CN108926978A - 利用具有倾斜和/或振荡方法的流化床装置的可重置节段式污染排放物捕获和收集系统 - Google Patents

利用具有倾斜和/或振荡方法的流化床装置的可重置节段式污染排放物捕获和收集系统 Download PDF

Info

Publication number
CN108926978A
CN108926978A CN201810525447.9A CN201810525447A CN108926978A CN 108926978 A CN108926978 A CN 108926978A CN 201810525447 A CN201810525447 A CN 201810525447A CN 108926978 A CN108926978 A CN 108926978A
Authority
CN
China
Prior art keywords
emission
fluidized bed
gaseous
shell
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810525447.9A
Other languages
English (en)
Other versions
CN108926978B (zh
Inventor
哈尔·斯图勒
洛里·斯图勒
范·T·沃尔沃思
斯科特·德拉蒙德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemical And Metal Technology Co Ltd
Original Assignee
Chemical And Metal Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/606,614 external-priority patent/US9968884B2/en
Application filed by Chemical And Metal Technology Co Ltd filed Critical Chemical And Metal Technology Co Ltd
Publication of CN108926978A publication Critical patent/CN108926978A/zh
Application granted granted Critical
Publication of CN108926978B publication Critical patent/CN108926978B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

提供一种用于从排放物中去除污染物的系统,包括形状为反向文丘里管的流化床装置,其具有倾斜和/或振荡的方法。该系统包括多个部件,例如但不限于补给源、流化床装置、后过滤装置、和排出物排出部,各部件可独置、组合、错过和/或重新设置以符合特定应用的排放物要求。过滤媒介是设于流化床内的大量反应材料,其在排放物穿过流化床时与排放物密切接触。该大量反应材料包含与通过系统的排放物化学结合的汞齐形成金属。还提供从气态和非气态排放物中去除污染物的方法。

Description

利用具有倾斜和/或振荡方法的流化床装置的可重置节段式 污染排放物捕获和收集系统
相关申请的交叉引用
本申请是2015年7月24日提交的美国实用专利申请号14/808,563的部分延续申请,其要求2014年7月25日提交的美国临时申请号62/029,041和2015年3月16日提交的美国临时申请号62/133,791的优先权。上述申请的全部公开内容都包含在本申请中,以作参考。
技术领域
本发明内容一般涉及移动式工业排放控制系统和方法、在这样的系统中使用的设备、和从气态和非气态排放物中去除污染物的方法。移动式排放控制系统可以设于货车、拖车、轨道车、驳船、或其它可以将所述系统由一个地点移动和/或搬迁至另一个地点的相似结构上。其它额外的应用范畴涉及由军用船只、货船、油船和/或游轮等船只将海运船只废料和/或压舱物排放。
背景技术
本部分提供与本发明内容相关的背景信息,其并不一定是现有技术。
来自许多经济部门的许多行业具有各种类型排放。这样的排放可分为两个基本组,一个是气态的,另一个是非气态的。通常气态组和非气态组中的排放物都包含有害污染物。气态组中的排放物可以是由燃煤电厂或天然气燃烧设备产生的废气的形式。非气态组中的排放物可以是液体状的、污泥状的或浆状物质。当排放物中的有害污染物浓度达到和/或超过允许的限度时,必须通过各种方式中和、捕获、收集、去除、处置、和/或适当地容纳污染物。
许多工业依靠燃烧燃料材料来完成各自工业程序的某些方面。例如,在第一个例子中,钢铁厂在制造金属形状、型材和其他金属铸件的过程中燃烧和/或熔炼金属。在金属工业中使用的方法包括从金属蒸气和电离金属中排放微粒的操作。对环境、植物、动物和/或人类有害的污染物通过金属蒸气释放到空气中。在一定程度上,金属蒸气和/或金属蒸气化合物中的有害污染物必须被收集并妥善处理。在第二个例子中,开采诸如金、银和铂的贵重金属的工业包括含有重金属污染物和微粒的金属和金属蒸气排放物,如果不被捕获、收集并妥善处理,则被认为是危险的。在第三个例子中,燃烧天然气的工业的排放物通常含有较高浓度的污染物,如果不被捕获、收集并妥善处理,则被认为是危险的。在第四个例子中,使用煤作为可燃耗材在锅炉中产生蒸气从而转动发电机的能源生产者产生相当大的排放物,包含被认为对环境、植物、动物和/或人类有害的金属蒸气和金属化合物。在其他有害污染物中,金属蒸气排放物通常含有汞(Hg)。
由于全球气流的模式,空气中的金属蒸气排放物可以从一个国家飘流到另一个国家。例如,中国和/或印度产生的大部分汞排放物可能实际上最终飘到在美国和/或其间的海洋中。类似地,美国产生的大量含汞排放物实际上可能沉积在欧洲和/或其间的海洋中。作为这个循环的终结,欧洲产生的大量含汞排放物实际上可能沉积在中国和/或印度。因此,抑制工业工程中产生的排放物中的汞和其他有害污染物是一个全球性的问题,具有全球性的影响,需要全球努力解决。
在产生此类排放的国家和地区,提出和/或实施了国家和国际法规、规则、限制、费用、监测和长期不断发展并日益严格的法律。世界各国对有害排放物的监管和/或控制各不相同。然而,一个国家很难对另一个国家实施控制措施,即使并非不可能,试图以卑微的力量鼓励排放物制造者采取措施减少该国可能产生的有害排放物,即使这些排放物可能沉积在另一个国家。
自20世纪70年代以来,日本一直是减少汞生产和含汞排放物的全球领导者。日本制定了一些法规,对大型全球经济体如何解决与汞生产特别相关的环境问题产生了影响。日本努力推动国际上对汞立法,为防止基于汞的紊乱带来了希望。除了日本,美国还有一些由美国环境保护局(EPA)实施的世界上最严格并限制性的法律法规。金属蒸气排放物中最严重的污染物之一是汞。环保局已经发布了新的修订程序,例如“汞和空气中有毒物质的标准”,规范美国各种设施产生的汞排放物,目标是到2016年将燃煤电厂排放的汞的含量减少91%。即使法规持续成为政策和法律辩论主题,掩盖的问题仍然是必须处理有害的污染物。
环保局执行的管辖权不适用于工业化国家如印度、中国、欧洲和其他国家的有害排放物的制造者。因此,联合国(UN)试图向其成员国施加压力,减少有害金属蒸气的排放。至少140个成员国的代表同意根据2013年生效的条约减少全球汞排放。然而,尽管在一些国家已经见到一些全球性的改善,但新兴工业化国家的扩张似乎大大超过了提高减排力度。
虽然主要关注汞不会减少金属蒸气排放中的其他污染物的危险影响,但汞可能是最普遍的,对动物和人类最有害。汞是一种自然存在的元素,遍布世界各地的植物、土壤和动物中。然而,人类的工业过程大大增加了汞和/或汞沉积物的积累,浓度远远高于自然存在的水平。在全球范围内,据估计,人类活动释放的汞总量高达每年1960公吨。这个数字是根据2010年分析的数据计算的。在全球范围内,据估计,人类活动释放的汞总量每年高达1960公吨。这个数字是从2010年分析的数据计算出来的。在世界范围内,这种特殊类型排放的主要因素是燃煤(24%)和金矿开采(37%)活动。在美国,燃煤比金矿开采活动的排放所占比例更高。
动物和人类接触汞的主要问题是它是生物累积物质。因此,鱼或其他动物所摄入的不论多少数量的汞都残留在动物体内(即积累),当前者被人类或其他动物摄入后传递给后者。此外,汞不会从摄取宿主体内排出。在食物链中,较大的捕食者,其寿命最长和/或摄取大量其他动物,面临过度汞积累的最大风险。人类摄入过多含汞的动物,尤其是鱼,面临广泛的众所周知的医学问题,包括神经系统疾病和/或生殖问题。
汞排放有三种主要类型:人为排放、再排放和自然发生的排放。人为排放主要是工业活动的结果。人为排放源包括工业燃煤电厂、天然气燃烧设施、水泥生产厂、炼油设施、氯碱工业、氯乙烯工业、采矿作业和冶炼作业。当土壤中沉积的汞通过洪水或森林火灾重新分散时,会发生再排放。在土壤中吸收和/或沉积在土壤中的汞可以通过雨水径流和/或洪水释放回水中。因此,水土流失会助长这个问题。森林火灾,无论是自然灾害、纵火、或故意毁林焚烧,都会将汞重新释放回空气和/或水源中,再次沉积在其他地方。自然发生的排放包括火山和地热喷口。据估计,释放到大气中的所有汞大约一半来自于自然发生的事件,例如火山和热喷口。
如上所述,燃煤电厂每年向环境中释放大量的汞和其他污染物。因此,正在进行持续不断的努力,以减少燃煤电厂产生的烟道气排放物中有害污染物的量。美国的许多燃煤电厂配备了排放控制系统,捕获、容纳和/或回收有害元素,例如汞。在燃煤电厂中,燃烧煤炭烧水,将水变成蒸汽,用于运行发电机。煤燃烧的烟道气排放物通常通过管道系统输送到液气脱硫装置和/或喷雾干燥器系统,从烟道气中除去一些排放物和一些有毒烟雾,例如二氧化硫(SO2)和氯化氢(HCL)。然后,典型的管道系统将烟道气流输送到湿式或干式洗涤器,除去更多的二氧化硫、氯化氢和飞灰。烟道气流穿过袋式除尘器,将微粒从烟道气流中分离,类似于家用真空吸尘器袋的工作方式。烟道气通过过滤袋,该过滤袋具有允许气流通过的孔隙率,气流中较大的微粒不能通过。摇动和/或清洁过滤袋的表面,收集捕获的微粒,使得它们可以被处理。通常,这些沉积物本身是有害排放物,必须相应处理。然后,通过这种类型的排放控制系统剩余的烟道气允许通过高烟囱逸出并释放到大气中。
这种类型的排放控制系统的问题是,捕获和/或收集金属蒸气和金属化合物蒸气形式中包含的重金属,例如汞,实际上是无效的。由于燃煤燃烧系统在接近1,500华氏度的相对高的温度燃烧煤,汞被转化为纳米尺寸的蒸气颗粒,其甚至能够穿过最强的过滤系统。结果,由空气携带的汞和其他有害污染物的大量排放物释放到大气中。
为了从燃煤系统和/或其他汞排放源中捕获和收集汞,已经开发了若干已知的系统来解决该问题,一般分为三类。
第一类是通过将吸附剂注入到烟道气流中来捕获汞的一组方法和/或系统。除了贵金属之外,使用的最常见的吸附剂材料是通常用溴卤化的活性炭。将吸附剂注入烟道气是试图捕获以下典型排放控制装置的一种和/或任意组合中的污染物:如静电除尘器、流化气体脱硫系统、洗涤器系统或织物过滤系统。这些系统略有不同,需要在煤燃烧后,在排放控制系统的不同点注入活性炭。第一类的一些示例性方法和/或系统在美国专利7578869、7575629、7494632、7306774、7850764、7704920、7141091、6905534、6712878、6695894、6558454、6451094、6136072、7618603、7494632、8747676、8241398、8728974、8728217、8721777、8685351、和8029600中公开。在这些示例性专利中阐述的所有方法和/或系统产生有害的和/或不可用的废物,处置这些废物成为一个问题。此外,这些方法和/或系统一般不具有经济上的可行性,并且不能满足环保局和/或其他全球机构预定的监管排放要求。
第一类已知解决方案的方法和/或系统的主要问题是使用活性炭是昂贵和低效的。因为当通过并流过系统时,仅有约10%的活性炭与金属蒸气相互作用,所以活性炭的初始费用被放大。因此,高达90%的昂贵的活性炭作为损失的费用释放到烟道气中,主要是一氧化碳(CO)和/或二氧化碳(CO2)的形式。另一个缺点是活性炭经常使飞灰不适合作为制造混凝土或其它工业产品所需填料的原材料。虽然飞灰的销售不是大的收入来源,但是在大批量的情况下,燃煤电厂的这种副产品确实提供了额外的收入来源。不适合在混凝土中用作填料的飞灰的副产品的数量必须归类为危险废物,因此需要处置费用。另一方面,适合在混凝土中用作填料的飞灰的副产品的数量不被归类为危险废物,因此是可销售的产品,不需要处置费用。
第一类已知解决方案的方法和/或系统的另一个问题是烟道气中多达10%的汞没被除去,释放到环境中。这个百分比高于环保局和其他全球机构允许的汞释放量。因此,第一类已知解决方案中的方法和/或系统没有一个满足在燃煤电厂或类似工业应用中收集和/或捕获汞的现行规定。
然而,使用活性炭的另一个问题是,当活性炭燃烧时,产生一氧化碳和/或二氧化碳并释放到大气中。据估计,在美国,仅仅由于在燃煤电厂中使用活性炭,每年就会产生高达28亿吨的二氧化碳。在世界范围内,估计由于在燃煤电厂中使用活性炭,每年就会产生高达144亿吨的二氧化碳。此外,活性炭从其他形式的非气态排放物中去除汞是相对无效的,因此必须应用替代方法。
第二类是在燃烧之前预处理煤燃料以便降低煤燃料中的汞含量的一组方法和/或系统。第二类的一些示例性方法和/或系统在美国专利7540384、7275644、8651282、8523963、8579999、8062410和7987613中有描述。在这些示例性专利中阐述的所有方法和/或系统产生大量不可用的煤,也被认为是危险废物。结果,第二类已知解决方案的方法和/或系统操作效率低且昂贵。此外,煤的预处理通常需要大量的资金和物理空间,使得用必要的设备改装许多现有的排放控制系统是不切实际的。
第三类是将催化剂注入到活性炭注入系统上游的排放控制设备中的一组方法和/或系统。这些方法和/或系统中的催化剂使汞离子化,更容易从烟道气中收集和除去汞。然而,这些方法和/或系统的效率低并且操作成本高,所以第三类已知解决方案的方法和/或系统不节省成本。第三类例子在美国专利8480791、8241398、7753992和7731781中有描述。除了这些实施例外,美国专利7214254公开了一种通过使用微波和流化床反应器来再生昂贵的吸附剂材料的方法和装置。该方法选择性地从吸附剂中蒸发汞,使汞可以在专门的过滤器中被捕获、或冷凝并收集。使用微波生成使得该方法用于大规模的商业应用是不切实际的,因此仅用于昂贵的吸附剂的再生。另一个例子是美国专利申请公开号2006/0120935,它公开了一种使用几种基质材料中的任一种在烟道气通过排放控制设备时对汞形成化学吸引力的方法除去烟道气中的汞。这种方法用于大规模商业应用也是不切实际的。
因此,当前的排放控制系统和方法通常通过将有害污染物从气态排放物转化为非气态排放物,这产生另一组排放控制问题。
虽然许多法律法规专注于金属蒸气排放物,但是含有有害污染物的其它形式的排放物,例如泥浆和/或浆状排放物、污泥和/或污泥状排放物、液体和/或液体状排放物以及其他形式的排放不应该被忽视。列出的所有类型的排放也需要处理,它们包含的有害污染物可以通过各种方式中和、捕获、收集、去除、处置、和/或适当地容纳。历史上,用于去除有害污染物的最经济有效和最广泛使用的方法是使用让排放物穿过的活性炭(以种形式)。因此,预计到2017年美国对活性炭的需求每年增长超过10亿磅,工业成本超过1美元至1.50美元/磅。这相当于每年约10亿美元。预计活性炭需求增长的大部分是由于实施了环保局颁布的法规,要求设施和工业制造商升级燃煤发电厂以满足更严格的要求。
除了日益严格的气态排放法规之外,环保局还通过“清洁水法案”实施了更严格的非气态排放法规,到2016年必须完全遵守该法案。对所有类型的排放物实施的不断增加的法规组合对多种不同工业产生的多种类型的排放产生影响。一些工业,例如,电力生产商,燃烧燃料发电,主要产生含有有害污染物的气态排放物。根据工业标准,这些气态排放物暴露于活性炭材料,捕获足够体积的有害污染物,使气态排放物等于或低于污染物的允许限度。从燃烧这些燃料产生的气态排放物中除去有害污染物的过程导致和/或产生含有有害污染物的液体状或浆状物质形式的二次非气态排放物。二次非气态排放物中的有害污染物也必须被适当地捕获和/或容纳,防止有害污染物排放到环境中。初始气态排放物和二次非气态排放物都需要适当地捕获和/或回收和/或限制足够的有害污染物以符合环境法规。与能够实现从二次非气态排放物中去除有害污染物的已知的可用方法相关的工业成本是如此高昂,以致一些工业如果不能将成本转嫁给消费者,则被迫关闭设施。
因为非气态排放物含有较高浓度的污染物,所以被认为是危险的,根据惯例,它们被放置容纳在池塘、堆或干燥床中长期储存。虽然这种做法隔离了有害污染物,但它们昂贵并且消耗土地面积,不能中和有害污染物本身,这可能导致储存有害污染物的场所的环境危害。非气态排放物的一个例子是飞灰,是燃煤的天然产物。飞灰与火山灰的组成基本相同。飞灰含有许多重金属和其他已知有害有毒污染物,包括汞、铍,镉,钡,铬,铜,铅,钼,镍,镭,硒,钍,铀,钒和锌的痕量浓度(即量)。一些估计表明,在美国多达10%的燃煤中含有不可燃物质,成为灰。结果,煤灰中有害微量元素的浓度比原煤中这些元素的浓度高10倍。
飞灰被认为是火山灰,具有用于生产混凝土的悠久历史,因为当其与氢氧化钙混合时形成胶凝材料,与水和其他化合物聚合产生非常适合道路、机场跑道和桥梁的混凝土混合物。燃煤电厂产生的飞灰是烟灰,由与烟道气一起上升的非常细的颗粒组成。不上升的灰通常称为底灰。在早期的燃煤电厂,飞灰被简单地释放到大气中。近几十年来,环境法规要求安装排放控制,防止飞灰释放到大气中。在许多电厂,使用静电除尘器在飞灰到达并离开烟囱进入大气之前捕获飞灰。通常,底灰与捕获的飞灰混合形成所谓的煤灰。通常,飞灰比底灰含有更高浓度的有害污染物,这就是为什么将底灰与飞灰混合使得有害污染物的浓度符合大多数非气态排放标准。然而未来的标准可能将飞灰重新分类为有害材料。如果飞灰被重新分类为有害材料,将避免将其用于水泥、沥青和许多其它广泛的应用中。据一些研究估计,由于禁止在混凝土生产中使用飞灰,仅在美国,混凝土的成本增长将超过每年50亿美元。成本的增加是用更昂贵的替代材料代替飞灰的直接结果。此外,由于其独特的物理性质,没有其它已知材料适合作为水泥中飞灰的直接替代物。
报告显示,在美国,超过450个燃煤发电厂每年产生超过1.3亿吨飞灰。一些报告估计,只有40%的这种飞灰被重复使用,表明多达5200万吨的飞灰被重复使用,每年多达7800万吨大量储存在泥浆池塘和堆积。飞灰通常储存在潮湿的泥浆池,以尽量减少挥发性微粒变成空气传播的可能性,以免将污染物从大容量储存器输送到大气和周围环境中。除了大量储存的飞灰排放到空中之外,还存在长期容纳飞灰所需的封闭系统的破裂和/或故障的威胁。2008年在田纳西州发生了一个著名的破裂事件,湿贮灰池的堤坝崩塌,溢出540万立方码的粉煤灰。溢出损坏了数间民居,污染了附近的河流。清理费用在提交本申请时仍在进行,可能超过12亿美元。
在另一个实例中,非气态排放物可以是燃煤设备的典型废水产生系统中的副产物。在典型的废水产生系统中,大量的水来自锅炉排污和冷却水过程。这些大量的废水含有相对低浓度的污染物,用于稀释其他含有高浓度污染物的废水。通常由净化系统排出的被污染的废水,由大量来自锅炉排污和冷却水过程的水稀释,然后,在大的连续的混合槽中用石灰处理形成石膏,然后将其泵入沉淀池中。在这个过程中,一定量的汞和其他重金属夹带在石膏中,稳定用于墙板和水泥中。这种石膏通常被认为是非浸出的,并且不被认为是污染危害物。然而,沉降池的水通常排放到水道中。现行的法规允许这种持续的排放,但是即将出台的规定提出将某些污染物和/或这些污染物浓度强制规定为有害污染物。
对于从非气态工业水流中去除汞和重金属,经常使用碳酸盐、磷酸盐、硫化物,使有害污染物降低到低残留水平。一种已知的从工业废水流中除去汞和其他有害污染物的方法是化学沉淀反应。另一种已知的方法是利用离子交换。化学沉淀反应和离子交换方法的一个主要问题是,当污染物含量较高时,例如处理飞灰浆液排放时,这些方法不够完全符合日益严格的环保局非气态排放法规。
污染的非气态排放物的另一来源是海运船只废料排放和/或压舱物排放。商用船只如货船和油船都有废料和压舱物排放。娱乐游轮在港口站亦需处理污水排放问题。此外,军用及防卫船只有大量污水排放。
离岸钻探操作亦有大量污水排放。在离岸钻井装置现场处理污水较将污水运送上岸处理便宜。因此,在排放出海之前将离岸污水高效过滤是维持适当和可接受的生态要求所需要的。
也有各种已知的商业排放控制方法和系统,以不同的商标名称销售,用于处理二次非气态排放物。一种商标名称为蓝色PRO(Blue PRO)的处理方法是反应性过滤过程,使用共沉淀和吸收,除去二次非气态排放中的汞。另一种商标名称为MERSORB-LW的处理方法是使用碎粒煤为基础的吸收剂,通过共沉淀和吸收,除去二次非气态排放物中的汞。另一种称为氯碱电解废水的处理方法在氯气电解生产过程中从二次非气态排放物中除去汞。另一种处理方法使用吸收动力学和来自于化肥废物的活性炭,从二次非气态排放物中除去汞。另一种处理方法使用改性聚乙烯亚胺多孔纤维素载体作为吸附剂,从二次非气态排放物中除去汞。另一种处理方法使用酶还原的微生物,从二次非气态排放物中除去汞。而另一种已知商标名称为MerCURxE的处理方法使用化学沉淀反应处理污染的液体状非气态排放物。
发明内容
本部分提供了本发明的一般概述,不是其全部范围或其所有特征的全面公开。
根据本发明的一个方面,公开了用于从排放物中去除污染物的装置。该装置包括形状为反向文丘里管的外壳。具体地,该外壳包括用于以预定的进入流速接收排放物的入口部、用于以预定的排出流速排出排放物的出口部、和设置在外壳的入口部和出口部之间用于捕获排放物中的污染物的扩大部。外壳的入口部、出口部和扩大部彼此流体连通。另外,外壳的入口部具有入口部横截面,外壳的出口部具有出口部横截面,外壳的扩大部具有扩大部横截面。根据外壳的反向文丘里形状,扩大部横截面大于入口部横截面和出口部横截面。由于外壳的几何形状,进入外壳扩大部的排放物减速,并以相对于排放物通过外壳的入口部和出口部较低的速度通过外壳的扩大部。因为外壳的扩大部中的排放物的流动减慢,排放物在外壳的扩大部中的停留时间增加了。装置还包括设置在外壳扩大部内的大量反应材料。该大量反应材料具有设置成与排放物接触的反应性外表面。此外,该大量反应材料在反应性外表面包含汞齐形成金属。该大量反应材料中的汞齐形成金属与通过外壳的扩大部的排放物中的至少一些污染物化学结合到该大量反应材料的反应性外表面。
根据本发明的另一个方面,公开了从气态排放物中去除污染物的排放控制方法。该方法包括以下步骤:在熔炉中燃烧燃料,产生含有污染物的气态排放物,使气态排放物穿过静电除尘器,用静电除尘器去除气态排放物中的第一部分颗粒污染物,然后使气态排放物穿过硫化气体脱硫单元,用硫化气体脱硫单元去除气态排放物中的二氧化硫污染物,然后使气态排放物穿过织物过滤器单元,用织物过滤器单元去除气态排放物中的第二部分颗粒污染物。该方法还包括以下步骤:使气态排放物穿过反向文丘里装置,用反向文丘里装置去除气态排放物中的重金属污染物。使气态排放物穿过反向文丘里装置并用反向文丘里装置去除气态排放物中的重金属污染物这一步骤包括使气态排放物穿过设置在反向文丘里装置中的大量反应材料。该大量反应材料含有与气态排放物中的重金属污染物化学结合的汞齐形成金属。因此,当重金属污染物与大量反应材料中的汞齐结合时,重金属污染物在反向文丘里装置中被捕获。该方法可进一步包括以下步骤:将气态排放物输送到烟囱,将气态排放物排放到周围大气中。
根据本发明内容的另一个方面,公开了从非气态排放物中去除污染物的排放控制方法。该方法还包括以下步骤:将含有污染物的非气态排放物存放在沉降池,非气态排放物中的一些污染物通过沉降被去除,使沉降池中的非气态排放物的第一部分脱水,并且在二次工业过程中使用脱水的副产物,以及从沉降池中除去非气态排放物的第二部分,并使非气态排放物的第二部分经受干燥处理过程。该方法还包括以下步骤:将沉降池中的非气态排放物的第三部分输送到含有吸附剂的处理罐。吸附剂含有与非气态排放物的第三部分中的重金属污染物结合的汞齐形成金属。因此,当重金属污染物与吸附剂中的汞齐形成金属结合时,吸附剂捕获处理罐中的重金属污染物。该方法可进一步包括以下步骤:将非气态排放物从处理罐输送到水道进行排放。
本文阐述的装置和方法提供了优于已知排放控制系统和方法的许多优点。本发明公开的装置和方法明显减少和/或消除了在燃烧煤的排放物中使用活性炭的需要。目前,本文公开的大量反应性材料和吸附剂中的汞齐形成金属的初始成本略高于活性炭的1-1.5美元每磅的获取成本。然而,由于汞齐形成金属可以再生,并且有害污染物可以被收获再利用,所以增加的成本是一次性成本。结果,本文公开的含有汞齐形成金属的材料的第一年初始成本,结合回收和再生成本,估计为活性炭的年成本的1.5倍,或就全美国而言总成本为15亿美元。然而,在初始第一年投资之后,估计年度成本仅包括年度回收和再生成本,估计整个美国为2.5亿美元。因此,在10年期间,美国工业的第一年成本为15亿美元,未来九年的回收和再生成本为每年2.5亿美元,10年期总额为37.5亿美元。与使用活性炭的超过100亿美元的成本相比,该数量较低,可以实现在10年期间工业大幅节省65亿美元。
除了明显节约的优点之外,与已知的排放控制系统和方法相比,在从气态和非气态排放物中去除有害污染物方面,本发明的装置和方法更有效。据估计,这些改进明显足够使工业能够满足和/或超过预计的监管要求,这在当前技术下不是经济可行的。因此,即使管制要求将飞灰重新分类为危险材料,本发明的装置和方法具有允许继续使用飞灰的潜力,因此避免了产生非气态飞灰型副产物的建筑工业、公用发电工业和其他工业明显增加的成本。
本发明公开的装置和方法还明显降低了从气态排放物中去除有害污染物时对活性炭使用的依赖性,即使不是完全不使用活性炭。有利地,估计在排放控制系统中减少活性炭的使用仅在美国减少二氧化碳的年产生量就多达20亿吨。
根据本发明的另一方面,公开了从气态排放物中去除污染物的排放控制方法。该方法包括以下步骤:将潜在的污染的气态排放物源接收入系统,如有需要将排放物穿过特定应用的预先过滤器,将排放物穿过形状为反向文丘里管的流化床,如有需要将排放物穿过特定应用的后过滤器,之后容许排放物离开系统。系统的排放物可以是用作合适的特定应用的处置和/或环保控制的回收和/或非污染气态流的排放。
形状为反向文丘里管的流化床可以具有特定的长度直径比,以在气态排放物穿过在装置内的专用吸附剂时为气态排放物提供最理想的限制性停留时间。通过测试和试验,已确定流化床容器的理想长度直径比介乎2.9:1和9.8:1之间,示例性的优选是4.4:1。因此,在一个示例性的优选实施例中,直径是4.5英尺,长度是19.8英尺,即长度直径比是4.4:1。
示例性的用于气态排放物的形状为反向文丘里管的流化床装置的另一特征是具有从容器外面的任一端看都是主要是圆的且向外凸出的凸端。在具有流化床的系统的示例所进行的测试当中,显示由于气态排放物的流随机地以最少化的空化湍流向自己折回而与吸附剂接触的停留时间,因此增加最大化的密切接触。主要是圆的且向外凸出的凸端在形状为反向文丘里管的流化床的两端提供较平滑的回流以及最少的气态排放物的空化湍流。空化湍流穿过过滤器众所周知会阻止和/或破裂流。在形状为反向文丘里管的流化床内或穿过流化床的停留时间得以延长,是将污染物捕获及将污染物从气态排放物移除最佳化所理想的;不过,若流是空化湍流,则延展的停留时间并不是最理想的。不同的挡板和/或其它特定应用的流限制障碍物可设置于流化床外壳中。
根据本发明的再另一个方面,公开了用于从非气态排放物中去除污染物的排放控制方法。该方法包括以下步骤:将潜在的污染的非气态排放物源接收入系统,如有需要将排放物穿过特定应用的预先过滤器,将排放物穿过形状为反向文丘里管的流化床,如有需要将排放物穿过特定应用的后过滤器,之后容许排放物离开系统。系统的排放物可以是用作合适的特定应用的处置和/或环保控制的回收和/或非污染非气态流的排放。
形状为反向文丘里管的流化床可以具有特定的长度直径比,以在非气态排放物穿过在装置内的专用吸附剂时为非气态排放物提供最理想的限制性停留时间。通过测试和试验,已确定流化床容器的理想长度直径比介乎2.9:1和9.8:1之间,示例性的优选是4.4:1。因此,在一个示例性的优选实施例中,直径是4.5英尺,长度是19.8英尺,即长度直径比是4.4:1。
示例性的用于非气态排放物的形状为反向文丘里管的流化床装置的另一特征是具有从容器外面的任一端看都是主要是圆的且向外凸出的凸端。在具有流化床的系统的示例所进行的测试当中,显示由于非气态排放物的流随机地以最少化的空化湍流向自己折回而与吸附剂接触的停留时间,因此增加最大化的密切接触。主要是圆的且向外凸出的凸端在形状为反向文丘里管的流化床的两端提供较平滑的回流以及最少的非气态排放物的空化湍流。空化湍流穿过过滤器众所周知会阻止和/或破裂流。在形状为反向文丘里管的流化床内或穿过流化床的停留时间得以延长,是将污染物捕获及将污染物从非气态排放物移除最佳化所理想的;不过,若流是空化湍流,则延展的停留时间并不是最理想的。不同的隔板和/或其它特定应用的流限制障碍物可设置于流化床外壳中。
根据本发明的再另一个方面,用于气态和/或非气态排放物的形状为反向文丘里管的流化床系统可以从形状为反向文丘里管的流化床容器排出,以从吸附剂中收获污染物。这样,被收获的污染物可以妥当地处理和/或在适当的工业应用中循环再用。回收和/或再生复原的吸附剂可以返回流化床供系统进一步使用。亦可提供吸附剂补充入口部以保持流化床的吸附剂容量。
根据本发明的另一个方面,形状为反向文丘里管的流化床可以缩少规模至很小规模以用作独立消费者应用,或是扩大规模以用作十分大型的商业应用,与此同时保持在此公开的长度直径比特征以及主要是圆的且向外凸出的凸端的特征。永久性的安装系统包括但不限于基于陆地的工地系统和/或在防卫或军用船只或消费者游轮上的现场建造系统。现场建造系统的其它潜在应用包括工业燃煤电厂、天然气燃烧设施、水泥生产厂、炼油设施、氯碱工业、氯乙烯工业、采矿作业和冶炼作业。
根据本发明的另一个方面,公开了提供有可重新设置的节段组件的污染物移除系统示例。每个系统组件可以被隔离、错过、结合和/或重新设置以符合特定应用要求。系统包括结合倾斜装置的流化床装置。
倾斜装置固接与一水平面相对平行的平台甲板。倾斜装置将穿过流化床中心的轴的取向由相对于平台甲板是相对平行的取向改变为相对平台甲板是主要是横向的取向。
倾斜由任何数目的典型机械联动方法如自卸车的倾翻平台的用法而达成。倾斜装置的动力典型地为气动、水力、电马达和/或其组合。精确的定位和倾斜控制典型地由可编程的逻辑控制达成。
测试和试验显示,倾斜装置通过96度的总掠角对于气态排放物和非气态排放物的功能性是最佳的。特定的96度的总掠角容许流化床装置的外壳倾斜90度,并且可以一固定位置在与平台甲板相对平行的取向和与平台甲板相对横向的取向之间的任何增量倾斜角度在取向。
倾斜装置通过容许流化床装置的外壳在由平台甲板的平行取向向下倾斜2.5度(-2.5度)和超过平台甲板的横向取向3.5度(93.5度)之间倾斜,以容许96度的总掠角。
在一个污染的气态排放物的示例应用中,倾斜装置将流化床装置的外壳以5.5度的气态排放物摆动掠角前后摆动。特别地,倾斜装置将流化床装置的外壳取向于一气态排放物处理角度,其是具体地与平台甲板呈水平并平行于平台甲板(零度的倾斜角度)。倾斜装置将流化床装置的外壳在第一摆动角度和第二摆动角度之间摆动,第一摆动角度是相对于平台甲板呈平行取向的外壳上面3度,第二摆动角度是相对于平台甲板呈平行取向的外壳下面2.5度(-2.5度)。在这个取向,污染的气态排放物穿过流化床装置并被监察,并且外壳可以在5.5度的摆动掠角之间增量地倾斜,以确定最佳化限制流的最佳倾斜角度。
在另一示例应用中,倾斜装置被设置为持续地将流化床装置的外壳在5.5度的摆动掠角之间摆动,以提供在污染的气态排放物穿过流化床装置时的振荡方法。
其它气态排放物的振荡方法可以通过外部机械振动激励、超声波振动、旋转流化床装置的外壳、径向摇动、轴向摇动和/或其组合的方法的实际应用使用于流化床。
在另一个污染的非气态排放物的示例应用中,倾斜装置将流化床装置的外壳以7.5度的非气态排放摆动掠角前后摆动。特别地,倾斜装置将流化床装置的外壳取向于一非气态排放物处理角度,其是具体地与平台甲板呈垂直并横向于平台甲板(90度的倾斜角度)。倾斜装置将流化床装置的外壳在第一摆动角度和第二摆动角度之间摆动,第一摆动角度是超过相对于平台甲板呈横向取向的外壳3.5度(93.5度),第二摆动角度是相对于平台甲板呈横向取向的外壳下面4度(86度)。在这个取向,污染的非气态排放物穿过流化床装置并被监察,并且流化床装置的外壳可以在7.5度的非气态摆动掠角之间增量地倾斜,以确定最佳化限制流的最佳倾斜角度。
在另一示例应用中,倾斜装置被设置为持续地将流化床装置的外壳在7.5度的非气态摆动掠角之间摆动,以提供在污染的非气态排放物穿过流化床装置时的振荡方法。
其它非气态排放物的振荡方法可以通过外部机械振动激励、超声波振动、旋转流化床装置的外壳、径向摇动、轴向摇动和/或其组合的方法的实际应用使用于流化床装置。
在另一个污染的排放物的示例应用中,其中污染物倾向于浆状和/或掺气性质,流化床装置的外壳取向于相对于平台甲板呈约45度的掺气泥浆排放物处理角度(相对于水平呈45度)并具有10.0度的摆动掠角。倾斜装置将流化床装置的外壳相对掺气泥浆排放物处理角度(相对于平台甲板介乎40度和50度之间)在任一方向摆动+/-5.0度。在这个取向,污染的掺气浆状排放物穿过流化床装置并被监察,并且流化床装置的外壳可以在10.0度的摆动掠角之间增量地倾斜,以确定最佳化限制流的最佳倾斜角度。
在另一示例应用中,倾斜装置被设置为持续地将流化床装置的外壳在10.0度的摆动掠角之间摆动,以提供在污染的掺气浆状排放物穿过流化床装置时的振荡方法。
其它污染的掺气浆状排放物的振荡方法可以通过外部机械振动激励、超声波振动、旋转流化床装置的外壳、径向摇动、轴向摇动和/或其组合的方法的实际应用使用于流化床装置。
流化床装置的外壳设有气态排放物的入口部,以及分开设置的非气态排放物的入口部;亦设有气态排放物的出口部,以及分开设置的非气态排放物的出口部。各类排放物的入口部和出口部根据流化床装置的外壳的取向提供穿过流化床装置的外壳中的内部障碍物的较理想的曲折的流道。
流化床装置亦设有清洁和/或替换吸附剂的额外端口。吸附剂可以从流化床装置的外壳取出以作清洁。若吸附剂已被耗尽,可将之分开以作处置。污染物可以从吸附剂分开以用作循环再用的工业用途或送走作妥当处置。已清洁的吸附剂可以连同替代被耗尽的吸附剂的替代吸附剂返回流化床装置的外壳。
除了特定应用的永久性的安装系统之外,本系统可以设置为一移动式系统。移动式系统的例子包括但不限于安装在货车上的系统、安装在驳船上的系统、安装在拖车上的系统、以及轨道车系统。移动式系统应用可以为现场建造系统提供支路,通过提供暂时性的排放物支路,使永久性的现场建造系统可以维修、检查和/或修理。移动式系统亦可以在污染排放物流率超过永久性的现场建造系统的能力时为永久性的现场建造装置提供额外的过滤能力。
结合所公开的装置和方法,本文描述的专用吸附剂还具有许多优点。一般来说,吸附剂改进了所公开的排放设备的能力,更好地捕获、容纳和/或再循环汞和其它危险材料,具有以前使用已知的排放控制系统和方法不可能有的效率。本文公开的吸附剂的另一个明显益处是吸附剂可用于处理气态和非气态排放物,因此克服了用于处理污染的非气态排放物的已知方法的许多缺点,包括用于处理气态排放的主要排放控制方法产生的二次排放物。此外,本文所述的吸附剂改进了有效处理气态排放物的能力,足以避免需要二次处理作为主要气态排放物处理程序产生的副产物的非气态排放物。本文公开的吸附剂也是有益的,因为其是可重复使用的。通过再生过程,可以从吸附剂中收获(即去除)与吸附剂中的汞齐形成金属化学结合的危险污染物,从而恢复吸附剂从气态和/或非气态排放物中去除污染物的能力。
根据本文的说明,其它范畴的应用会更明显。本发明内容的说明和示例只用作说明用途,而并非限制本公开的范围。
附图说明
以下描述的附图只用作说明选择的实施例,而并非全部可能的实施方式,亦并非限制本公开的范围。
结合附图,通过参照以下详细描述更好理解,所以,本发明的其它优点将容易理解。
图1示出了用于燃煤发电厂的已知布局的示意图;
图2示出了用于从图1所示类型的燃煤发电厂产生的排放物中去除污染物的排放控制系统的已知布局的示意图;
图3是修改了图2所示的排放控制系统的示意图,增加了构成本发明内容的示例的反向文丘里装置;
图4A是构成本发明内容的示例的反向文丘里装置的侧视剖视图,包括外壳,该外壳具有入口部、扩大部和出口部;
图4B是图4A所示的示例的反向文丘里装置的外壳入口部的前视剖视图;
图4C是图4A所示的示例的反向文丘里装置的外壳扩大部的前视剖视图;
图4D是图4A所示的示例的反向文丘里装置的外壳出口部的前视剖视图;
图5是构成本发明内容的又一示例的反向文丘里装置的侧视剖视图,其中,一连串交错隔板设置在外壳的扩大部,为排放物创建蜿蜒型流道;
图6A是构成本发明内容的又一示例的反向文丘里装置的侧视剖视图,其中,螺旋形隔板设置在外壳的扩大部,为排放物创建螺旋型流道;
图6B是图6A所示示例的反向文丘里装置中的螺旋形隔板的前视立体图;
图7A是构成本发明内容的又一示例的反向文丘里装置的侧视剖视图,其中,多个隔开的隔板设置在外壳的扩大部;
图7B是图7A所示的示例的反向文丘里装置沿剖面线AA的前视剖视图,示出了一个隔板上的孔;
图8是构成本发明内容的又一示例的反向文丘里装置的侧视剖视图,其中,多个碎片设置在外壳的扩大部;
图9是构成本发明内容的又一示例的反向文丘里装置的侧视剖视图,其中,多股纠缠的股线设置在外壳的扩大部,在其中形成羊毛状材料;
图10是构成本发明内容的又一示例的反向文丘里装置的侧视剖视图,其中,过滤元件设置在外壳的扩大部;
图11是构成本发明内容的又一示例的反向文丘里装置的侧视剖视图,其中,外壳的扩大部含有多个隔板和设置在相邻隔板之间的多个不同尺寸的碎片;
图12A是图11所示的示例的反向文丘里装置的外壳扩大部中的碎片的一种示例尺寸的正视图;
图12B是图11所示的示例的反向文丘里装置的外壳扩大部中的碎片的另一示例尺寸的正视图;
图12C是图11所示的示例的反向文丘里装置的外壳扩大部中的碎片的另一示例尺寸的正视图;
图12D是图11所示的示例的反向文丘里装置的外壳扩大部中的碎片的另一示例尺寸的正视图;
图13A是星号状松散材料的示例的正视图,与其它材料结合可用于替换图8和图11所示的示例的反向文丘里装置的碎片;
图13B是示例晶片的正视图,与其它晶片结合可用于替换图8和图11所示的示例的反向文丘里装置的碎片;
图13C是示例线圈的正视图,与其它线圈结合可用于替换图8和图11所示的示例的反向文丘里装置的碎片;
图14是构成本发明内容的另一示例的反向文丘里装置的侧视剖视图,包括两个独立的扩大部串联在一起;
图15是构成本发明内容的另一示例的反向文丘里装置的侧视剖视图,包括两个独立的扩大部并联在一起;
图16是构成本发明内容的另一示例的反向文丘里装置的侧视剖视图;
图17是用于从气态排放物去除污染物的已知方法的流程框图;
图18A是修改了图17所示的用于从气态排放物中去除污染物的方法的框图,其中增加了以下步骤:在初始注入点增加了向气态排放物中注入吸附剂,随后使气态排放物穿过反向文丘里装置;
图18B是修改了图17所示的用于从气态排放物去除污染物的方法的框图,其中增加了以下步骤:在第二注入点增加了向气态排放物中注入吸附剂,随后使气态排放物穿过反向文丘里装置;
图19是用于从非气态排放物中去除污染物的已知方法的框图,要求在沉淀池中沉淀非气态排放物;
图20是修改了图19所示的从用于非气态排放物去除污染物的方法的框图,其中增加了以下步骤:用吸附剂处理从沉淀池中提取的一部分非气态排放物;
图21是一个图表,显示由已知的排放控制系统从排放物中去除污染物的百分比,和由本申请公开的装置和方法从排放物中去除污染物的百分比;
图22是一个流程框图,显示利用形状为反向文丘里管的流化床装置从气态排放物移除污染物及清洁将污染物从气态排放物移除的反应材料的示例方法;
图23是一个流程框图,显示利用形状为反向文丘里管的流化床装置从非气态排放物移除污染物及清洁将污染物从非气态排放物移除的反应材料的示例方法;
图24是一个流程图,显示延长的非湍流的排放物流通过示例的形状为反向文丘里管的流化床装置,以及清洁和循环再用将污染物从排放物移除的吸附剂的方法步骤;
图25是一个流程框图,显示利用具有安装于移动式平台甲板的倾斜装置的形状为反向文丘里管的流化床装置的示例方法,其中形状为反向文丘里管的流化床装置的外壳的取向相对于平台甲板相对平行,以从气态排放物移除污染物;
图26是本发明的形状为反向文丘里管的流化床装置侧视图,其具有安装于移动式平台甲板的倾斜装置,且形状为反向文丘里管的流化床装置的外壳的取向相对于平台甲板相对平行;
图27是一个流程框图,显示利用具有安装于移动式平台甲板的倾斜装置的形状为反向文丘里管的流化床装置的示例方法,其中形状为反向文丘里管的流化床装置的外壳的取向相对于平台甲板相对横向,以从非气态排放物移除污染物;
图28是本发明的形状为反向文丘里管的流化床装置侧视图,其具有安装于移动式平台甲板的倾斜装置,且形状为反向文丘里管的流化床装置的外壳的取向相对于平台甲板相对横向;
图29是本发明的形状为反向文丘里管的流化床装置侧视图,其具有安装于移动式平台甲板的倾斜装置,且形状为反向文丘里管的流化床装置的外壳的取向相对于平台甲板呈约45度;
图30是如图26、28和29所示的形状为反向文丘里管的流化床装置侧视图,其具有安装于移动式平台甲板的倾斜装置,图中示出倾斜装置的总掠角;
图31是本发明的形状为反向文丘里管的流化床装置后视图,其具有安装于移动式平台甲板的倾斜装置,示出形状为反向文丘里管的流化床装置的外壳如何顺时针方向或反时针方向旋转以及前后摆动;以及
图32是本发明的形状为反向文丘里管的流化床装置的后视图,其具有安装于移动式平台甲板的倾斜装置,其中形状为反向文丘里管的流化床装置的外壳的取向相对横向于平台甲板。
具体实施方式
参照附图,其中,同样的数字表示视图中的相应部分,阐述了用于从工业排放物中去除污染物的装置和方法。
参照附图更详细地描述实施例。提供这些示例性实施例使得对本领域技术人员来说本发明是彻底的,并且充分表现本发明的范围。阐述了诸如具体部件、装置和方法的示例的许多具体细节,以提供对本发明的实施例的透彻理解。对于本领域的技术人员来说显而易见的是不需要采用具体细节,可以以许多不同形式来体现示例性实施例,并且不应将任一者理解为限制本发明的范围。在某些示例性实施例中,未详细地描述熟知的过程、熟知的装置结构和熟知的技术。
这里使用的术语仅用于描述特定实施例的目的,并非用于限制本发明的示例性实施例。这里,单数形式“一”、“一个”、和“所述”也包括复数形式,除非上下文明确指出。术语“包括”、“包含”、“含有”、和/或“具有”在使用时指定所述特征、整数、步骤、操作、元素、和/或组件的存在,但并不排除存在或添加有一个或多个其他特征、整数、步骤、操作、元素、组件和/或它们的组合。在此描述的方法的步骤、过程和操作不被理解为必须要求其按讨论或说明的特定顺序执行,除非明确地作为一种执行顺序来识别。也应理解可采用另外的或可选择的步骤。
当元件或者层被称为在另一元件或者层“上”、或“接合至”、“连接至”或者“联接至”另一元件或者层时,它可以是直接在所述另一元件或者层上、或直接接合、连接或者联接至所述另一元件或者层,或者可以存在中间元件或者层。相反,当元件被称为“直接”在另一元件或者层上、或“直接接合至”、“直接连接至”或者“直接联接至”另一元件或者层时,可以不存在中间元件或者层。用于描述元件之间的关系的其它词语也应该以相似的方式解释(例如“在…之间”对“直接在…之间”、“相邻”对“直接相邻”等)。如本文所使用的,术语“和/或”包括相关联的列举项目中的一个或多个的任意和所有组合。
虽然在本文可以使用第一、第二、第三等术语来描述各元件、部件、区域、层和/或部段,但是这些元件、部件、区域、层和/或部段不应该被这些术语限制。这些术语可以只用于区分一个元件、部件、区域、层或部段与另一区域、层或部段。当在本文中使用时,比如“第一”、“第二”和其它序数词等术语并不暗示序列或者顺序,除非上下文有明确说明。因此,以下讨论的第一元件、部件、区域、层或部段可以被称为第二元件、部件、区域、层或部段,而不背离示例性实施例的教导。
可以在本文中使用空间上相对的术语,比如“内”、“外”、“下方”、“以下”、“下”、“上方”、“上”等,以便描述如图所示的一个元件或者特征与其它元件或者特征的关系。空间上相对的术语可以旨在包含使用或者操作中的装置的除了图中示出的取向之外的不同取向。例如,如果图中的装置被翻转,则被描述为在其它元件或者特征“以下”或者“下方”的元件于是将取向为在其它元件或者特征“上方”。因此,示例性的术语“以下”可以包含上方和下方这两个取向。装置可以按其它方式取向(旋转90度或者处于其它取向),并且在此使用的空间描述语相应地被解释。
另外,这里使用的术语“管道”旨在涵盖所有涉及的管道,可能通常输送液体、和/或液体状排放物和气态和/或气态状排放物。关于输送排放物的实际方法,不论排放的类型,没有优先考虑或暗示。
参考图1,示出了典型的燃煤发电厂100的示意图。燃煤发电厂100包括工业设施流化床反应器1,燃烧一种或多种类型的煤燃料2,产生电力7。然后,电力7可通过电线8向电网分配。流化床反应器1内的燃烧由空气3、火焰4和煤燃料2驱动。燃烧过程用于加热水并产生蒸汽5。然后,蒸汽用于转动发电机6,产生电力7。燃烧过程产生的气态排放物10通过烟囱9释放到环境中。当燃煤发电厂100没有装备任何排放控制系统(图1)时,排放物10包括许多有害污染物,例如飞灰、汞(Hg)、金属蒸气、二氧化硫(SO2)、氯化氢(HCl)和其它有毒烟雾。
参考图2,示出了最新的燃煤发电厂200,包括典型的排放控制系统202。排放控制系统202帮助在气态排放物10中捕获和收集一些有害污染物。排放控制系统202将气态排放物10从发生燃烧的流化床反应器1输送到湿式或干式洗涤器11中,从气态排放物10中除去一些二氧化硫和飞灰污染物。作为将气态排放物10输送到湿式或干式洗涤器11的替代或补充,排放控制系统202可以将气态排放物10输送到喷雾干燥器12中,在其中捕获和收集一些二氧化硫、有害烟雾和其它污染物。排放物还可以通过织物过滤器单元13(即袋式除尘器),使用过滤袋从气态排放物10流中去除微粒。在气态排放物10通过烟囱9释放到周围大气(即环境)中之前,该系统从气态排放物10中收集并去除许多污染物。图2所示的典型排放控制系统202的问题在于包含在金属蒸汽排放物中的纳米尺寸污染物,例如汞,很容易通过排放控制系统202的湿式或干式洗涤器11、喷雾干燥器12和织物过滤器单元13。
参考图3,示出了改良的燃煤发电厂300,除了图2所示的排放控制系统202之外,还包括吸附剂注射器14和反向文丘里装置15。吸附剂注射器14运行,将吸附剂添加到气态排放物10中,并且可选择地设置在反向文丘里装置15的上游。更具体地,在图3所示的示例中,吸附剂注射器位于喷雾干燥器12和织物过滤器单元13之间。尽管反向文丘里装置15可有另一个位置,但在图3中,反向文丘里装置定位在织物过滤器单元13和烟囱9之间。该位置的一个主要优点是能够在现有设施上安装反向文丘里装置15并且简单地申请“修改现有许可证”,与为完全新的排放控制系统申请新的许可证相比节省了时间和金钱。在操作中,气态排放物10从织物过滤器单元13运送到反向文丘里装置15。下面将有更详细的解释,反向文丘里装置15安装有适于收集和捕获大量汞、重金属、纳米尺寸颗粒和其它污染物的内部特征。因此,离开烟囱9的气态排放物10几乎清除了所有有害污染物。
参考图4A-D,反向文丘里装置15包括形状为反向文丘里管的外壳16。应当理解,文丘里管通常可以被描述为管道,管道首先从较大横截面向下变窄到较小横截面,然后从较小横截面膨胀回较大的横截面。因此,如本文所使用的术语“反向文丘里管”描述了相反的导管,首先从较小横截面膨胀到较大横截面,然后,从较大横截面缩窄回较小横截面。具体地,所公开的反向文丘里装置15的外壳16沿中心轴线17延伸,并且具有入口部18、扩大部19和出口部20。外壳16的入口部18的尺寸被设置成以预定的进入流速接收气态排放物10,其特征在于进入速度V1和压力P1。外壳16的出口部20的尺寸设定成以预定的排出流速排出气态排放物10,其特征在于出口V3和压力P3。扩大部19设置在外壳16的入口部18和出口部20之间,在其中限定了扩大腔21,用于捕获气态排放物10中的污染物。外壳16的扩大部19具有大致面向中心轴线17的内表面68。外壳16的入口部18、扩大部19和出口部20沿着中心轴线17依次设置,使得外壳16的入口部18、扩大部19和出口部20彼此流体连通。换句话说,外壳16的入口部18、扩大部19和出口部20配合形成沿中心轴线17延伸的导管。
外壳16的入口部18具有横向于中心轴线17的入口部横截面A1,外壳16的出口部20具有横向于中心轴线17的出口部横截面A3。入口部横截面A1可以等于(即可以是一样的)出口部横截面A3,使得预定入口流速等于(即,是一样的)预定出口部流速。或者,入口部横截面A1可以不同于出口部横截面A3(即可以大于或小于),使得预定的入口流速不同于(即小于或大于)预定的出口流速。应当理解,如本文所使用的术语“流速”是指排放物的体积流速。
外壳16的扩大部19具有横向于中心轴线17并且大于入口部横截面A1和出口部横截面A3的扩大部横截面A2。因此,扩大部19的尺寸设置成使得外壳16的扩大部19内的气态排放物10的流速V2小于外壳16的入口部18中的气态排放物10的流速V1以及小于外壳16的出口部20中的气态排放物10的流速V3。相应地,该减小的流速又增加了气态排放物10在外壳16的扩大部19内的停留时间。应当理解,本文所用的术语“停留时间”是指气态排放物10中的分子通过外壳16的扩大部19所需的平均时间。换句话说,外壳16的扩大部19的“停留时间”等于更新扩大腔21中的所有排放物所需的时间。还应当理解,如本文所使用的术语“横截面”是指内部横截面(即,外壳16内部的空间),内部横截面不论外壳16的厚度变化始终保持相同。因此,扩大部横截面A2反映扩大腔21的尺寸并且由内表面68界定。
由于外壳16的几何形状,通过外壳16的入口部18的气态排放物10的内部压力P1和通过外壳16的出口部20的气态排放物10的内部压力P3比通过外壳16的扩大部19的气态排放物10的内部压力P2大。该压力差与外壳16的扩大部19内的气态排放物10的流速V2小于外壳16的入口部18中的气态排放物10的流速V1并且小于外壳16的出口部20中的气态排放物10的流速V3的事实相结合,使得气态排放物10停留在外壳16的扩大部19中。由于上述压力和速度差,并且因为气态排放物10将自然地膨胀,占据扩大腔21的整个体积,因此膨胀力被施加到外壳16的扩大部19中的气态排放物10上。这与层流、气动力学和气体行为物理学的效果相结合,由此增加的停留时间提高了反向文丘里装置15有效捕获并从而从气态排放物10去除污染物的能力。
外壳16可以具有各种不同的形状和构造。例如但不限于,图4A-D中所示的外壳16的入口部18、扩大部19和出口部20都具有圆形横截面A1、A2、A3。或者,外壳16的入口部18、扩大部19和出口部20中的一个或多个的横截面A1、A2、A3可以具有非圆形形状,其中可能有圆形和非圆形横截面,这些都被认为在本发明公开的范围内。在一些构造中,外壳16的扩大部19可以具有发散端22和收敛端23。根据这些构造,外壳16的扩大部19在发散端22从入口部横截面A1向扩大部横截面A2向外逐渐扩大。换句话说,外壳16的扩大部19的横截面在发散端22处沿远离外壳16的入口部18的方向移动而增加。相反,外壳16的扩大部19在收敛端23从扩大部横截面A2到出口部横截面A3向内逐渐变小。换句话说,外壳16的扩大部19的横截面在收敛端23处沿朝向外壳16的出口部20的方向移动而减小。因此,应当理解,外壳16的扩大部19中的气态排放物10通常从发散端22流到收敛端23。在外壳16的入口部18、扩大部19和出口部20都具有圆形横截面A1、A2、A3的实施例中,外壳16的发散端和收敛端22、23通常具有圆锥形状。尽管如此,外壳16的扩大部19的发散端22和收敛端23可能有其它可选形状。通过示例而非限制的方式,发散端22和收敛端23可以具有多边形形状,改善了制造便利性,同时避免对通过反向文丘里装置15的外壳16的气态排放物10的流动产生任何显着的不利影响。在另一替代构造中,外壳16的扩大部19可具有类似于香肠的形状,在入口部18和发散端22与收敛端23和出口部20之间具有相对陡峭的过渡。可以预计的是,平滑过渡优选于陡峭过渡,因为气态排放物10的层流行为是优选的。然而,在突然过渡处对气态排放物10的层流产生的轻微扰动不被认为是严重的害处,反而可以在不需要增加停留时间的区域提供增强流动。
继续参考图4A-D并且另外参考图5-11,将大量反应材料24设置在外壳16的扩大部19内。该大量反应材料24具有与气态排放物10接触的反应性外表面25。另外,该大量反应材料24的反应性外表面25包含汞齐形成金属,使通过外壳16的扩大部19的气态排放物10中的至少一些污染物化学结合到该大量反应材料24的反应性外表面25。这样,结合到该大量反应材料24的反应性外表面25上的污染物保存在外壳16的扩大部19中,从而,从离开扩大部19并进入外壳16的出口部20的气态排放流10中被去除。应当理解,本文所使用的术语“汞齐形成金属”描述了选自一组金属的材料,能够与气态排放物10中的一种或多种污染物形成化合物。作为非限制性实例,形成汞齐的金属可以是锌,气态排放物10中的污染物可以是汞,使得当气态排放物10与该大量反应材料24的反应性外表面25接触时形成锌和汞的汞齐。
应当理解,外壳16的扩大部19必须确定尺寸以适应气态排放物10的预定进入流速,同时提供足够长的停留时间,使得该大量反应材料24中的汞齐形成金属能够与气态排放物10中的污染物化学结合。因此,为了实现这种平衡,扩大部横截面A2可以在3平方英尺到330平方英尺的范围内,以便实现从1秒到2.5秒的停留时间。需要特定的停留时间,使气态排放物10中的污染物有足够的时间与该大量反应材料24中的汞齐形成金属化学结合。因此,计算扩大部横截面A2的范围,获得具有输出范围从1兆瓦(MW)至6000兆瓦(MW)的燃煤发电厂100的停留时间。众所周知,在化学领域,形成汞齐的金属可以是各种不同的材料。作为非限制性实例,形成汞齐的金属可选自由锌,铁和铝组成的组。还应当理解,外壳16由与该大量反应材料24不同的材料制成。作为非限制性示例,外壳16可以由钢,塑料或玻璃纤维制成。
该大量反应材料24可以设置在各种不同的非限制性构造中。参考图4A,示出了该大量反应材料24涂覆外壳16的内表面68。或者,参考图5-11,该大量反应材料24可形成一个或多个阻塞元件26a-j,设置在外壳16的扩大部19内。因此,阻塞元件26a-j创建了用于气态排放物10通过外壳16的扩大部19的曲折流道27。因此,阻塞元件26a-j增加了气态排放物10通过外壳16的扩大部19的停留时间。以下讨论的几个实施例完全分散了通过外壳16的扩大部19的气态排放物10的流动,使得所产生的曲折流道27完全是随意的,这极大地增强了气态排放物10中的污染物和该大量反应材料24中的汞齐形成金属之间化学反应的机会。
在图5-11所示的每个结构中的阻塞元件26a-j呈现大的表面积,使得该大量反应材料24的反应性外表面25大。这是有利的,因为该大量反应材料24的反应性外表面25中的汞齐形成金属与气态排放物10中的污染物之间的化学反应允许外壳16的扩大部19保存、捕获和/或收集污染物,从而从气态排放物10去除/消除它们。因此,外壳16的扩大部19可以从穿过扩大腔21的气态排放物10中去除的污染物的量与外壳16的扩大部19中的大量反应材料24的反应性外表面25的大小成比例。此外,阻塞件26a-j的复杂表面形状和/或纹理可提供额外的表面,以便于物理捕获污染物,而不管捕获是否是污染物和汞齐形成金属之间的化学反应的结果。
再次参考图3,通过吸附剂注射器14添加到排放物中的吸附剂含有汞齐形成金属。因此,在气态排放物10进入外壳16的扩大部19之前,吸附剂中的汞齐形成金属与气态排放物10中的至少一些污染物化学结合。尽管吸附剂可以具有许多不同的组成,但吸附剂可以是例如锌(Zn)粉或铜,锌,锡,硫(CZTS)化合物。因为在气态排放物10进入外壳16的扩大部19之前,吸附剂与气态排放物10中的至少一些污染物化学结合,所以吸附剂帮助大量反应材料24从气态排放物10去除污染物。
参考图5,阻塞元件26a-j以一系列交错的隔板26a的形式设置,隔板26a从外壳16的扩大部19的内表面68延伸。一系列交错的隔板26a横向于中心轴线17,并使曲折流道27具有蛇形形状。曲折流道27的蛇形形状增加了气态排放物10在外壳16的扩大部19中的停留时间,通过形成一系列交错隔板26a的大量反应材料24,相应地改进了气态排放物10中的污染物的捕获和去除。在一个变型中,一系列交错隔板26a由锌制成。在另一变型中,一系列交错隔板26a由镀锌的非锌材料制成。应当理解,交错隔板26a的放置不需要沿着中心轴线17长度相等或对称地定向,因为一些应用可以受益于相邻隔板26a之间的较大空间,而其他应用可以受益于相邻隔板26a之间的较小空间。还应当理解,在反向文丘里装置15的操作期间,如果交错隔板26a饱和了,则可以根据需要更换和/或清洁该系列交错隔板26a。
参考图6A-B,至少一个阻塞元件26a-j可选地是螺旋状隔板26b的形式。螺旋状隔板26b沿着并围绕中心轴线17在外壳16的扩大部19内螺旋延伸。因此,螺旋状隔板26b使曲折流道27成螺旋形状。曲折流道27的螺旋形状增加了气态排放物10在外壳16的扩大部19中的停留时间,通过形成一系列螺旋状隔板26b的大量反应材料24,相应地改进了气态排放物10中的污染物的捕获和去除。在一个变型中,螺旋状隔板26b由锌制成。在另一变型中,螺旋状隔板26b由镀锌的非锌材料制成。在又一变型中,螺旋状隔板26b被机械地驱动,使得螺旋状隔板26b围绕中心轴线17在外壳16的扩大部19内旋转。螺旋状隔板26b的旋转可以人为地加速或人为地减慢气态排放物10通过外壳16的扩大部19的流动,这取决于螺旋状隔板旋转的方向。应当理解,在反向文丘里装置15的操作期间,如果螺旋状隔板26b饱和了,则可以根据需要更换和/或清洁该螺旋状隔板26b。
参考图7A-B,至少一个阻塞元件26a-j是多个隔板26c。每个隔板26c从外壳16的扩大部19的内表面68横向延伸横越外壳16的扩大部19。隔板26c沿着中心轴线17彼此间隔开,并且每个隔板26c包括允许气态排放物10流过隔板26c的孔28。当然应当理解,可以有任何数量的隔板26c,包括仅包含单个隔板26c的构造。还应当理解,每个隔板26c中的孔28的尺寸、形状和数量可以各不相同。例如,隔板26c可以设置成丝网的形式,其中孔28形成在丝网的交叉丝之间。隔板26c中的孔28限制外壳16的扩大部19中的气态排放物10的流动,因此增加气态排放物10在外壳16的扩大部19中的停留时间。通过形成隔板26c的大量反应材料24,改进了气态排放物10中的污染物的捕获和去除。在一个变型中,螺旋状隔板26b由锌制成。在另一变型中,螺旋状隔板26b由镀锌的非锌材料制成。应当理解,在反向文丘里装置15的操作期间,如果隔板26c饱和了,则可以根据需要更换和/或清洁该隔板26c。在另一变型中,隔板26c中的一个孔28的尺寸不同于相邻的一个隔板26c中的孔28的尺寸。通过在不同的隔板26c中使用不同尺寸的孔28,可以加速和/或限制气态排放物10的流动,以改进由隔板26c中的大量反应材料捕获和去除气态排放物10中的污染物。类似地,隔板26c不需要在扩大室21中等距地间隔开,一个隔板26c中的孔28也不需要具有与相邻的隔板26c中的孔28相同的尺寸、形状或相同的位置。通过利用一个隔板26c中孔28的的尺寸、形状和位置与另一个隔板不同,并且通过利用隔板26c的不同间隔距离,可以增加气态排放物10在外壳16的扩大部19中的停留时间,以便促进增加沿大量反应材料24与物理和化学捕获和收集点的接触。
在图8-11所示的其它替代配置中,至少一个阻塞元件26a-j可以不固定到外壳16本身,而是可以自由地定位在外壳16的扩大部19内。在这样的配置中,至少一个阻塞元件26a-j可以包括不同形式的阻塞介质26d-j。像阻塞元件26a-c一样,阻塞介质26d-j能够由锌或由镀锌的非锌材料制成。锌容易熔化,能够使用常规模制方法、失蜡投料工艺、离心工艺等浇铸复杂形状。其他构造方法将包括机械加工、挤压、烧结、冲压、热锻成形、激光切割等。或者,可以使用钢来产生下面的形状,然后将其随后涂覆或镀覆锌作为表面覆盖物。阻塞介质26d-j可以用于完全填充整个扩大腔21,部分地填充扩大腔21,或者填充在之前结合图7A-B描述的隔板26c之间。
图8示出了其中至少一个阻塞元件26a-j是容纳在外壳16的扩大部19中的多个碎片26d的构造。根据这种构造,当气态排放物10从外壳16的入口部18通过外壳16的扩大部19行进到出口部20期间,气态排放物10穿过相邻碎片26d之间的空间。为此,多个碎片26d可以设置有不规则形状,使得碎片26d在外壳16的扩大部19中松散地彼此堆叠。在一个非限制性示例中,多个碎片26d可以由海绵状锌制成。海绵状锌是通过将熔融锌浸入诸如水的冷却液体中而产生的爆米花状锌构造。所得到的熔融锌滴凝固成相对小的球状结构,具有极高表面积与体积比。此外,所得结构的表面积具有苔藓状表面纹理。这些结构可以生产成一定范围大小,用于特定的应用。一些钢工艺可以生产类似于海绵状锌的钢版本的复杂球状结构,可以是镀锌的。
图8中的多个碎片26d的松散包装性质给予曲折流道27随意形状,增加了气态排放物10在外壳16的扩大部19中的停留时间。通过形成大量碎片26d的大量反应材料24,相应地改进了气态排放物10中的污染物的捕获和去除。在反向文丘里装置15的操作期间,如果大量碎片26d饱和了,则可以根据需要更换和/或清洁图8中的大量碎片26d。
在图9所示的另一个替代配置中,至少一个阻塞元件26a-j是多股纠缠的股线26e,设置在外壳16的扩大部19内。因此,多股缠结的股线26e在外壳16的扩大部19中形成类似羊毛的材料。根据一种可能的构造,多股缠结股线26e如钢丝棉一样折叠和起皱,形成具有非常大的表面积的一团。缠结股线26e本身可以具有相同的组成、厚度和长度,或者可以是不同组成、厚度和/或长度的混合物。在一个示例中,多个缠结股线26e由锌丝制成并且随意缠结以形成锌绒。锌绒可以由不同程度的密度和/或大小的线材制成,提供特定的流动限制能力。在另一个示例中,多个缠结股线26e由钢丝制成并且随意缠结以形成钢丝绒。钢丝绒可以是镀锌的。图9中的多股缠结股线26e的相对松散的包装性质使得曲折流道27为任意形状,这增加了气态排放物10穿过外壳16的扩大部19的停留时间。通过形成多股缠结股线26e的大量反应材料24,相应地改进了气态排放物10中的污染物的捕获和去除。在反向文丘里装置15的操作期间,如果多股缠结股线26e饱和了,则可以根据需要更换和/或清洁图9中的多股缠结股线26e。
参考图10,示出了另一个替代配置,其中至少一个阻塞元件26a-j是过滤器元件26f。过滤器元件26f相对于中心轴线17横向地延伸横越外壳16的扩大部19。过滤器元件26f是多孔的,当气态排放物10从外壳16的入口部18流过外壳16的扩大部19到达出口部20期间,过滤器元件26f中的孔允许气态排放物10通过过滤器元件26f。可由烧结金属制成过滤器元件26f的设置,使得曲折流道27具有任意形状,这增加了气态排放物10穿过外壳16的扩大部19的停留时间。通过形成过滤器元件26f的大量反应材料24,相应地改进了气态排放物10中的污染物的捕获和去除。过滤元件26f的烧结金属优选由锌或涂覆有锌的非锌材料制成。应当理解,在反向文丘里装置15的操作期间,如果过滤器元件26f饱和了,则可以根据需要更换和/或清洁过滤器元件26f。
图11示出了至少一个阻碍元件26a-j,其是图7A-B中所示的多个隔板26c和具有不同的尺寸并且类似于图8所示的多个碎片26d的多个碎片26g-j的组合。根据该替代构造,多个隔板26c和多个碎片26g-j设置在外壳16的扩大部19中。类似于图7A-B,图11中所示的多个隔板26c从外壳16的扩大部19的内表面68横向延伸横越外壳16的扩大部19。另外,多个隔板26c沿着中心轴线17彼此间隔开,使得隔板26c将扩大腔21分成多个部分。每个隔板26c的孔28允许气态排放物10流过隔板26c。多个碎片26g-j设置在相邻隔板26c之间(即,设置在扩大腔21的多个部分中)。
如图11和图12A-D所示,多个碎片26g-j形成大量反应材料24。可以提供多个不同大小的碎片26g-j,其中多个碎片26g-j以类似的大小分组(即碎片26g,26h,26i和26j在不同的组中),并且通过隔板26c与另一大小的碎片组分开。例如,碎片组26g-j可以设置成碎片26g-j的尺寸随着远离外壳16的入口部18并向外壳16的出口部20移动而减小。换句话说,各组中的碎片26g-j的尺寸可以是分级的,并且在外壳16的扩大部19中沿气态排放物10的总体流动方向移动而减小。在一个示例中,碎片26g-j由锌制成。例如,碎片26g-j可以通过将熔融锌滴入冷却液体中而形成,以产生具有特别大的表面积和随意的苔藓状表面纹理的爆米花状结构。应当理解,在另一示例中,不同尺寸的碎片26g-j可以混合在一起,因此不根据大小分组。
如图13A-C所示,示出了松散材料形式的几个替代形状的阻塞元件26k-m,可以用于图8和图11所示的多个碎片26d和26g-j的补充或替代。图13A示出了阻塞物26k形成大量反应材料24并且具有类星形形状的示例,其类似于被称为“千斤顶”的儿童玩具的形状。图13B示出了另一个示例,其中替代形状的阻塞元件26k-m是形成大量反应材料24的多个结晶薄片261(示出一个),并且可以如图8和11所示的碎片26d和26g-j一样位于外壳16的扩大部19中。结晶薄片261具有类似于雪花的形状。图13C示出了另一个示例,其中替代形状的阻塞元件26k-m是形成大量反应材料24的多个线圈26m(示出一个),并且可以如图8和11所示的碎片26d和26g-j一样位于外壳16的扩大部19中。应当理解,阻塞物26k和多个结晶薄片261可以由锌制成,或使用各种工艺,包括但不限于失蜡锻造和3D打印,进行锌涂覆的非锌材料制成。例如,多个线圈26m可以通过围绕类似于弹簧形状的芯轴缠绕锌丝制成,除了在缠绕芯轴之后,缠绕的线的整个线圈沿着芯轴的长度被切开,从而产生线圈的单个环。还应当理解,替代形状的阻塞元件26k-m可能完全填充扩大腔21或可能不完全填充扩大腔21。
应当理解,上述各种类型的阻塞元件26a-k可以混合和匹配产生各种组合。混合和匹配的实例包括将图5、6A-B和7A-B中所示的一个或多个隔板26a-c与图8和11中所示的多个碎片26d和26g-j组合。混合和匹配的其它实例包括将图9所示的多股缠结股线26e与图8和11所示的多个碎片26d和26g-j组合。可有其它替代配置,将上述各种类型的阻塞元件26a-k与其它过滤材料,诸如活性炭,组合。通过表面接触,活性炭像海绵一样并且通过表面接触收集污染物。因此,可以将有限量的活性炭注入外壳16的扩大部19中,与上述各种类型的阻塞元件26a-k结合起作用。有利的是,阻塞元件26a-k将活性炭保持在外壳16的扩大部19中,使得活性炭相对静态地设置在整个扩大腔21中。这种情况与典型的排放控制系统相反,典型的排放控制系统是将活性炭释放到气态排放流10中。因为活性炭不能随气态排放物自由流动,所以可以更有效地使用活性炭。本领域技术人员将容易理解,本申请公开的反向文丘里装置15的变型仅仅是示例性的,可能有远远超出本文公开的少数实施例的许多组合,用作针对特定的应用情况。
参考图14,示出了另一示例性反向文丘里装置15',其包括通过导管38串联在一起的两个扩大部19、19'。外壳16的一个扩大部19在外壳16的入口部18和导管38之间,而另一个扩大部19'在导管38和外壳16的出口部20之间。因此,用于气态排放物10的曲折流道27被拉长。根据这种构造,气态排放物10从扩大部19通过导管38进入到扩大部19',在那里收集和/或捕获额外的污染物。还应当理解,本发明内容不限于仅使用一个或两个串联的扩大部19、19',因为具有大量排放物和/或重污染水平的一些应用可能需要串联连接大量的扩大部。
参考图15,示出了另一示例性反向文丘里装置15”,其包括并联在一起的两个扩大部19、19”。三通入口阀(三通进气阀)39控制气态排放物10的流动,引导气态排放物10进入并通过导管41或导管42。三通出口阀40引导气态排放物10从导管41或导管42中排出,而不从导管41直接回流到导管42中,反之亦然。当气态排放物10通过管道41时,气态排放物10通过入口部18进入扩大部19并且通过出口部20排出。当气态排放物10通过导管42时,气态排放物10通过入口部18"进入扩大部19"并且通过出口部20"排出。图15所示的反向文丘里装置15"的一个优点是,当扩大部19、19"中的一个需要维护、维修或清洁时,其可以被隔离并离线,而不关闭整个系统,因为扩大部19、19"中的另一个可以保持使用。
随着时间的推移,发生在大量反应材料24的反应性外表面25上的化学反应和/或污染物的物理捕获可导致大量反应材料24的饱和点,降低反向文丘里装置15的效率。因此,图15中所示的配置允许移除、替换和/或清洁外壳16的扩大部19、19"中的大量反应材料24,恢复反向文丘里装置的饱和前的效率性能,而不需要完全关闭。
从大量饱和反应材料中除去污染物的过程将特别地取决于污染物的类型和所使用的汞齐形成金属的类型。接入设置在外壳16的扩大部19、19"内部的扩大腔21、21"将与所使用的阻塞的类型相适应。当使用相对较小的松散阻塞物时,将需要倾倒和/或排放型的接入方式。如果阻塞物是相对较大的块、板、隔板或组件,则需要适当的提起和处理方法和接入方式。
仍然参考图15,反向文丘里装置15可以包括一个或多个喷嘴81,设置成与外壳16的扩大部19、19”流体连通。安装喷嘴81,将脱氧酸喷射到外壳16的扩大部19、19”中的大量反应材料24上。在操作中,脱氧酸洗涤大量反应材料24的污染物,以便使大量的反应材料24复原。可选地,排水管82可以设置成与外壳16的扩大部19、19”流体连通,将用过的脱氧酸和污染物的溶液从外壳16的扩大部19、19”运走。有利地,无论是钢上的涂层还是固体锌结构的饱和锌,都可以回收和再生。因此,用于阻塞物的材料可以被再利用和再生。此外,捕获的许多污染物,特别是重金属例如汞,能够在照明和氯制造中再生利用。
参考图16,示出了另一示例性反向文丘里装置15,其中扩大室45具有与入口导管43和出口导管44的体积相比明显更大的体积。扩大部46可以是圆形,正方形,三角形,椭圆形或实际上需要的许多形状中的任何一种(图中示出矩形形状),以便获得用于气态排放物流过扩大部46的扩大的曲折流道77。
参考图17,示出了典型的气态排放控制系统的框图。在气态排放物通过烟囱51释放到大气之前,从熔炉47被输送到静电除尘器(ESP)48,然后到流化气体脱硫(FGD)单元49,然后通过织物过滤器(FF)单元50。在ESP48处从气态排放物中去除污染物的第一浓缩物52。类似地,在FGD单元49处从气态排放物去除污染物的第二浓缩物53。由FGD单元49产生的通常含有汞和其它重金属的第二浓缩物53通常转移到废水中。在FF单元50处从气态排放物去除污染物的第三浓缩物54。
最后,释放到大气的最终排放物仍然不能满足环保局排放法规和要求。环保局允许的排放物要求去除至少90%的有害污染物,而目前典型的排放控制系统只能去除88%-90%的有害污染物。工业污染排放的一个主要问题是,随着时间的推移,管理排放的法规将变得更加严格,而目前的排放控制技术有可能达到其极限。因此,正在进行的技术改进的步伐跟不上越来越严格的排放法规的步伐。
参考图18A-B,修改了图17的框图,引入可选的吸附剂注入点,并且增加了附加步骤,使气态排放物通过上述反向文丘里装置15。在图18A中,示出了位于熔炉47和ESP 48之间的第一吸附剂注入点55。或者,在图18B中,示出了位于FDG单元49和FF单元50之间的第二吸附剂注入点56。哪种选择对于吸附剂是最佳的将取决于工厂的现有配置和条件。除了图18A-B所示的两个选择之外,还有许多其它注入点和/或注入点的组合可以注入吸附剂,因此,这两个选项是为了说明的目的而示出的。图18A-B中的反向文丘里装置15位于FF单元50之后并且在烟囱51之前。反向文丘里装置15可以根据上述任何示例配置,可适用于各种应用。最后,在离开反向文丘里装置15之后通过烟囱51释放到大气中的最终气态排放物将能够满足并超过当前和未来的环保局排放法规和要求。
图18A-B所示的方法包括以下步骤:在熔炉47中燃烧燃料,产生含有污染物的气态排放物,将来自熔炉47的气态排放物输送到ESP48,用ESP48去除气态排放物中的第一部分颗粒污染物。根据用ESP48去除气态排放物中的第一部分颗粒污染物这一步骤,形成第一浓缩物52,包含已经通过ESP48从气态排放物中除去的第一部分颗粒污染物。应当理解,在操作中,ESP48利用感应静电荷从气态排放物中去除细小的污染物颗粒。该方法还包括以下步骤:将气态排放物从ESP 48输送到FDG单元49,用FDG单元49去除气态排放物中的二氧化硫污染物。根据用FDG单元49去除气态排放物中的二氧化硫污染物这一步骤,形成含有由FDG单元49从气态排放物中除去的二氧化硫污染物的第二浓缩物53。该方法还包括以下步骤:将来自FDG单元49的气态排放物输送到FF单元50(即袋式除尘器),用FF单元50去除气态排放物中的第二部分颗粒污染物。根据用FF单元50去除气态排放物中的第二部分颗粒污染物这一步骤,形成含有由FF单元50从气态排放物去除第二部分颗粒污染物的第三浓缩物54。应当理解,在操作中,当气态排放物通过FF单元50的一个或多个织物过滤器(未示出)时,从气态排放物中去除污染物颗粒。
根据本发明,该方法还包括以下步骤:将来自FF单元50的气态排放物输送到反向文丘里装置15,并用反向文丘里装置15去除气态排放物中的重金属污染物。根据用反向文丘里装置15去除气态排放物中的重金属污染物这一步骤,气态排放物经过(即,流过)设置在反向文丘里装置15中的大量反应材料。大量反应材料中的汞齐形成金属与气态排放物中的重金属污染物化学结合。因此,当重金属污染物结合到大量反应材料中的汞齐形成金属时,大量反应材料捕获反向文丘里装置15中的重金属污染物。然后,该方法可以将气态排放物从反向文丘里装置15输送到烟囱51,将气态排放物排放到周围大气中。还应当理解,反向文丘里装置15有利地具有相对小的设备占地面积,能够容易地在现有系统的排放控制装置48、49、50和通向大气的烟囱51之间改进安装。
可选地,该方法可以包括将吸附剂注入到气态排放物中的步骤。根据该步骤并且如图18A所示,吸附剂可以在设置在炉47和ESP 48之间的第一吸附剂注入点55处被注入到气态排放物中。或者,如图18B所示,吸附剂可以在设置在FDG单元49和FF单元50之间的第二吸附剂注入点56处被注入到气态排放物中。吸附剂含有汞齐形成金属,使得吸附剂在气态排放物进入反向文丘里装置15之前与气态排放物中的至少一些重金属污染物结合。通过在第一吸附剂注入点55或第二吸附剂注入点56处将吸附剂注入到气态排放物中,可以以先前不可能达到的水平在FF单元50中收集更多的汞、重金属和酸性气体。如上所述,形成汞齐的金属可以选自由锌,铁和铝组成的组,并且吸附剂可以是例如CZTS化合物。吸附剂能够再生复原,从而可以收获和回收有害污染物。
参考图19,示出了典型的非气态排放控制系统的框图。在被输送到沉降池61之前,液体和/或液体状排放物可以从流化气体脱硫(FGD)单元59和/或从湿式洗涤器单元58输送到石灰处理单元60。经过适当的时间,非气态排放物将从沉降池61排出到用于干燥处理准备的处理系统64或脱水系统62中。通过干燥处理过程64的非气态排放物准备在垃圾填埋场65中处置。通过脱水系统62,有时可包括再循环系统,输送的非气态排放物准备用于二次工业过程63,例如可涉及石膏和/或水泥的生产。没有从沉淀池61排出到脱水系统62或干燥处理过程64的非气态排放物被输送排放到水道66中。释放到水道66中的最终非气态排放物与其在未来几年所受到的管制不一样。与当前允许进入水道的排放物相比,拟议的环保局水排放法规和要求将是非常严格的。具有需要排放到水道中的污染液体排放的工业目前拥有的排放控制技术不可能满足和/或遵守即将拟定的环保局规定。
参考图20,改良了图19的框图,使用包含上述吸附剂的一个或多个处理罐67。处理罐67位于非气态排放物被排出沉淀池61之后并且在它们排放到水路66中之前。图20所示的方法包括以下步骤:收集含有污染物的非气态排放物,使非气态排放物通过FGD单元59和/或湿式洗涤器58,除去非气态排放物中的一些污染物,将来自FGD单元59和/或湿式洗涤器58的非气态排放物输送到石灰处理单元60,并且使非气态排放物通过石灰处理单元60,通过克拉克过程软化非气态排放物。应当理解,在操作中,石灰处理单元60通过沉淀从非气态排放物中去除某些离子(例如钙(Ca)和镁(Mg))。该方法还包括以下步骤:将非气态排放物从石灰处理单元60输送到沉降池61,非气态排放物中的一些污染物通过沉降被去除,使沉降池61中的非气态排放物的第一部分脱水,并且在二次工业过程63中使用脱水的副产物,以及从沉降池61中除去非气态排放物的第二部分,并使非气态排放物的第二部分经受干燥处理过程64。根据使沉降池61中的非气态排放物的第一部分脱水并且在二次工业过程63中使用脱水的副产物这一步骤,脱水过程可以包括非气态排放物的第一部分的再循环,二次工业过程63可以包括例如生产石膏或生产水泥。根据从沉降池61中除去非气态排放物的第二部分并使非气态排放物的第二部分经受干燥处理过程64这一步骤,干燥处理过程64可以包括将非气态排放物的第二部分沉积在垃圾填埋场65中。
根据本发明内容,该方法还包括以下步骤:将沉降池61中的非气态排放物的第三部分输送到包含所公开的吸附剂的处理罐67。吸附剂含有与非气态排放物的第三部分中的重金属污染物结合的汞齐形成金属。因此,当重金属污染物与吸附剂结合并且脱离非气态排放物沉积/沉淀时,吸附剂捕获处理罐67中的重金属污染物。然后,该方法可以将非气态排放物从处理罐67输送到水道66进行排放。应当理解,处理罐67的设计可以允许非气态排放物(即废水流)连续通过处理罐67。
关于本发明的吸附剂,公开了几个示例性实施例。这些示例性实施例仅仅是几个示例,并且不代表其潜在变化的详尽列表。
如上所述,一种示例性吸附剂是元素锌粉。锌粉由元素锌制成。锌可以以粉末的形式或以颗粒的形式存在。可用于在高温下延长锌粉和/或颗粒在一些气态排放应用中的有效寿命并减少和/或防止过早氧化的一种方法是将颗粒和/或粉末与固体酸混合或涂覆,例如氨基磺酸,柠檬酸或其它有机酸。粉末/酸混合物可以注入到气态排放物(例如烟道气流)中和/或置于反向文丘里装置15的适当的示例性实施例中。
锌粉的最佳粒度为0.5纳米至7500微米。此外,已经发现具有一系列不同尺寸颗粒的粉末混合物是有益的,特别是如果颗粒尺寸在0.5纳米至7,500微米的范围内。类似地,锌颗粒的最佳粒径为7,500微米至3.0英寸。此外,已经发现具有一定范围的不同尺寸颗粒的颗粒混合物是有利的,特别是如果颗粒尺寸范围为7,500微米至3.0英寸。
在另一个示例性实施方案中,吸附剂是CZTS,元素式Cu2ZnSnS4。CZTS也可以由其它相的铜,锌,锡和硫构成,这也是有益的。CZTS和/或相关相的铜,锌,锡和硫可以以化学计量比混合,然后可以在磨机中进行机械化学混合。此外,CZTS可与等量的几种粘土中的任何一种如膨润土或沸石和氢氧化钙(CaOH)混合。CZTS粉的最佳粒度为0.5纳米至7500微米。在测试和开发中已经发现,具有一系列不同尺寸颗粒的CZTS粉末混合物是有益的,特别是如果粒度在0.5纳米至7,500微米的范围内。在优选特殊CZTS颗粒的应用中,已发现最佳颗粒尺寸范围为7,500微米至3.0英寸。此外,已经发现具有一定范围的不同尺寸颗粒的CZTS颗粒混合物是有益的,特别是如果颗粒的尺寸为7500微米至3.0英寸。
对于大多数污染物,CZTS在上述范围内的最小粒径以及当金属相中存在最高量的CZTS时是最有效的。应当理解,在CZTS的制造过程中,铜、锌、锡和硫的混合物不完全转化为CZTS,而是相的混合物(例如丹巴矿(CuZn2)和硫化锡(SnS))。
在CZTS的一个示例性制造方法中,将铜,锌,锡和硫不分先后加入到研磨机中。使用球磨机或某些类型的磨碎机或以顺序组合获得所需粒度的研磨设备的组合来完成研磨。示例性起始粒度范围从325标准筛网到100标准筛网,其中1标准筛网等于7,500微米。以铜:锌:锡:硫=1.7:1.2:1.0:4.0的预定摩尔比进一步称重所接收的颗粒。在确认筛孔尺寸和摩尔比之后,通过研磨将颗粒机械化学地混合到CZTS和其它相中。控制研磨时间,获得用于特定应用的最佳性能。还应当理解,可以通过加入合适的溶剂如乙二醇醚、乙二醇、氨或其它醇使用湿磨法或通过在惰性气体气氛中干燥研磨进行研磨。
在研磨期间,进行间歇取样以使用粒度分析仪以及SEM、XRD或拉曼测定颗粒尺寸,确定相转变百分比。磨球尺寸是重要的,并且已经在测试中显示最好的是为使球-粉末重量比(电荷比)为至少5:1。研磨球最好由钢、陶瓷、氧化锆或任何其它可实现尺寸和/或相转换而不污染最终产品的材料制成。当使用湿磨时,干燥CZTS。然后使用螺带式掺合机、V-掺合机或任何其它合适的掺合机将CZTS进一步共混,以便等量掺合膨润土或沸石和氢氧化钙。
根据上述方法,可以将吸附剂注入气态排放物中,其中气态排放物的温度为约750华氏度或更低。可以通过几种方法中的任何一种将吸附剂注入气态排放物中,例如但不限于注射、流化床、涂布的过滤器和捕集器。可以基于工厂中现有的排放控制系统来选择注入方法,以便于改装。一种方便的方法可以是,将CZTS注入到气态排放物中代替活性炭,相同的注入设备可以在有或没有改性的情况下使用。
在一些应用中,当CZTS与膨润土混合有效去除污染物时,可优化气态排放物的处理。或者,当CZTS与沸石共混时,可以优化非气态排放应用的处理。除了与CZTS共混的特定材料之外,共混物的比例可以根据特定的应用制订,以提供优化的污染物去除能力。
如图18A-B所示,其中CZTS用于处理气态排放物,织物过滤器单元50应该放置在CZTS注入点55、56的下游,使得织物过滤器单元50捕获吸附剂颗粒并增加气态排放物与吸附剂接触的时间。织物过滤器单元50的织物过滤器(即袋)上的吸附剂的沉积使气态排放物和吸附剂之间获得额外接触的时间,并使吸附剂被收集用于随后的回收。吸附剂的小颗粒尺寸使得吸附剂沿气态排放流流动,像被风携带的灰尘。在气态排放流运送吸附剂期间,吸附剂与也在气态排放流中行进的污染物接触,因此可以与吸附剂化学反应并与吸附剂结合。在到达织物过滤器单元50时,气态排放物继续通过织物过滤器单元50中的过滤器,而结合污染物的吸附剂颗粒尺寸太大而不能通过过滤器。当CZTS颗粒小于10微米时,可能需要用更大尺寸的CZTS颗粒、活性炭、滑石、石灰或其它合适的物质在织物过滤器单元50中预涂布过滤器,使得较小的CZTS颗粒不通过过滤器。或者,可以在织物过滤器单元50中使用较低微米尺寸的过滤器。
在用于非气态排放的其它应用中,CZTS可以被注入到图20所示的处理罐67中。在这种构造中,最佳的是CZTS在良好搅拌下注入处理罐67一段时间,然后非气态排放物(例如废水)在排放之前经历pH调节、絮凝和过滤。之后,处理罐67中的CZTS可经历回收过程,从CZTS收获污染物。使用过的CZTS可以通过从CZTS浸出汞或通过真空蒸馏回收。然后,收获的污染物可以在其他工业中再利用。CZTS还提供能够减少非气态排放物中的硝酸盐和氮化物水平的益处。
环保局制定的2016年生效的排水法规比空气法规更为严格。一些当前的环保局水规范水平以毫微克/升(ng/L),微克/升(ug/L)和/或克/升列出的是:汞@119ng/L;砷(As)@8ug/L;硒(Se)@10ug/L;二氧化氮(NO2)和硝酸盐(NO3)@0.13g/L。其他重金属如铅(Pb)和镉(Cd)也有环保局限制的水平。在许多现有的工厂,具有高于允许排放规定的污染水平的水被输送到储存池和/或其它类型的各种污泥储存容器。CZTS可以通过如本文公开的用于处理非气态排放物的相同方法处理储存池中的固体。根据重金属的离子形式、污泥组成和/或pH值,可以适当调节CZTS在储存池中的接触时间。适当的pH值调节、絮凝和随后的过滤将允许其他工业中的正常排放、处置和/或使用,以前这些都是不可能的。
应当理解,本文公开的吸附剂不含任何游离碳,包括本领域目前使用的活性炭。结果,作为所公开的方法的副产物产生的金属硫化物是不可浸出的。因此,这些副产物在石膏墙板和水泥应用中具有有价值的工业用途。环保局有关金属硫化物的浸出试验是众所周知的,并且在这些产品中的使用已有详细记录。
虽然活性炭可用于一些替代构造,但是在这些变化型中有限地使用活性炭不会允许活性炭逃逸到排放物中。例如,在一种构造中,活性炭可以嵌入织物过滤器单元50的过滤器中。这种活性炭不能自由逃逸到气态排放流中。活性炭可能有另一有限使用,就是活性炭以其结晶形式涂覆CZTS,产生具有厚度为1.0纳米或更小的量级的碳薄层的CZTS。这有助于促进捕获特别小的汞的金属蒸气颗粒。类似地,CZTS结晶形式可以涂覆有纳米级沸石薄层或其它涂层,专门针对特定应用的特定有害污染物。同样,各种活性炭不能自由逸出到气态排放流中。
参考图21,图表示出了现有排放控制系统和本文公开的反向文丘里装置以及方法从排放物中去除的污染物的百分比。目前,环保局为气态排放建立了90%污染物去除水平78。现有的排放控制系统79有效地去除88%-90%的有害污染物。然而,环保局已经提高了多年来所要求去除污染物的最小百分比,以至于许多现有的排放控制系统不再能够满足要求,并且许多其他现有的排放控制系统仅在其以它们在当前技术下可用的最大去除能力操作时才能满足要求。
仍然参考图21,示例性排放控制系统80可以是基于本文公开的反向文丘里装置、吸附剂和/或方法的新的排放控制系统,或者可以是经修改和升级的现有排放控制系统,增加并包括本文公开的反向文丘里装置、吸附剂和方法。测试已经证实,示例性排放控制系统80是有效的并且能够去除至少98%的有害污染物,这远远高于当前环保局规定的水平。
参考图22和图24,显示了排放物控制的示例方法,其中污染的气态源150通过一个或以上预先流化的床过滤器151引入系统,穿过流化床152,穿过一个或以上后流化床过滤器153,及穿过系统排放部154,其将气态排放物通过烟囱155被环保控制地释放。应理解的是,并非必须首先将污染的气态源150穿过一个或以上预先流化的床过滤器151;不过,特定应用的要求可以指定需要一个或以上的预先流化的床过滤器151。
流化床152具有反向文丘里管的形状,其具有介乎最低为2.9:1及最高为9.8:1的特定长度L直径D比。这比例对于污染的气态源150在流化床52的延长的停留流动时间是最理想的,其中流化床填充有特定的吸附剂如反应材料164。反应材料164是包括铜、锌、锡、硫(CZTS)化合物和/或其合金的吸附剂。流化床152的优选示例长度L直径D比是4.4:1,这是经过反复试验而确定。
优选地,流化床152具有主要是圆形的横切面。虽然没有在图24中示出,一个或以上的各种隔板和/或其它特定应用的流限制障碍物可设置于流化床152中。流化床152亦具有主要是向外延伸的凸端168和169,以促进延长的停留流动时间而将穿过反应材料164的湍流最少化。在污染的气态源150流在入口部165进入流化床152时,开始与反应材料164密切接触,形成随机非湍流166。随机非湍流166由于主要是向外延伸的凸端168和169而向自己折回,以致在非湍流166由出口部167离开流化床152之前在流化床152延长停留时间。反应材料164促进随机非湍流166,其是污染的气态源150的随机曲折的流道。应理解的是,流化床152的长度L不包括凸端168和169。
流化床152有一侧出口部170,其连接吸附剂清洁站156。吸附剂清洁站156可选地将耗尽的吸附剂157从系统移除以作处置。此外,由反应材料164从污染的气态源150捕获、并在吸附剂清洁站156从反应材料164移除的捕获的污染的元件158可以处置和/或循环再用。吸附剂清洁站156通过吸附剂返回部159将已清洁的反应材料164返回流化床152。大量补充吸附剂容器168提供需要的反应材料164的补充容量,以替代已移除的耗尽的吸附剂157。系统排放部154通过排放烟囱155提供受环保控制的气态排放。还提供捕获的废料的额外排放160。
参考图23和图24,显示了排放物控制的示例方法,其中污染的非气态源161通过一个或以上预先流化的床过滤器151引入系统,穿过流化床152,穿过一个或以上后流化床过滤器153,及穿过系统排放部154,其将非气态排放物被环保控制地释放162。应理解的是,并非必须首先将污染的非气态源161穿过一个或以上预先流化的床过滤器151;不过,特定应用的要求可以指定需要一个或以上的预先流化的床过滤器151。
流化床152具有反向文丘里管的形状,其具有介乎最低为2.9:1及最高为9.8:1的特定长度L直径D比。这比例对于污染的非气态源161在流化床52的延长的停留流动时间是最理想的,其中流化床填充有特定的吸附剂如反应材料164。反应材料164是包括铜、锌、锡、硫(CZTS)化合物和/或其合金的吸附剂。流化床152的优选示例长度L直径D比是4.4:1,这是经过反复试验而确定。
优选地,流化床152亦具有主要是向外延伸的凸端168和169,以促进延长的停留流动时间而将穿过反应材料164的湍流最少化。在污染的非气态源161流在入口部165进入流化床152时,开始与反应材料164密切接触,形成随机非湍流166。随机非湍流166由于主要是向外延伸的凸端168和169而向自己折回,以致由出口部167离开流化床152之前在流化床152延长停留时间。反应材料164促进随机非湍流166,其是污染的非气态源161的随机曲折的流道。应理解的是,流化床152的长度L不包括凸端168和169。
优选地,流化床152具有主要是圆形的横切面。虽然没有在图24中示出,一个或以上的各种隔板和/或其它特定应用的流限制障碍物可设置于流化床152中。流化床152有一侧出口部170,其连接吸附剂清洁站156。吸附剂清洁站156可选地将耗尽的吸附剂157从系统移除以作处置。此外,由反应材料164从污染的非气态源161捕获、并在吸附剂清洁站156从反应材料164移除的捕获的污染的元件158可以处置和/或循环再用。吸附剂清洁站156通过吸附剂返回部159将已清洁的反应材料164返回流化床152。大量补充吸附剂容器168提供需要的反应材料164的补充容量,以替代已移除的耗尽的吸附剂157。系统排放部154通过受环保控制的释放部162提供非气态排放。还提供捕获的废料的额外排放163。
参考图25、图26、图30和图31,示出了示例方法,其将污染的气态排放物250穿过一个或以上的预先过滤器251,穿过流化床253,穿过一个或以上的后过滤器255,穿过系统排放部256,和最后通过排放烟囱257和/或废料处理过程262作为受控释放的气态排放物排放。流化床253被一纵向平面290平分,移动式平台271在平面299内延伸。入口部P3和出口部P4设置为在流化床253位于纵向平面290与移动式平台271的平面299相对平行地取向时接收和排放气态排放物。流化床253内部的障碍物(图中未示)提供优选的曲折流道,其在气态排放物通过入口部P3引入和通过出口部P4排放时特别适于气态排放物。入口部P3和出口部P4位于流化床253的纵向平面290上面(即是在非面向移动式平台271的流化床253的一半)。
流化床253在货车254上安装至移动式平台271。倾斜装置272设置为将流化床253在第一倾斜角度267和第二倾斜角度277之间沿支点252倾斜以定义96度(96°)的总掠角292。倾斜装置272在气态排放物在流化床253将被处理时将流化床253位于气态排放物处理角度265,其中流化床253的纵向平面290与移动式平台271的平面299相对地平行地取向(即是在流化床253的纵向平面290和移动式平台271的平面299之间的倾斜角度大致是零度)。应理解的是,当货车254在平地,气态排放物处理角度265的取向与流化床253的纵向平面290为大致水平时对应。可选地,倾斜装置272设置为将流化床253相对于气态排放物处理角度265在第一摆动角度266和第二摆动角度267之间前后摆动以定义气态排放物摆动掠角270,其是角度268和269的组合。
对于气态排放物,流化床253优选在5.5度(5.5°)的摆动掠角270倾斜,其中角度268为3.0度(3.0°)及角度269为2.5度(2.5°)。倾斜装置272可将流化床253在位置263和264之间摆动,从而提供一种振荡方式去促进穿过在流化床253内的吸附剂的曲折流道。应理解的是,其它角度也可以在不脱离本公开的范围而使用;不过,发明人通过测试找到上述的角度在处理气态排放物方面是优选的。
吸附剂清洁站258与流化床253的出口部P5流体连通,被吸附剂捕获的污染的颗粒在该出口部被移除。被移除的污染物可以循环再用或通过站261处置。排出的吸附剂通过站259处置,而已清洁的吸附剂通过返回部P6从吸附剂返回站260回收至流化床253。
参考图27、图28、以及图30至图32,示出了示例方法,其将污染的非气态排放物295穿过一个或以上的预先过滤器251,穿过流化床253,穿过一个或以上的后过滤器255,穿过系统排放部256,和最后作为受控环保的非气态排放物释放和/或通过废料处置步骤274释放。入口部P2和出口部P1设置为在流化床253位于纵向平面290与移动式平台271的平面299相对横向地取向时接收和排放非气态排放物。流化床253内部的障碍物(图中未示)提供优选的曲折流道,其在非气态排放物通过入口部P2和出口部P1引入时特别适于非气态排放物。入口部P2和出口部P1被流化床253的纵向平面290平分(即是与流化床253的纵向平面290对齐)。
倾斜装置272将流化床253置于非气态排放物处理角度289,其中,在非气态排放物将被流化床253处理时,流化床253的纵向平面290与移动式平台271的平面299相对横向地取向(即是流化床253的纵向平面290与移动式平台271的平面299之间的倾斜角度是大致90度)。应理解的是,当货车254在平地,非气态排放物处理角度289与流化床253的纵向平面290大致垂直时的取向对应。可选地,倾斜装置272设置为将流化床253相对于非气态排放物处理角度289在第一摆动角度277和第二摆动角度278之间前后摆动以定义气态排放物摆动掠角281,其是角度279和280的组合。
对于非气态排放物,流化床253优选在7.5度(7.5°)的摆动掠角281倾斜,其中角度279为3.5度(3.5°)及角度280为4.0度(4.0°)。倾斜装置272可将流化床253在位置275和276之间摆动,从而提供一种振荡方式去促进穿过在流化床253内的吸附剂的曲折流道。应理解的是,其它角度也可以在不脱离本公开的范围而使用;不过,发明人通过测试找到上述的角度在处理非气态排放物方面是优选的。
吸附剂清洁站258与流化床253的出口部P5流体连通,被吸附剂捕获的污染的颗粒在该出口部被移除。被移除的污染物可以循环再用或通过站261处置。排出的吸附剂通过站259处置,而已清洁的吸附剂通过返回部P6从吸附剂返回站260回收至流化床253。
参考图29、图30以及图31,示出的货车254的流化床253位于掺气泥浆排放物处理角度297,其中,在掺气浆状排放物将被流化床253处理时,流化床253的纵向平面290大约平分角291(即是流化床253的纵向平面290与移动式平台271的平面299之间的倾斜角度大致是45度)。该污染的浆状排放物典型地具有气态及非气态排放物的特征。若该排放物较接近气态排放物,可使用入口部P3和出口部P4。若该排放物较接近非气态排放物,可使用入口部P2和出口部P1。特定应用的选项供操作者选择使用入口部P2或P3,以及使用出口部P1或P4。
参考图26、图28及图29,部分掺气浆状排放物是自然地掺气和/或被相应地增进,以致排放物以跟气态和/或非气态排放物不相似的独特特征流动。在这些应用中,倾斜装置272设置为将流化床253相对于掺气泥浆排放物处理角度297在第一摆动角度284和第二摆动角度285之间前后摆动以定义掺气浆状排放物摆动掠角288,其是角度286和287的组合。
对于掺气浆状排放物,流化床253优选在10度(10°)的摆动掠角288倾斜,其中角度286为5.0度(5°)及角度287为5.0度(5°)。倾斜装置272可将流化床253在位置282和283之间摆动,从而提供一种振荡方式去促进穿过在流化床253内的吸附剂的曲折流道。应理解的是,其它角度也可以在不脱离本公开的范围而使用;不过,发明人通过测试找到上述的角度在处理掺气浆状排放物方面是优选的。
参考图31,振荡可以通过顺时针方向(图中未示)或反时针方向(图中示出)的旋转293向流化床253提供。旋转振荡293可以为不同范围的特定应用旋转速度而设置。通过将流化床253在第一径向位置295和第二径向位置296之间前后旋转以定义径向摆动角度294,可将流化床253旋转摆动以加强振荡。在径向摆动角度294的旋转摆动的循环速度可以为不同范围的特定应用强度和/或弧长而设置。
其它可应用于流化床253的振荡方法(图中未示)为外部振动激励装置、内部超声波振动激励装置、加热系统、和/或类似系统。此外,流的振荡(图中未示)可通过干扰排放物流而加强,干扰排放物流通过编程阀装置以对排放物流在进入流化床253前产生脉冲状干扰和/或在离开流化床253时干扰排放物流达致。
应当理解,虽然在本文中该方法的步骤以特定的顺序描述和说明,但是该步骤可以不同的顺序执行,而不偏离本发明内容公开的范围,除非步骤的顺序另有说明。同样地,应当理解,本文描述和示出的方法可以在不包括上述所有步骤的情况下完成,或者添加未讨论的中间步骤,而不偏离本发明内容公开的范围。
显然,根据上述教导,本发明可有许多修改和变化,并且可以在所附权利要求的范围内以不同于具体描述的方式实施。这些先前的叙述应当被解释为涵盖本发明的任何组合,其中发明新颖性发挥其效用。在装置权利要求中使用的词语“所述”是指先前的,意味着包括在权利要求的范围内,而词语“那个”不意味着包括在权利要求的范围内。

Claims (20)

1.用于从排放物中去除污染物的流化床装置,包括:
形状为反向文丘里管的外壳,所述外壳包括用于以预定的进入流速接收排放物的入口部、用于以预定的排出流速排出排放物的出口部、和设置在外壳的入口部和出口部之间用于捕获排放物中的污染物的扩大部;
所述外壳的所述入口部、所述出口部和所述扩大部彼此流体连通;
设置在所述外壳的所述扩大部内的大量反应材料;
所述大量反应材料具有设置成与排放物接触的反应性外表面;
所述大量反应材料在所述反应性外表面含有汞齐形成金属,汞齐形成金属使通过所述外壳的所述扩大部的排放物中的至少一些污染物化学结合到所述大量反应材料的所述反应性外表面;和
所述外壳通过支点安装于包括倾斜装置的移动式平台。
2.根据权利要求1所述的流化床装置,其特征在于所述倾斜装置设置为将所述外壳沿所述支点在第一倾斜角度和第二倾斜角度之间倾斜以定义96度的总掠角。
3.根据权利要求1所述的流化床装置,其特征在于所述外壳取向于气态排放物处理角度,所述气态排放物处理角度相对于所述移动式平台为大致零度。
4.根据权利要求3所述的流化床装置,其特征在于所述倾斜装置设置为将所述外壳相对所述气态排放物处理角度在第一摆动角度和第二摆动角度之间前后摆动以定义5.5度的气态排放物摆动掠角。
5.根据权利要求4所述的流化床装置,其特征在于所述第一摆动角度与所述气态排放物处理角度的夹角是3度,所述第二摆动角度与所述气态排放物处理角度的夹角是-2.5度,以提供所述5.5度的气态排放物摆动掠角。
6.根据权利要求1所述的流化床装置,其特征在于所述外壳取向于非气态排放物处理角度,所述非气态排放物处理角度相对于所述移动式平台为大致90度。
7.根据权利要求6所述的流化床装置,其特征在于所述倾斜装置设置为将所述外壳相对所述非气态排放物处理角度在第一摆动角度和第二摆动角度之间前后摆动以定义7.5度的非气态排放物摆动掠角。
8.根据权利要求1所述的流化床装置,其特征在于所述外壳取向于掺气泥浆排放物处理角度,所述掺气泥浆排放物处理角度相对于所述移动式平台为大致45度。
9.根据权利要求8所述的流化床装置,其特征在于所述倾斜装置设置为将所述外壳相对所述掺气泥浆排放物处理角度在第一摆动角度和第二摆动角度之间前后摆动以定义10度的掺气泥浆排放物摆动掠角。
10.根据权利要求1所述的流化床装置,其特征在于所述大量反应材料为包括铜,锌,锡,硫(CZTS)化合物或铜,锌,锡,硫(CZTS)化合物的合金的吸附剂。
11.根据权利要求1所述的流化床装置,其特征在于在所述外壳内的排放物振荡通过利用所述倾斜装置进行摆动扫掠来提供。
12.根据权利要求1所述的流化床装置,其特征在于所述倾斜装置设置为将所述外壳沿顺时针及反时针旋转方向旋转。
13.根据权利要求12所述的流化床装置,其特征在于所述倾斜装置设置为将所述外壳在两个径向位置之间前后旋转以定义径向摆动角度。
14.根据权利要求1所述的流化床装置,其特征在于所述外壳包括用于气态排放物的第一对入口部和出口部以及用于非气态排放物的第二对入口部和出口部。
15.一种从排放物移除重金属污染物的排放物控制方法,包括以下步骤:
将排放物输送至穿过包括形状为反向文丘里管并包含吸附剂的流化床装置的处理系统,所述吸附剂为反应材料,所述反应材料化学结合到排放物所携带的重金属污染物;
捕获包含在所述形状为反向文丘里管的流化床装置的所述反应材料中的重金属污染物;
将已移除所述重金属污染物的所述排放物输送至离开所述形状为反向文丘里管的流化床装置;和
将所述形状为反向文丘里管的流化床装置沿支点在最少一气态排放物处理角度倾斜以处理气态排放物以及一非气态排放物处理角度倾斜以处理非气态排放物。
16.根据权利要求15所述的方法,其特征在于形成所述吸附剂的所述反应材料选自铜,锌,锡,硫(CZTS)化合物或铜,锌,锡,硫(CZTS)化合物的合金。
17.根据权利要求15所述的方法,其特征在于所述气态排放物处理角度由平分所述支点的水平延伸平面量度为大致零度。
18.根据权利要求15所述的方法,其特征在于所述非气态排放物处理角度由平分所述支点的水平延伸平面量度为大致90度。
19.根据权利要求15所述的方法,进一步包括以下步骤:
将所述吸附剂从所述形状为反向文丘里管的流化床装置的出口部排出;
将污染物从所述出口部排出的吸附剂分开以产生已清洁的吸附剂;和
将从由所述出口部排出的吸附剂分开的污染物处置。
20.根据权利要求19所述的方法,进一步包括以下步骤:
将所述已清洁的吸附剂通过设于所述形状为反向文丘里管的流化床装置的返回部注入所述形状为反向文丘里管的流化床装置,以将所述已清洁的吸附剂循环再用。
CN201810525447.9A 2017-05-26 2018-05-28 利用具有倾斜和/或振荡方法的流化床装置的可重置节段式污染排放物捕获和收集系统 Active CN108926978B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/606,614 2017-05-26
US15/606,614 US9968884B2 (en) 2014-07-25 2017-05-26 Reconfigurable segmental contaminated emissions capture and collection system utilizing a fluidized bed apparatus with a method for tilting and/or agitation

Publications (2)

Publication Number Publication Date
CN108926978A true CN108926978A (zh) 2018-12-04
CN108926978B CN108926978B (zh) 2022-03-04

Family

ID=64449890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810525447.9A Active CN108926978B (zh) 2017-05-26 2018-05-28 利用具有倾斜和/或振荡方法的流化床装置的可重置节段式污染排放物捕获和收集系统

Country Status (2)

Country Link
JP (1) JP7193254B2 (zh)
CN (1) CN108926978B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10888836B2 (en) 2014-07-25 2021-01-12 Chemical and Metal Technologies LLC Extraction of target materials using CZTS sorbent
CN112870961A (zh) * 2020-12-29 2021-06-01 山东山大华特环保科技有限公司 一种固定床脱硫反应装置及其使用方法
CN114870614A (zh) * 2022-04-23 2022-08-09 绵竹市红森玻璃制品有限责任公司 窑炉废气脱硫脱硝除尘余热回收系统及其方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10730012B2 (en) * 2014-07-25 2020-08-04 Chemical and Metal Technologies LLC Extraction of target materials using CZTS sorbent
US11478740B2 (en) * 2019-06-10 2022-10-25 Hamilton Sundstrand Corporation Helical flow filter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2010793A (en) * 1977-12-12 1979-07-04 Babcock Ag Treating waste gases
JP2009119448A (ja) * 2007-11-15 2009-06-04 Toshiro Takagi 有機発泡体を流動媒体及び触媒とした流動層方式の空気浄化装置
CN201569277U (zh) * 2009-10-29 2010-09-01 福建南方路面机械有限公司 一种流化床摆动机构
CN102292138A (zh) * 2009-01-22 2011-12-21 通用电气公司 用于去除燃料气流中多种污染物的流化床系统
CN103717289A (zh) * 2011-04-11 2014-04-09 Ada-Es股份有限公司 用于气体组分捕集的流化床方法和系统
CN103857459A (zh) * 2011-08-17 2014-06-11 哈拉尔德·萨奥尔 通过流化床反应器清洁废气的方法和装置
CN106574773A (zh) * 2014-07-25 2017-04-19 化学和金属技术有限责任公司 排放污染物的捕获和收集装置及其使用方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0874679A4 (en) 1996-01-11 2001-02-21 Serv Tech Inc METHOD AND APPARATUS FOR REMOVING DANGEROUS GAS FROM CLOSED CONTAINERS.
BR9902607B1 (pt) 1999-06-23 2010-08-24 aparelho e processo de prÉ-hidràlise de biomassa.
JP2010172887A (ja) 2009-01-27 2010-08-12 Koike Kenzai:Kk 乾燥処理流動化処理土及び施工対応法
US9675933B2 (en) 2014-07-25 2017-06-13 Chemical And Metal Technologies, Llc Emissions contaminant capture and collection device and method of use

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2010793A (en) * 1977-12-12 1979-07-04 Babcock Ag Treating waste gases
JP2009119448A (ja) * 2007-11-15 2009-06-04 Toshiro Takagi 有機発泡体を流動媒体及び触媒とした流動層方式の空気浄化装置
CN102292138A (zh) * 2009-01-22 2011-12-21 通用电气公司 用于去除燃料气流中多种污染物的流化床系统
CN201569277U (zh) * 2009-10-29 2010-09-01 福建南方路面机械有限公司 一种流化床摆动机构
CN103717289A (zh) * 2011-04-11 2014-04-09 Ada-Es股份有限公司 用于气体组分捕集的流化床方法和系统
CN103857459A (zh) * 2011-08-17 2014-06-11 哈拉尔德·萨奥尔 通过流化床反应器清洁废气的方法和装置
CN106574773A (zh) * 2014-07-25 2017-04-19 化学和金属技术有限责任公司 排放污染物的捕获和收集装置及其使用方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10888836B2 (en) 2014-07-25 2021-01-12 Chemical and Metal Technologies LLC Extraction of target materials using CZTS sorbent
US10994257B1 (en) 2014-07-25 2021-05-04 Chemical And Metal Technologies, Llc Extraction of target materials using CZTS sorbent
US11534734B2 (en) 2014-07-25 2022-12-27 Chemical and Metal Technologies LLC CZTS sorbent
CN112870961A (zh) * 2020-12-29 2021-06-01 山东山大华特环保科技有限公司 一种固定床脱硫反应装置及其使用方法
CN112870961B (zh) * 2020-12-29 2022-05-20 山东山大华特环保科技有限公司 一种固定床脱硫反应装置及其使用方法
CN114870614A (zh) * 2022-04-23 2022-08-09 绵竹市红森玻璃制品有限责任公司 窑炉废气脱硫脱硝除尘余热回收系统及其方法
CN114870614B (zh) * 2022-04-23 2023-10-31 绵竹市红森玻璃制品有限责任公司 窑炉废气脱硫脱硝除尘余热回收系统及其方法

Also Published As

Publication number Publication date
CN108926978B (zh) 2022-03-04
JP2018199125A (ja) 2018-12-20
JP7193254B2 (ja) 2022-12-20

Similar Documents

Publication Publication Date Title
CN108926978A (zh) 利用具有倾斜和/或振荡方法的流化床装置的可重置节段式污染排放物捕获和收集系统
US9675933B2 (en) Emissions contaminant capture and collection device and method of use
US10035094B2 (en) Broad-spectrum matrix for contaminated emissions sorbent compounds and method of use
CN106574773B (zh) 排放污染物的捕获和收集装置及其使用方法
US9968884B2 (en) Reconfigurable segmental contaminated emissions capture and collection system utilizing a fluidized bed apparatus with a method for tilting and/or agitation
CN108926955A (zh) 污染的排放物吸附剂化合物的广谱性的矩阵及使用方法
US10500569B2 (en) Emissions control system including capability to clean and/or rejuvenate CZTS sorbents, CZTS-alloy sorbents, and/or CZTS-mixture sorbents, and method of use
US9962650B2 (en) Emissions contaminant capture and collection system utilizing an integrated fluidized bed apparatus and method of use
US10500563B2 (en) Emissions control system including capability to clean and/or rejuvenate carbon-based sorbents and method of use
CN107866141A (zh) 控制从烧煤的热工艺释放汞的方法和系统
US11534734B2 (en) CZTS sorbent
CN108926980A (zh) 使用综合流化床装置的排放物污染物的捕获和收集系统及其使用方法
US10730012B2 (en) Extraction of target materials using CZTS sorbent
JP7281354B2 (ja) 排出物制御システム、及び排出物制御方法
US10500539B2 (en) Emissions control system with CZTS sorbents, CZTS-based alloy sorbents, and/or carbon-based sorbents and method of use
JP2020040060A (ja) 炭素系吸着材を洗浄及び/又は再生可能とする排出物制御システム及び使用方法
JP7281356B2 (ja) 排出物制御システム、及び排出物制御方法
Male Small Scale Plasma Gasification of Municipal Solid Waste
Verma et al. Leaching behaviour of fly ash: A review
Stone et al. Intermedia aspects of air and water pollution control
Wocken et al. Mercury Information Clearinghouse

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant