CN108913986A - 一种高耐蚀性纳米晶稀土永磁材料及其制备方法 - Google Patents

一种高耐蚀性纳米晶稀土永磁材料及其制备方法 Download PDF

Info

Publication number
CN108913986A
CN108913986A CN201810478155.4A CN201810478155A CN108913986A CN 108913986 A CN108913986 A CN 108913986A CN 201810478155 A CN201810478155 A CN 201810478155A CN 108913986 A CN108913986 A CN 108913986A
Authority
CN
China
Prior art keywords
sintering
magnetic material
earth permanent
permanent magnetic
high corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810478155.4A
Other languages
English (en)
Other versions
CN108913986B (zh
Inventor
江庆政
钟震晨
何伦可
雷伟凯
曾庆文
S.U.雷曼
刘仁辉
钟明龙
马胜灿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi University of Science and Technology
Original Assignee
Jiangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi University of Science and Technology filed Critical Jiangxi University of Science and Technology
Priority to CN201810478155.4A priority Critical patent/CN108913986B/zh
Publication of CN108913986A publication Critical patent/CN108913986A/zh
Application granted granted Critical
Publication of CN108913986B publication Critical patent/CN108913986B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/006Making ferrous alloys compositions used for making ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/20Use of vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种高耐蚀性的纳米晶稀土永磁材料及其制备方法,其中制备方法包括如下步骤:(1)制备快淬(PraNd1‑a)bFe100‑b‑c‑dBcMd粉末,其中M为Hf元素或Zr、Hf两种元素,0≤a≤1,16≤b≤20,6≤c≤8,1.5≤d≤3;其中部分Pr、Nd元素可由Dy、Tb、Ho、Gd等替代,部分Fe元素可由Co替代;(2)将上述粉料进行放电等离子烧结,获得具有高耐蚀性的纳米晶稀土永磁材料。本发明利用成分优化的快淬合金粉末,改善了永磁体的磁性能和耐腐蚀性能。此外,本发明还具有烧结时间短,工艺流程简单的特点,后续可通过热变形技术制备得到各向异性的纳米晶稀土永磁材料,从而进一步提升磁体的磁性能。

Description

一种高耐蚀性纳米晶稀土永磁材料及其制备方法
技术领域
本发明属于稀土永磁材料领域,特别提供一种高耐蚀性的纳米晶稀土 永磁材料及其制备方法。
背景技术
Nd2Fe14B类稀土永磁材料由于其优异的磁性能,号称“磁王”,自发明 以来便被广泛的应用于许多领域。它已成为使用范围最为广泛的一种稀土 功能材料,被认为是高新技术及社会进步的物质基础之一。风力发电是通 过风力发电机组将风能转换为电能的发电方式,是目前风能利用的主要途 径。随着海上风力发电机、深海潮汐发电机等应用领域的快速增长,对烧 结钕铁硼磁体的耐蚀性能也提出了更高的要求。
钕铁硼磁体中除2:14:1主相外,还需含有一定量的晶间富稀土相,从 而增强主相晶粒之间的去磁耦合作用,保证磁体的矫顽力。富稀土相的标 准电化学电位比主相低,电化学活性高,在电化学环境下会优先发生腐蚀。 对于沙漠或沿海地区的风力发电类电机,磁钢多暴露于恶劣环境之中,磁 体的腐蚀快慢程度直接决定了此类器件的使用寿命。表面处理可以减缓恶 劣环境对磁体的腐蚀速率,但大大提高了磁体的生产成本。此外,表面处理工艺往往产生大量废液和废气,带来环境污染问题。因此,提高磁体基 体的耐腐蚀性也一直受到钕铁硼制备厂家和应用企业的广泛关注。合金化 是改善磁体基体耐腐蚀性能的主要方法。合理的成分设计可提高磁体基体 的耐腐蚀性能。
发明内容
本发明的目的在于通过成分的优化,改善磁钢基体的耐腐蚀性能,从 而进一步提高磁性器件的使用寿命。
本发明技术方案如下:
一种高耐蚀性纳米晶稀土永磁材料,其特征在于:其成分及含量用公 式表示为:(PraNd1-a)bFe100-b-c-dBcMd,其中M为Hf元素或Zr、Hf两种元素, 0≤a≤1,16≤b≤20,6≤c≤8,0.5≤d≤3(优选为0≤a≤1,17≤b≤18,6.5≤c≤7, 2≤d≤2.5)。
其中,(PraNd1-a)bFe100-b-c-dBcMd成分中部分(优选5%-20%,原子百分比) Pr、Nd元素可由Dy、Tb、Ho、Gd之一种或多种替代,部分(优选20%-60%, 原子百分比)Fe元素可由Co替代。
本发明还提供了所述高耐蚀性纳米晶复合永磁材料的制备方法,其特 征在于:将(PraNd1-a)bFe100-b-c-dBcMd粉末通过放电等离子烧结技术制备得到 纳米晶永磁体,放电等离子烧结前及整个烧结过程真空度小于10Pa,烧结 温度为600~850℃,烧结压力为20~100MPa,烧结时间为0~20min;作为优 选的技术方案,放电等离子烧结温度为650~750℃,烧结压力为60~80MPa, 烧结时间为3~10min。
采用该方法制备得到的永磁材料中主相晶粒尺寸在纳米级别。本发明 微量Hf元素的添加有效改善了磁体的磁性能和耐腐蚀性能。
本发明所述高耐蚀性纳米晶复合永磁材料的制备方法,其特征在于, 具体步骤如下:
①、快淬磁粉的制备:将元素Pr、Nd、Fe、B、M按照要求配比,其 中部分Pr、Nd元素可由Dy、Tb、Ho、Gd等替代,部分Fe元素可由Co 替代;将配好的原材料放入电弧炉中,在氩气气氛下进行熔炼得到母合金 铸锭,并通过熔体快淬的方式制备得到快淬合金带材,其中甩带机辊速为 12-18m/s,在气氛保护下将合金带破碎成粉末,得到(PraNd1-a)bFe100-b-c-dBcMd粉末;
②、放电等离子烧结:将(PraNd1-a)bFe100-b-c-dBcMd粉末倒入石墨模具中, 利用放电等离子烧结设备进行真空烧结,制备得到纳米晶稀土永磁材料。
本发明通过微量Hf元素的添加优化合金成分,采用放电等离子快速烧 结技术制备得到了高耐蚀性的纳米晶稀土永磁体。放电等离子烧结技术可 在较低温度、较短时间内快速实现磁体的致密化,可最大程度抑制晶粒的 异常长大,有利于保持晶粒的纳米晶形态,所得磁体的耐腐蚀性能优于传 统烧结磁体和未改善成分前的纳米晶稀土永磁体,磁体的磁性能也有所改 善。本发明烧结时间短,工艺流程简单,磁体致密度高,耐腐蚀性能强,后续可通过热变形技术制备得到各向异性的纳米晶稀土永磁材料,从而进 一步提升磁体的磁性能。
具体实施方式
以下结合实施例对本发明作进一步详细描述,但本发明不限于这些实 施例,以下实施例只为说明目的,不应当被用来限制本发明以及权利要求 的范围。
实施例1
将元素Pr、Nd、Fe、B、Hf按照(Pr0.2Nd0.8)16Fe76.5B6Hf1.5配比,将配好 的原材料放入电弧炉中在氩气气氛下进行熔炼得到合金铸锭,并通过熔体 快淬的方式制备得到快淬合金带材,其中甩带机辊速为18m/s,在氩气保护 下将合金带破碎成粉末;将(Pr0.2Nd0.8)16Fe76.5B6Hf1.5粉末倒入石墨模具中, 通过放电等离子烧结设备快速烧结制得磁体。烧结前及整个烧结过程真空 度小于10Pa,烧结温度为700℃,烧结压力为50MPa,烧结时间为5min。此烧结样品记为1号样。
磁体在3.5wt.%NaCl溶液中的自腐蚀电位和自腐蚀电流密度列于表1。
对比例1
将元素Pr、Nd、Fe、B按照(Pr0.2Nd0.8)16Fe78B6配比,将配好的原材料 放入电弧炉中在氩气气氛下进行熔炼得到合金铸锭,并通过熔体快淬的方 式制备得到快淬合金带材,其中甩带机辊速为19m/s,在氩气保护下将合金 带破碎成粉末;将(Pr0.2Nd0.8)16Fe78B6粉末倒入石墨模具中,通过放电等离子 烧结设备快速烧结制得磁体。烧结前及整个烧结过程真空度小于10Pa,烧 结温度为700℃,烧结压力为50MPa,烧结时间为5min。此烧结样品记为 2号样。
磁体在3.5wt.%NaCl溶液中的自腐蚀电位和自腐蚀电流密度列于表1。
实施例2
将元素Pr、Nd、Fe、B、Hf按照(Pr0.25Nd0.75)18Fe72B8Hf2配比,将配好 的原材料放入电弧炉中在氩气气氛下进行熔炼得到合金铸锭,并通过熔体 快淬的方式制备得到快淬合金带材,其中甩带机辊速为16m/s,在氩气保护 下将合金带破碎成粉末;将(Pr0.25Nd0.75)18Fe72B8Hf2粉末倒入石墨模具中,通 过放电等离子烧结设备快速烧结制得磁体。烧结前及整个烧结过程真空度 小于10Pa,烧结温度为700℃,烧结压力为60MPa,烧结时间为5min。此烧结样品记为3号样。
磁体在3.5wt.%NaCl溶液中的自腐蚀电位和自腐蚀电流密度列于表1。
对比例2
将元素Pr、Nd、Fe、B按照(Pr0.25Nd0.75)18Fe74B8配比,将配好的原材料 放入电弧炉中在氩气气氛下进行熔炼得到合金铸锭,并通过熔体快淬的方 式制备得到快淬合金带材,其中甩带机辊速为19m/s,在氩气保护下将合金 带破碎成粉末;将(Pr0.25Nd0.75)18Fe74B8粉末倒入石墨模具中,通过放电等离 子烧结设备快速烧结制得磁体。烧结前及整个烧结过程真空度小于10Pa, 烧结温度为700℃,烧结压力为60MPa,烧结时间为5min。此烧结样品记为4号样。
磁体在3.5wt.%NaCl溶液中的自腐蚀电位和自腐蚀电流密度列于表1。
实施例3
将元素Pr、Fe、B、Hf按照Pr17Fe75B6Zr0.5Hf1.5配比,将配好的原材料 放入电弧炉中在氩气气氛下进行熔炼得到合金铸锭,并通过熔体快淬的方 式制备得到快淬合金带材,其中甩带机辊速为16m/s,在氩气保护下将合 金带破碎成粉末;将Pr17Fe75B6Zr0.5Hf1.5粉末倒入石墨模具中,通过放电等 离子烧结设备快速烧结制得磁体。烧结前及整个烧结过程真空度小于10Pa, 烧结温度为750℃,烧结压力为40MPa,烧结时间为6min。此烧结样品记 为5号样。
磁体在3.5wt.%NaCl溶液中的自腐蚀电位和自腐蚀电流密度列于表1。
对比例3
将元素Pr、Fe、B按照Pr17Fe77B6配比,将配好的原材料放入电弧炉中 在氩气气氛下进行熔炼得到合金铸锭,并通过熔体快淬的方式制备得到快 淬合金带材,其中甩带机辊速为18m/s,在氩气保护下将合金带破碎成粉末; 将Pr17Fe77B6粉末倒入石墨模具中,通过放电等离子烧结设备快速烧结制得 磁体。烧结前及整个烧结过程真空度小于10Pa,烧结温度为750℃,烧结 压力为40MPa,烧结时间为6min。此烧结样品记为6号样。
磁体在3.5wt.%NaCl溶液中的自腐蚀电位和自腐蚀电流密度列于表1。
表1不同成分烧结磁体在3.5wt.%NaCl溶液中的自腐蚀电位和自腐蚀 电流密度
从表1可以看出,添加Hf元素的磁体在3.5wt.%NaCl溶液中的自腐蚀 电位和自腐蚀电流密度的绝对值均比对比磁体的自腐蚀电位和自腐蚀电流 密度的绝对值小,意味着添加Hf元素的磁体具有更优异的耐腐蚀性能。因 此,本发明通过微量Hf元素的添加,并优化各元素的配比,在提高磁体磁 性能的同时,进一步改善了磁体的耐蚀性,制备得到了一种高耐蚀性的纳 米晶稀土永磁材料。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此 项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明 的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在 本发明的保护范围之内。

Claims (8)

1.一种高耐蚀性纳米晶稀土永磁材料,其特征在于:其成分及含量用公式表示为:(PraNd1-a)bFe100-b-c-dBcMd,其中M为Hf元素或Zr、Hf两种元素,0≤a≤1,16≤b≤20,6≤c≤8,1.5≤d≤3。
2.按照权利要求1所述高耐蚀性纳米晶稀土永磁材料,其特征在于:(PraNd1-a)bFe100-b-c-dBcMd成分中0≤a≤1,17≤b≤18,6.5≤c≤7,2≤d≤2.5。
3.按照权利要求1或2所述高耐蚀性纳米晶稀土永磁材料,其特征在于:(PraNd1-a)bFe100-b-c-dBcMd成分中部分的Pr、Nd元素由Dy、Tb、Ho、Gd之一种或多种替代,部分Fe元素由Co替代。
4.按照权利要求3所述高耐蚀性纳米晶稀土永磁材料,其特征在于:(PraNd1-a)bFe100-b-c-dBcMd成分中5%-20%的Pr、Nd元素由Dy、Tb、Ho、Gd之一种或多种替代,20%-60%的Fe元素由Co替代。
5.一种权利要求1所述高耐蚀性纳米晶稀土永磁材料的制备方法,其特征在于:将(PraNd1-a)bFe100-b-c-dBcMd粉末通过放电等离子烧结技术制备得到纳米晶永磁体,放电等离子烧结前及整个烧结过程真空度小于10Pa,烧结温度为600~850℃,烧结压力为20~100MPa,烧结时间为0~20min。
6.按照权利要求5所述高耐蚀性纳米晶稀土永磁材料的制备方法,其特征在于:放电等离子烧结温度为650~750℃,烧结压力为60~80MPa,烧结时间为3~10min。
7.按照权利要求5所述高耐蚀性纳米晶稀土永磁材料的制备方法,其特征在于,(PraNd1-a)bFe100-b-c-dBcMd粉末的制备方法为:将元素Pr、Nd、Fe、B、M按照要求配比,将配好的原材料放入电弧炉中,在氩气气氛下进行熔炼得到母合金铸锭,并通过熔体快淬的方式制备得到快淬合金带材,其中甩带机辊速为12-18m/s,在气氛保护下将合金带破碎成粉末,得到(PraNd1-a)bFe100-b-c-dBcMd粉末。
8.按照权利要求5所述高耐蚀性纳米晶稀土永磁材料的制备方法,其特征在于:所得永磁材料中主相晶粒尺寸在纳米级别。
CN201810478155.4A 2018-05-18 2018-05-18 一种高耐蚀性纳米晶稀土永磁材料及其制备方法 Active CN108913986B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810478155.4A CN108913986B (zh) 2018-05-18 2018-05-18 一种高耐蚀性纳米晶稀土永磁材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810478155.4A CN108913986B (zh) 2018-05-18 2018-05-18 一种高耐蚀性纳米晶稀土永磁材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108913986A true CN108913986A (zh) 2018-11-30
CN108913986B CN108913986B (zh) 2020-08-28

Family

ID=64403731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810478155.4A Active CN108913986B (zh) 2018-05-18 2018-05-18 一种高耐蚀性纳米晶稀土永磁材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108913986B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113903585A (zh) * 2021-09-07 2022-01-07 江西理工大学 一种具有各向异性的稀土永磁材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1737955A (zh) * 2005-07-27 2006-02-22 北京工业大学 稀土铁系双相纳米晶复合永磁材料的制备方法
CN106024244A (zh) * 2016-07-21 2016-10-12 江西理工大学 一种高热稳定性的纳米晶稀土永磁材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1737955A (zh) * 2005-07-27 2006-02-22 北京工业大学 稀土铁系双相纳米晶复合永磁材料的制备方法
CN106024244A (zh) * 2016-07-21 2016-10-12 江西理工大学 一种高热稳定性的纳米晶稀土永磁材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113903585A (zh) * 2021-09-07 2022-01-07 江西理工大学 一种具有各向异性的稀土永磁材料及其制备方法
CN113903585B (zh) * 2021-09-07 2023-10-03 江西理工大学 一种具有各向异性的稀土永磁材料及其制备方法

Also Published As

Publication number Publication date
CN108913986B (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
Zhao et al. Understanding the role of element grain boundary diffusion mechanism in Nd–Fe–B magnets
Liu et al. Significant progress of grain boundary diffusion process for cost-effective rare earth permanent magnets: A review
CN101740190B (zh) 一种高性价比高耐腐蚀性烧结钕铁硼磁体及制备方法
CN102347126B (zh) 一种高性能烧结钕铁硼稀土永磁材料及制造方法
CN102000816B (zh) 一种交换耦合双相纳米复合永磁颗粒及其制备方法
CN104051101B (zh) 一种稀土永磁体及其制备方法
CN103996477B (zh) 铜锡晶界改性抗蚀烧结钕铁硼磁体的制备方法
CN103093916B (zh) 一种钕铁硼磁性材料及其制备方法
CN108565105A (zh) 一种高矫顽力钕铁硼磁体及其制备方法
CN102543342A (zh) 铜纳米颗粒掺杂制备的高矫顽力和高耐蚀性烧结钕-铁-硼基永磁材料及制备方法
CN104575901A (zh) 一种添加铽粉的钕铁硼磁体及其制备方法
CN106158203B (zh) 一种高矫顽力高稳定性钕铁硼磁体的制备方法
CN103545079A (zh) 双主相含钇永磁磁体及其制备方法
CN104575903A (zh) 一种添加Dy粉末的钕铁硼磁体及其制备方法
CN102543343A (zh) 铝纳米颗粒掺杂制备的高矫顽力和高耐蚀性烧结钕-铁-硼基永磁材料及制备方法
CN104575902A (zh) 一种添加铈的钕铁硼磁体及其制备方法
CN108517455B (zh) 一种具有双主相结构的纳米晶稀土永磁材料及其制备方法
CN103489620A (zh) 一种镨铁硼永磁铁及其制备方法
CN103060657B (zh) 一种制备高矫顽力和高耐蚀性烧结钕铁硼永磁材料的方法
CN101719405A (zh) 低能耗耐腐蚀铝合金与钕铁硼型稀土永磁的双相复合材料
CN104952580A (zh) 一种耐腐蚀烧结钕铁硼磁体及其制备方法
CN106548843A (zh) 稀土永磁材料及其制备方法
CN104103414B (zh) 一种制备高矫顽力各向异性纳米晶钕铁硼永磁体的方法
CN108913986A (zh) 一种高耐蚀性纳米晶稀土永磁材料及其制备方法
CN103060673B (zh) 一种无需镀层的高耐蚀烧结钕-铁-硼永磁材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant