LUDONG University

Registration number: Y2021980015152

PC01 Cancellation of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20220317

Granted publication date: 20200107

Pledgee: Yantai financing guarantee Group Co.,Ltd.

Pledgor: LUDONG University

Registration number: Y2021980015152