CN108919249A - 一种基于二维局部插值的雷达目标距离联合估计方法 - Google Patents

一种基于二维局部插值的雷达目标距离联合估计方法 Download PDF

Info

Publication number
CN108919249A
CN108919249A CN201811084318.7A CN201811084318A CN108919249A CN 108919249 A CN108919249 A CN 108919249A CN 201811084318 A CN201811084318 A CN 201811084318A CN 108919249 A CN108919249 A CN 108919249A
Authority
CN
China
Prior art keywords
doppler
distance
peak
axis
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811084318.7A
Other languages
English (en)
Other versions
CN108919249B (zh
Inventor
李强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Zhaotian Intelligent Technology Co Ltd
Original Assignee
Hubei Zhaotian Intelligent Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Zhaotian Intelligent Technology Co Ltd filed Critical Hubei Zhaotian Intelligent Technology Co Ltd
Priority to CN201811084318.7A priority Critical patent/CN108919249B/zh
Publication of CN108919249A publication Critical patent/CN108919249A/zh
Application granted granted Critical
Publication of CN108919249B publication Critical patent/CN108919249B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/006Theoretical aspects

Abstract

本发明涉及一种基于二维局部插值的雷达目标距离联合估计方法,包括以下步骤:在雷达目标的距离‑多普勒图像上进行检索,得到峰值点的位置、沿距离轴的次强点位置以及沿多普勒频率轴的次强点位置;距离‑多普勒图像的峰值局部进行二维插值运算,得到图像峰值位置与距离轴的偏差值和与多普勒轴的偏差值,最终确定目标的实际距离‑多普勒位置。因此本发明中通过搜索距离‑多普勒的峰值点和仅次于峰值点的次强点的位置坐标,对峰值点位置进行局部插值,提高了对目标多普勒频率的估计精度以及对目标的距离位置的估算精度,减少了数据采集的工作量,对峰值点位置进行局部插值与对全局进行内插计算相比,计算量小且精度高。

Description

一种基于二维局部插值的雷达目标距离联合估计方法
技术领域
本发明涉及雷达目标探测技术领域,尤其涉及一种基于二维局部插值的雷达目标距离联合估计方法。
背景技术
雷达具有全天候、全天时工作能力,能够在雨、雪、雾等恶劣天气以及黑夜等特殊环境下持续探测感兴趣的运动目标,对运动目标的位置信息和多普勒频率进行估计。目前广泛使用的运动目标检测方法是距离-多普勒处理,利用该方法可以同时获取目标的距离和多普勒信息,具有性能稳健,运算量低的特点。但是,传统的距离-多普勒处理方法只是对相干处理时间内的回波信号进行二维离散傅里叶变换(DFT),然后依据二维DFT变换后的距离-多普勒图像的峰值点坐标换算得到目标的距离和多普勒频率,参数估计的精度受限于二维坐标轴的数据采样点数,且只有在目标的实际运动参数为二维信号处理精度的整数倍时,才能对目标距离、多普勒信息进行精确估计。只依靠更为密集地数据采样来提高二维DFT的估计精度,将极大地增加二维数据矩阵的整体内插运算量,计算费时,且不能实现无偏估计。
发明内容
本发明所要解决的技术问题是提供一种数据采样点和运算量少的基于二维局部插值的雷达目标距离联合估计方法。
为解决上述技术问题,本发明的技术方案是:一种基于二维局部插值的雷达目标距离联合估计方法,包括以下步骤:
在雷达目标的距离-多普勒图像上进行峰值检索,得到峰值点的位置坐标X(R0,D0),再分别以峰值点所在位置为原点沿距离和多普勒坐标轴的正负方向进行搜索,确定沿距离轴的仅次于峰值点的次强点位置坐标X(R0+i,D0),i=1或-1,以及沿多普勒频率轴的仅次于峰值点的次强点位置坐标X(R0,D0+j),j=1或-1;
通过所述峰值点位置坐标X(R0,D0)、仅次于峰值点的次强点位置坐标X(R0+i,D0)和X(R0,D0+j),对所述距离-多普勒图像的峰值局部进行二维插值运算,得到所述图像峰值位置与距离轴的偏差值δR和与多普勒轴的偏差值δD,最终确定目标的实际距离-多普勒位置X(R0R,D0D)。
作为优选的技术方案,所述雷达目标的距离-多普勒图像是通过将接收到的雷达回波进行脉冲压缩和杂波抑制,得到回波的距离-慢时间矩阵,然后,对各距离单元内的脉冲压缩信号沿慢时间轴进行离散傅里叶变换而得到的。
作为优选的技术方案,沿距离轴的仅次于峰值点的次强点位置坐标和沿多普勒频率轴的仅次于峰值点的次强点位置坐标的搜索是依据所述雷达回波的理想模糊函数的相应轴线方向搜索。
由于采用了上述技术方案,本发明的有益效果是:传统的距离-多普勒处理方法,为保证计算精度,需要密集地对多普勒频率轴进行采样,力图在最大程度上减小样本频率错过信号真实多普勒频率的可能性,但这种方法需要对整个二维数据矩阵进行内插运算,计算量大,计算时间长。
由于目标的真实多普勒频率通常在DFT的峰值点和次强点之间,因此本发明中通过搜索距离-多普勒的峰值点和仅次于峰值点的次强点的位置坐标,对峰值点位置进行局部插值,提高了对目标的多普勒频率的估计精度以及对目标的距离位置的估算精度,减少了数据采集的工作量,对峰值点位置进行局部插值与对全局进行内插计算相比,计算量小且精度高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的流程图;
图2是本发明实施例中雷达回波的距离-慢时间图像;
图3是本发明实施例中目标距离-多普勒的亮度图;
图4是本发明实施例中目标距离-多普勒的局部网线图;
图5是本发明实施例的单脉冲模糊函数峰值周边次强点的取值示意图;
图6是本发明实施例的线性调频信号模糊函数峰值周边次强点的取值示意图;
图7是本发明实施例中目标峰值多普勒切面下,理想采样与实际采样的对比示意图。
具体实施方式
一种基于二维局部插值的雷达目标距离联合估计方法,包括以下步骤:
在雷达目标的距离-多普勒图像上进行峰值检索,得到峰值点的位置坐标X(R0,D0),再分别以峰值点所在位置为原点沿距离和多普勒坐标轴的正负方向进行搜索,确定沿距离轴的仅次于峰值点的次强点位置坐标X(R0+i,D0),i=1或-1,以及沿多普勒频率轴的仅次于峰值点的次强点位置坐标X(R0,D0+j),j=1或-1;
通过峰值点位置坐标X(R0,D0)、仅次于峰值点的次强点位置坐标X(R0+i,D0)和X(R0,D0+j),对距离-多普勒图像的峰值局部进行二维插值运算,得到图像峰值位置与距离轴的偏差值δR和与多普勒轴的偏差值δD,最终确定目标的实际距离-多普勒位置X(R0R,D0D)。
优选的,雷达目标的距离-多普勒图像是通过将接收到的雷达回波进行脉冲压缩和杂波抑制,得到回波的距离-慢时间矩阵,然后,对各距离单元内的脉冲压缩信号沿慢时间轴进行离散傅里叶变换而得到的。
优选的,沿距离轴的仅次于峰值点的次强点位置坐标和沿多普勒频率轴的仅次于峰值点的次强点位置坐标的搜索是依据雷达回波的理想模糊函数的相应轴线方向搜索。
如图1至图7共同所示,雷达发射电磁波利用来自运动目标的电磁反射回波对目标进行探测。接收到的回波中包含有目标的距离和运动速度信息,可通过距离-多普勒处理进行提取,并通过局部插值运算提高距离和多普勒频率的估计精度。
步骤1:雷达回波预处理。
雷达系统发射载频fc=2.3GHz,雷达带宽为B=10MHz,脉冲宽度为Tp=2μs,脉冲重复频率为PRF=10kHz的雷达信号。目标实际位置为Rref=2.530km,运动速度为v=18.5m/s,相干处理时间为100个脉冲,即CPI=0.10s。
接收信号经过解调处理,信号的数学模型为:
其中,t为快时间,tm为慢时间,Ar为回波信号的幅度,c为光速,R(tm)为目标随时间的实时距离,λ为信号的波长。
回波信号经过脉冲压缩处理:
其中,Arm=TpBAr,R(tm)=Rref-vtm,tm=m/PRF
将脉冲压缩后的信号表示为离散形式,令快时间的采样间隔为Tft,则t=2Rref/c+l·Tft,l=0,...,L-1
回波信号的离散形式为:
预处理后的回波信号为距离-慢时间坐标下的离散信号矩阵,信号图像如图2所示。
步骤2:获得目标的距离-多普勒图像。
在一个相干处理间隔(Coherent Processing Interval,CPI)内,目标近似为匀速运动,对同一相干处理时间内的距离-慢时间信号,沿慢时间轴分别对各距离单元的信号进行离散傅里叶变换,将回波沿慢时间维变换得到多普勒频谱信号,距离-多普勒图像如图3和图4所示。
步骤3:确定距离-多普勒图像的峰值位置。
对步骤2中得到的距离-多普勒图像进行峰值检索,得到图像峰值点位置。再分别以峰值所在位置为原点沿距离和多普勒坐标轴的正负方向进行搜索,确定仅次于峰值点的次强点的坐标位置。次强点沿距离、多普勒维度进行搜索是由于,对于理想模糊函数,多普勒和距离信息相互独立,故可以沿各自坐标轴分别进行处理。当考虑雷达波形的模糊函数时,次强点的搜索方向需根据雷达波形的模糊函数沿相应的轴线进行搜索。图5和图6分别为两类波形对应的搜索方式,图5所示出的为单脉冲的模糊函数等值线,该类波形的距离和多普勒相互独立,故可沿距离轴和多普勒轴分别搜索次强点;图6所示出的为线性调频信号的模糊函数等值线,当考虑距离和多普勒信息的相互耦合时,模糊函数相比于单脉冲信号发生了角度旋转,搜索轴线也随之发生旋转。轴线的旋转角度α由线性调频信号的调频率Kr决定,对应关系为:
Kr=-cotα (5)
步骤4:计算二维插值估计目标的实际运动参数。
在相干处理间隔内,相对于雷达以固定速度运动的目标会显示出固定的多普勒频移,在该时间内目标的运动距离不大于距离单元,则目标在距离-多普勒平面将具有良好的集聚性,呈现二维sinc函数的形式,将sinc函数的峰值点坐标直接作为目标的距离和多普勒值,可迅速获取目标的运动状态,但该方法的精确度不够高,不能对距离和多普勒频率进行精确估计,想要获取更为精确的运动参数需对峰值的局部进行二维插值运算。具体原理以多普勒的频率估计为例:
式(4)中的第二个乘积项包含目标的多普勒频率。
T=1/PRF则信号的慢时间部分可重写为:
yl[m]的离散时间傅里叶变换为:
Yl(w)是混叠的sinc函数,在多普勒域中它被循环移位,峰值出现在w=wD处。
当信号沿多普勒轴的采样点数K满足K=M时,若式(6)中的频率等于某个DFT频率分量,即对某个k0点有wD=2πk0/K,则信号沿慢时间的DFT成为一个冲激函数。如果不匹配的话,DFT样本将落在sinc函数的其他位置,而非它的峰值或零点,将会对频谱的测算产生影响:主瓣展宽并衰减,峰值点的位置存在误差,如图7所示。
当多普勒频率与DFT的频率分量不匹配时,即便更密集地对多普勒频率轴进行采样(即所选择的频谱采样数满足K>M),虽然样本间距会更小,力图在最大程度上减小样本频率错过信号真实多普勒频率的可能性,但这种方法需要对整个谱进行内插,所以计算费时。
考虑到目标的真实多普勒频率通常在DFT的峰值点和次强点之间,因此对此峰值点位置进行局部插值可以提高对目标的多普勒频率的估计精度,同理可以对目标的距离位置进行估算。
首先,确定二维图像峰值与实际位置的偏差值。令图像的峰值为X(R0,D0),沿距离轴的次强点为X(R0+i,D0),i=1或-1,沿多普勒轴的次强点坐标为X(R0,D0+j),j=1或-1。距离轴的偏差值δR和多普勒轴δD的偏差值确定方法如下:
得到目标的偏差值后,对目标的实际距离多普勒位置进行定位X(R0R,D0D)。此处的偏差值δR和δD取值范围均为(-1,1),结合坐标的单位长度,即可完成对目标的运动信息估计。
目标的运动参数估计结果下表所示:
目标运动参数 距离/km 多普勒频率/Hz
实际参数 2.530 0.283
整体插值法 2.519 0.264
两倍采样整体插值法 2.525 0.267
本发明估计方法 2.527 0.278
对距离和多普勒解耦合时的二维图像分别沿各自坐标轴进行局部插值,当目标的距离和多普勒相耦合时,需结合雷达波形的模糊函数,对搜索轴线上的次强点进行插值运算。
以上显示和描述了本发明的基本原理、主要特征及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (3)

1.一种基于二维局部插值的雷达目标距离联合估计方法,其特征在于,包括以下步骤:
在雷达目标的距离-多普勒图像上进行峰值检索,得到峰值点的位置坐标X(R0,D0),再分别以峰值点所在位置为原点沿距离和多普勒坐标轴的正负方向进行搜索,确定沿距离轴的仅次于峰值点的次强点位置坐标X(R0+i,D0),i=1或-1,以及沿多普勒频率轴的仅次于峰值点的次强点位置坐标X(R0,D0+j),j=1或-1;
通过所述峰值点位置坐标X(R0,D0)、仅次于峰值点的次强点位置坐标X(R0+i,D0)和X(R0,D0+j),对所述距离-多普勒图像的峰值局部进行二维插值运算,得到所述图像峰值位置与距离轴的偏差值δR和与多普勒轴的偏差值δD,最终确定目标的实际距离-多普勒位置X(R0R,D0D)。
2.如权利要求1所述的一种基于二维局部插值的雷达目标距离联合估计方法,其特征在于:所述雷达目标的距离-多普勒图像是通过将接收到的雷达回波进行脉冲压缩和杂波抑制,得到回波的距离-慢时间矩阵,然后,对各距离单元内的脉冲压缩信号沿慢时间轴进行离散傅里叶变换而得到的。
3.如权利要求1所述的一种基于二维局部插值的雷达目标距离联合估计方法,其特征在于:沿距离轴的仅次于峰值点的次强点位置坐标和沿多普勒频率轴的仅次于峰值点的次强点位置坐标的搜索是依据所述雷达回波的理想模糊函数的相应轴线方向搜索。
CN201811084318.7A 2018-09-18 2018-09-18 一种基于二维局部插值的雷达目标距离联合估计方法 Active CN108919249B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811084318.7A CN108919249B (zh) 2018-09-18 2018-09-18 一种基于二维局部插值的雷达目标距离联合估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811084318.7A CN108919249B (zh) 2018-09-18 2018-09-18 一种基于二维局部插值的雷达目标距离联合估计方法

Publications (2)

Publication Number Publication Date
CN108919249A true CN108919249A (zh) 2018-11-30
CN108919249B CN108919249B (zh) 2021-04-23

Family

ID=64409402

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811084318.7A Active CN108919249B (zh) 2018-09-18 2018-09-18 一种基于二维局部插值的雷达目标距离联合估计方法

Country Status (1)

Country Link
CN (1) CN108919249B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110174650A (zh) * 2019-05-08 2019-08-27 河海大学 基于两维联合插值的气象雷达风电场杂波抑制方法
CN110361723A (zh) * 2019-07-22 2019-10-22 深圳锐越微技术有限公司 多普勒雷达运动目标的时频特征提取方法
CN110596662A (zh) * 2019-10-21 2019-12-20 富临精工先进传感器科技(成都)有限责任公司 一种mimo雷达的距离偏差校正方法
CN111726308A (zh) * 2020-06-15 2020-09-29 哈尔滨工程大学 基于频响预插值的正交匹配追踪信道估计方法
CN111983594A (zh) * 2020-08-31 2020-11-24 南京矽典微系统有限公司 基于二维多普勒fft峰值的毫米波雷达目标感应方法和装置
CN112526474A (zh) * 2020-11-23 2021-03-19 哈尔滨工程大学 基于全相位傅里叶变换的fmcw雷达距离速度联合估计方法
CN116228634A (zh) * 2022-12-07 2023-06-06 辉羲智能科技(上海)有限公司 用于图像检测的距离变换计算方法、应用、终端及介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0881505A1 (fr) * 1997-05-30 1998-12-02 Thomson-Csf Procédé de recalage de navigation d'un mobile au moyen d'une cartographie radar de zones de terrain à relief accentue
CN101545969A (zh) * 2009-04-03 2009-09-30 北京航空航天大学 一种斜视sar的点目标分辨率评估方法
CN102176016A (zh) * 2011-01-25 2011-09-07 北京航空航天大学 一种大斜视滑动聚束sar成像处理方法
EP2650695A1 (en) * 2012-08-02 2013-10-16 Institute of Electronics, Chinese Academy of Sciences Imaging method for synthetic aperture radar in high squint mode
CN103852761A (zh) * 2014-03-12 2014-06-11 电子科技大学 具有恒定加速度的合成孔径雷达二维频域成像方法
CN105652258A (zh) * 2016-03-15 2016-06-08 中国人民解放军海军航空工程学院 多项式拉东-多项式傅里叶变换的高超声速目标检测方法
KR101630264B1 (ko) * 2014-12-05 2016-06-14 국방과학연구소 거리-도플러 클러스터링 기법
CN107144825A (zh) * 2017-04-25 2017-09-08 西安电子科技大学 一种非参数化数字电视外辐射源雷达多普勒扩散补偿方法
US20170363736A1 (en) * 2016-06-17 2017-12-21 Fujitsu Ten Limited Radar device and control method of radar device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0881505A1 (fr) * 1997-05-30 1998-12-02 Thomson-Csf Procédé de recalage de navigation d'un mobile au moyen d'une cartographie radar de zones de terrain à relief accentue
CN101545969A (zh) * 2009-04-03 2009-09-30 北京航空航天大学 一种斜视sar的点目标分辨率评估方法
CN102176016A (zh) * 2011-01-25 2011-09-07 北京航空航天大学 一种大斜视滑动聚束sar成像处理方法
EP2650695A1 (en) * 2012-08-02 2013-10-16 Institute of Electronics, Chinese Academy of Sciences Imaging method for synthetic aperture radar in high squint mode
CN103852761A (zh) * 2014-03-12 2014-06-11 电子科技大学 具有恒定加速度的合成孔径雷达二维频域成像方法
KR101630264B1 (ko) * 2014-12-05 2016-06-14 국방과학연구소 거리-도플러 클러스터링 기법
CN105652258A (zh) * 2016-03-15 2016-06-08 中国人民解放军海军航空工程学院 多项式拉东-多项式傅里叶变换的高超声速目标检测方法
US20170363736A1 (en) * 2016-06-17 2017-12-21 Fujitsu Ten Limited Radar device and control method of radar device
CN107144825A (zh) * 2017-04-25 2017-09-08 西安电子科技大学 一种非参数化数字电视外辐射源雷达多普勒扩散补偿方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马仑等: "SAR成像中一种改进的最小熵多普勒调频率估计算法 ", 《火控雷达技术》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110174650A (zh) * 2019-05-08 2019-08-27 河海大学 基于两维联合插值的气象雷达风电场杂波抑制方法
CN110174650B (zh) * 2019-05-08 2022-11-18 河海大学 基于两维联合插值的气象雷达风电场杂波抑制方法
CN110361723A (zh) * 2019-07-22 2019-10-22 深圳锐越微技术有限公司 多普勒雷达运动目标的时频特征提取方法
CN110361723B (zh) * 2019-07-22 2021-11-30 深圳锐越微技术有限公司 多普勒雷达运动目标的时频特征提取方法
CN110596662A (zh) * 2019-10-21 2019-12-20 富临精工先进传感器科技(成都)有限责任公司 一种mimo雷达的距离偏差校正方法
CN111726308A (zh) * 2020-06-15 2020-09-29 哈尔滨工程大学 基于频响预插值的正交匹配追踪信道估计方法
CN111726308B (zh) * 2020-06-15 2022-08-02 哈尔滨工程大学 基于频响预插值的正交匹配追踪信道估计方法
CN111983594A (zh) * 2020-08-31 2020-11-24 南京矽典微系统有限公司 基于二维多普勒fft峰值的毫米波雷达目标感应方法和装置
CN111983594B (zh) * 2020-08-31 2024-01-19 南京矽典微系统有限公司 基于二维多普勒fft峰值的毫米波雷达目标感应方法和装置
CN112526474A (zh) * 2020-11-23 2021-03-19 哈尔滨工程大学 基于全相位傅里叶变换的fmcw雷达距离速度联合估计方法
CN116228634A (zh) * 2022-12-07 2023-06-06 辉羲智能科技(上海)有限公司 用于图像检测的距离变换计算方法、应用、终端及介质
CN116228634B (zh) * 2022-12-07 2023-12-22 辉羲智能科技(上海)有限公司 用于图像检测的距离变换计算方法、应用、终端及介质

Also Published As

Publication number Publication date
CN108919249B (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
CN108919249A (zh) 一种基于二维局部插值的雷达目标距离联合估计方法
CN105425224B (zh) 车载毫米波雷达系统多目标个数获取方法及装置
CN105549001B (zh) 车载毫米波雷达系统多目标检测方法
CN105549012B (zh) 车载毫米波雷达系统多目标检测装置
CN107132534B (zh) 一种高速雷达目标频域检测的优化方法
CN107843892B (zh) 一种基于最小二乘法的高速目标多普勒测速方法
CN110109102B (zh) 一种sar运动目标检测与速度估计的方法
CN104166135A (zh) 一种宽带雷达目标的原始点迹凝聚处理方法
CN109521417A (zh) 基于fmcw雷达波形的多目标检测计算方法及一种fmcw雷达波形
CN113093120B (zh) 基于capon算法的PRI捷变雷达目标参数估计方法
CN107607924A (zh) 一种fmcw雷达静态杂波干扰消除的信号处理方法
CN109143239A (zh) 一种基于一维距离像的圆周合成孔径雷达的成像方法
Marques et al. Moving targets processing in SAR spatial domain
CN108072864B (zh) 一种基于变载频调频序列的多目标探测方法
CN109655802A (zh) 一种基于clean算法的多目标粒子群长时间积累检测方法
CN109164441B (zh) 一种雷达测距的方法
CN109541579B (zh) 基于Bezier模型的霍夫变换的多普勒穿墙雷达定位方法
CN113009483B (zh) 一种测速方法、装置、计算机存储介质及设备
CN113805166A (zh) 一种雷达物位计的目标跟踪测距方法及系统
CN109164440A (zh) 一种多频雷达测距的方法
CN108983193A (zh) 快速非搜索的地面运动目标参数估计方法
Lin et al. A multi-target detection algorithm using high-order differential equation
CN116449326A (zh) 宽带多目标平动参数估计与补偿方法
CN115902803A (zh) 一种基于恒频辅助的解速度模糊方法及装置
CN110726988B (zh) Pd雷达探测高超声速目标的距离和速度模糊互解方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant