CN108896477B - 一种基于电信号变化检测炉渣反应能力的系统 - Google Patents

一种基于电信号变化检测炉渣反应能力的系统 Download PDF

Info

Publication number
CN108896477B
CN108896477B CN201810996132.2A CN201810996132A CN108896477B CN 108896477 B CN108896477 B CN 108896477B CN 201810996132 A CN201810996132 A CN 201810996132A CN 108896477 B CN108896477 B CN 108896477B
Authority
CN
China
Prior art keywords
reaction
calcium oxide
slag
electric signal
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810996132.2A
Other languages
English (en)
Other versions
CN108896477A (zh
Inventor
张超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maanshan Chiyuan Metallurgical Technology Co ltd
Original Assignee
Maanshan Chiyuan Metallurgical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maanshan Chiyuan Metallurgical Technology Co ltd filed Critical Maanshan Chiyuan Metallurgical Technology Co ltd
Priority to CN201810996132.2A priority Critical patent/CN108896477B/zh
Publication of CN108896477A publication Critical patent/CN108896477A/zh
Application granted granted Critical
Publication of CN108896477B publication Critical patent/CN108896477B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2866Grinding or homogeneising

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明公开了一种基于电信号变化检测炉渣反应能力的系统,属于冶金领域。本发明包括反应单元和电信号检测仪,反应单元包括周侧的绝缘板和底部的导电板,绝缘板和导电板围成用于容纳炉渣和氧化钙的反应槽,反应槽内设有电极,电极穿过绝缘板与电信号检测仪相连,导电板也与电信号检测仪相连。本发明克服现有技术中对氧化钙与炉渣反应性能检测的主观因素影响大、检测结果不准确的不足,采用将炉渣注入到氧化钙槽中,检测炉渣溶解一定厚度氧化钙所需的时间,通过物理信号变化判断反应到达设定位置,可以提高氧化钙溶于炉渣反应能力检测的准确性和检测效率。

Description

一种基于电信号变化检测炉渣反应能力的系统
技术领域
本发明涉及冶金技术领域,更具体地说,涉及一种基于电信号变化检测炉渣反应能力的系统。
背景技术
磷对于绝大多数钢种来说是有害元素,磷偏聚在晶界上会引起钢的低温脆性和回火脆性,还会降低钢的可焊性、抗裂纹性、抗腐蚀性,因此脱磷是炼钢过程的主要任务之一,在转炉以及铁水预处理脱磷过程中,使用最为广泛的脱磷剂是CaO系脱磷剂。在炼钢过程中,石灰与白云石等造渣材料溶解形成的CaO基炉渣主要用于脱磷脱硫,石灰的快速完全溶解对加快反应速率(尤其是脱磷反应)、减少造渣料消耗与渣量排放等有重要作用,但受石灰溶解速率的限制,炼钢炉渣中仍有部分石灰未溶解,造成脱磷效率低、渣量大等问题。近年来,为了降低转炉炼钢成本,许多钢铁企业开始采用双渣+留渣工艺冶炼,如何让石灰在低温渣(含P2O5)中快速溶解是实现高效脱磷难点之一。
通常转炉冶炼留渣后,加入新含磷铁水,然后加入石灰等含钙原料,之前留下的渣系中含有CaO,SiO2,Fe2O3,P2O5,MgO,Al2O3等成分,新加入的CaO会逐渐被渣系中成分侵蚀,在氧化钙表层形成2CaO·SiO2-3CaO·P2O5固熔体,然后铁水中P继续向渣中扩散,从而达到脱磷目的。然而,不同渣系会影响新氧化钙加入后的2CaO·SiO2-3CaO·P2O5固熔体形成速率,从而决定了渣的脱磷能力。
目前在炉渣对氧化钙的反应性能的研究中,普遍采取将氧化钙添加到渣中观察溶解情况的方式,在文献《2CaO·SiO2-3CaO·P2O5固熔体形成机理》(苏畅,于景坤,王洪章;东北大学学报(自然科学版),2013,34(10)1434-1437)中提出检测方法是:先配制初渣样并装入刚玉坩埚中,然后放入加热炉中升温到预定温度,待炉渣充分熔化后,将预先压制好的CaO片插入炉渣中浸入一定时间后快速取出并空冷至室温;然后对样品进行研磨抛光,利用扫描电子显微镜(SEM)和能谱分析仪(EDS)对试样进行观察和物相组成分析,观察反应界面,揭示了2CaO·SiO2-3CaO·P2O5固熔体层的形成机理。文献《氧化钙颗粒在CaO-FeO-SiO2-P2O5体系炉渣中的溶解行为》(夏云进,李孝攀,李杰等;过程工程学报,2017,17(05)1041-1046)中提出了将氧化钙颗粒加到CaO-FeO-SiO2-P2O5体系炉渣中,研究不同时间对氧化钙溶解行为的影响,使用钢棒蘸取渣样,用氮气快速冷却,用树脂镶嵌打磨抛光后,用扫描电镜及能谱分析氧化钙的溶解情况;该实验方法需要对样品进行处理,然后通过扫描电镜观察氧化钙溶解反应情况,人为主观判断过程较多。
通过以上分析,现有技术虽然一定程度上能够检测氧化钙在渣中的溶解情况,但是,这些检测方法都是依靠实验者主观判断氧化钙被反应的情况,人为主观因素影响较大,不能快速、科学的检测出氧化钙在渣中的反应行为。
发明内容
1.发明要解决的技术问题
本发明的目的在于克服现有技术中对氧化钙与炉渣反应性能检测的主观因素影响大、检测结果不准确的不足,提供了一种炉渣反应性能检测系统,采用将炉渣注入到氧化钙槽中,检测炉渣溶解一定厚度氧化钙所需的时间,通过物理信号变化判断反应到达设定位置,可以提高氧化钙溶于炉渣反应能力检测的准确性和检测效率。
2.技术方案
为达到上述目的,本发明提供的技术方案为:
本发明的一种基于电信号变化检测炉渣反应能力的系统,包括反应单元和电信号检测仪,反应单元包括周侧的绝缘板和底部的导电板,绝缘板和导电板围成用于容纳炉渣和氧化钙的反应槽,反应槽内设有电极,电极穿过绝缘板与电信号检测仪相连,导电板也与电信号检测仪相连。
更进一步地,还包括压力检测仪,压力检测仪设置于导电板底部,用于检测导电板承受的压力。
更进一步地,反应单元顶部设有用于打开/关闭反应槽的开口板。
更进一步地,还包括增压单元,增压单元包括一端延伸入反应槽内的通气管。
更进一步地,通气管的一侧设有补气管,通气管远离反应槽的一端设有螺旋活塞杆,螺旋活塞杆与通气管内壁螺纹配合并用于挤压通气管内气体。
更进一步地,开口板上设置有泄压阀。
更进一步地,通气管上设置有用于控制气体进入的开关阀。
更进一步地,反应单元外侧包覆设置有保温层。
更进一步地,反应单元外侧设置有微波加热器。
更进一步地,反应槽内的电极设置于导电板上方5-10mm处。
3.有益效果
采用本发明提供的技术方案,与现有技术相比,具有如下显著效果:
(1)本发明的一种基于电信号变化检测炉渣反应能力的系统,反应槽内的电极穿过绝缘板与电信号检测仪相连,导电板与电信号检测仪相连,当反应槽内氧化钙片与炉渣发生侵蚀反应并熔穿时,电信号检测仪检测到电信号发生改变,以氧化钙片的厚度与反应时间之比为反应速率,即可表征炉渣溶解氧化钙的能力,此种通过物理信号的变化来判断反应到达设定位置的方法,有效避免了人位主观因素的影响,可以提高氧化钙溶于炉渣反应能力检测的准确性和检测效率,为转炉炼铁脱磷提供可靠造渣制度数据。
(2)本发明的一种基于电信号变化检测炉渣反应能力的系统,是将液态炉渣注入氧化钙中,检测炉渣溶解一定厚度氧化钙所需的时间,通过物理信号的变化来判断反应到达设定位置,电信号检测部件将复杂的化学相变过程转变为简单的图形线性变化,提高了检测的简便性,易于操作。
(3)本发明的一种基于电信号变化检测炉渣反应能力的系统,还包括增压单元,且导电板下方设置有用于检测承受压力的压力检测仪,压力检测仪时刻监测导电板承受的压力,通过增压单元的配合可以向反应槽内充气增压,增大氧化钙片承受的压力,可以实现在恒定压力下对氧化钙片进行稳压反应,保障氧化钙片反应速率一致,有效提高检测准确性。
(4)本发明的一种基于电信号变化检测炉渣反应能力的系统,增压单元通过旋转螺旋活塞杆使其可以挤压管内气体向反应槽内充气来实现增压效果,通过对螺旋活塞杆的不同调节,使反应槽内保持稳压状态,能有效避免因为炉渣加入质量的误差对反应的影响,且采用螺旋活塞杆进行增压调节,有助于精确控制增压量,防止反应槽内稳压状态出现较大波动,进一步保障检测准确性。
附图说明
图1为本发明的一种基于电信号变化检测炉渣反应能力的系统的结构示意图;
图2为本发明中反应单元的结构示意图;
图3为本发明另一实施例的结构示意图。
示意图中的标号说明:
140、保温层;200、反应单元;210、绝缘板;220、导电板;230、反应槽;240、电极;250、开口板;
300、通气管;310、螺旋活塞杆;320、补气管;
400、压力检测仪;500、电信号检测仪;700、微波加热器;
100、炉体;110、测样管;120、进料口;130、硅钼加热棒;330、压力表;600、控制面板。
具体实施方式
为进一步了解本发明的内容,结合附图对本发明作详细描述。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
下面结合实施例对本发明作进一步的描述。
实施例1
如图1和图2所示,本实施例的一种基于电信号变化检测炉渣反应能力的系统,包括反应单元200和电信号检测仪500,其中反应单元200包括周侧的绝缘板210和底部的导电板220,绝缘板210和导电板220围成用于容纳炉渣和氧化钙的反应槽230,反应槽230内设有电极240,且电极240设置于导电板220上方5mm处,电极240穿过绝缘板210与电信号检测仪500相连,导电板220也与电信号检测仪500相连,初始状态下电极240、导电板220与电信号检测仪500构成断路状态。其中绝缘板210可采用石英绝缘板,导电板220可采用石墨导电板。
本实施例使用时,将压制好的厚度一致的片状氧化钙片放置在反应槽230内,且氧化钙片的直径尺寸与反应槽230的直径尺寸相配合,氧化钙片基本铺满反应槽230底部,将氧化钙片放置入反应槽230内后,再向槽内放入一定量的氧化钙粉末,并采用毛刷将粉末扫向氧化钙片边缘,使氧化钙粉末填充满氧化钙片与反应槽230内壁间的微小间隙,防止后续炉渣从氧化钙片边缘直接与导电板220接触;然后将熔化好的液态炉渣倒入反应槽230内并与氧化钙片进行接触,此时开始计时,电极240始终与炉渣接触,炉渣与氧化钙片接触并发生侵蚀反应,当氧化钙片被熔穿时,反应槽230内反应液与电极240、导电板220和电信号检测仪500构成的通路状态发生电信号突变,电信号检测仪500检测到电信号发生改变时,停止计时,记录反应时间,以氧化钙片的厚度与反应时间之比为反应速率,即可表征渣系溶解氧化钙的能力。
需要说明的是,针对炉渣反应性能的检测,传统检测方式是将氧化钙片投入熔化的炉渣中,在一定时间后将氧化钙片取出、冷却,再磨样进行扫描电镜分析,测量氧化钙与炉渣反应形成固溶体层的厚度,通过厚度判断反应效果,操作繁琐不便,且采用观察法易受人为主观因素影响,导致检测准确性不高;而本实施例则打破常规,采用将液态炉渣注入到氧化钙片中,以检测炉渣溶解一定厚度氧化钙所需的时间,通过物理信号的变化来判断反应到达设定位置,有效避免了人位主观因素的影响,且电信号检测部件将复杂的化学相变过程转变为简单的图形线性变化,提高了检测的简便性和准确性,进而可以为转炉炼铁脱磷提供可靠造渣制度数据。
实施例2
本实施例的一种基于电信号变化检测炉渣反应能力的系统,基本结构同实施例1,所不同的是,本实施例中反应槽230内设有电极240,且电极240设置于导电板220上方10mm处,且更进一步地,本实施例中还包括压力检测仪400和增压单元,其中压力检测仪400设置于导电板220底部,用于检测导电板220承受的压力,增压单元包括一端延伸入反应槽230内的通气管300,同时反应单元200顶部设有用于打开/关闭反应槽230的开口板250,打开开口板250则可将氧化钙片和炉渣放入,关闭开口板250则能对反应槽230进行密闭,具体地开口板250可设置在绝缘板210上方。本实施例中通气管300的一侧设有补气管320,可以外接气瓶,用于向反应槽230内输送氮气或其他惰性气体进行增压补气。
本实施例中压力检测仪400和增压单元配合使用,可以有效提高检测结果的准确性,具体地,行业内通常检测多组不同炉渣试样对氧化钙片的反应性能,采用恒定质量的不同组炉渣对氧化钙片进行反应,但配好的多组恒定质量炉渣在经配置容器倒入反应槽230内时,由于炉渣粘度大、密度大等原因,部分炉渣会粘附在容器内壁上,导致实际进入反应槽230内的每组炉渣质量难以保持恒定,对氧化钙片产生的压力难以保持恒定,而氧化钙片承受的压力变动则会影响后续发生的侵蚀反应速率,从而影响检测准确性,使检测结果不具有参考性,而本实施例则有效解决了这一难题,可以实现在恒定压力下对氧化钙片进行稳压反应,保障氧化钙片反应速率一致,有效提高检测准确性。
本实施例中,导电板220底部设置有压力检测仪400,时刻监测导电板220承受的压力,即可反应添加入的炉渣质量,增压单元可以向反应槽230内补气增压,在开口板250关闭的情况下,通过增压单元的增压可以有效增强导电板220承受的压力,在压力检测仪400的监测下,通过控制增压程度,使导电板220保持恒定受压,即保障氧化钙片保持恒定的稳压状态,保障每组检测时氧化钙片承受的压力相同,炉渣与氧化钙片在稳压状态下均匀反应,能有效避免因为炉渣加入质量的误差对反应的影响,从而有效提高检测准确性。
本实施例中通气管300远离反应槽230的一端设有螺旋活塞杆310,螺旋活塞杆310与通气管300内壁螺纹配合并用于挤压通气管300内气体,通过螺旋活塞杆310的设置实现对反应槽230内的准确增压,具体地,向内旋转推进螺旋活塞杆310可以有效挤压通气管300中的气体使其充入反应槽230内,从而增大氧化钙片承受的压力,直至压力检测仪400检测达到所需的恒定压力时,停止挤压,保持稳压状态。本实施例采用螺旋活塞杆310进行增压,通过压力检测仪400的变化控制推进距离,不仅操作简便易于控制,更能在压力检测仪400的配合下,精确控制气体的增压量,实现对气体的少量调整,防止反应槽230内稳压状态出现较大波动,进一步保障检测结果的准确性。
实施例3
本实施例的一种基于电信号变化检测炉渣反应能力的系统,基本结构同实施例2,所不同的是,本实施例中反应槽230内设有电极240,且电极240设置于导电板220上方8mm处,且更进一步地,本实施例中开口板250上设置有泄压阀,对应地,通气管300上设置有用于控制气体进入的开关阀,当高温的液态炉渣倒入反应槽230内并关闭开口板250时,初始为防止内部气体急速受热膨胀,开口板250上的泄压阀可有效对膨胀气体进行短暂泄压,保障检测安全;然后通气管300上的开关阀打开,开始对反应槽230内进行补气增压,建立稳压环境,通气管300外侧还可设置常规的加热装置,能够对增压的气体进行预热,然后再进入高温环境的反应槽230内,增压效果愈加稳定。实际检测过程中,通过泄压阀和开关阀的相互配合,更有助于灵活保障氧化钙片承受的稳压状态,提高检测的准确性。
实施例4
本实施例的一种基于电信号变化检测炉渣反应能力的系统,基本结构同实施例3,更进一步地,本实施例中反应单元200外侧包覆设置有保温层140,可以对反应单元200进行有效保温,防止反应槽230内迅速冷却,出现炉渣凝固现象,影响检测过程的顺利进行,更进一步地,反应单元200外侧还设置有微波加热器700,具体可设置于绝缘板210外侧,保持对反应单元200内部的微加热,保持反应单元200内部的温度基本保持恒定,更有利于炉渣与氧化钙片的正常反应,保障检测结果的准确性。
本实施例的一种氧化钙溶于炉渣反应能力的检测方法,采用如上所述的检测系统,按照以下步骤进行检测:
S1、渣系配置:渣系配置以纯化学试剂CaO、SiO2、3CaO·P2O5、FeC2O4为原料;
S2、渣系升温处理:称取定量配好的炉渣放入升温炉中加热,使渣样均匀熔化;具体地,称取定量炉渣(如200g)放入升温炉中,炉温设定1200-1400℃,加热过程为三段式加热,首先在300-400℃和700-800℃的温度条件下分别保温30-40min,防止升温过快导致渣样熔化过程受热不均,等温度上升至1200-1400℃时再保温30-40min,确保各化合物之间充分反应继而进行检测操作;
S3、研磨制备氧化钙粉末:将块状氧化钙在研钵中破碎研磨成小颗粒的氧化钙,然后使用100-150目圆孔筛进行筛分,筛下物放入玛瑙研钵中继续细磨15min以上,使其通过200-250目圆孔筛,现磨现用,防止吸水变质;
S4、压制氧化钙片:在8-12MPa压力(压强)下,将氧化钙粉末压制成直径为50-60mm,厚度为1-2mm的氧化钙片,并保压3-5min;
S5、将氧化钙片和炉渣投入检测系统中开始检测,具体过程如下:
a1、打开开口板250,将氧化钙片放入反应槽230内,将压力检测仪400进行清零操作;
a2、将熔化的炉渣倒入反应槽230内与氧化钙片接触,此时开始计时;
a3、根据压力检测仪400记录增加的压力值,通过增压单元进行增压,具体旋转推进螺旋活塞杆310对反应槽230内进行增压补气,使压力检测仪400记录达到所需的恒定值(如200g),保障氧化钙片受力相同;
a4、当电信号检测仪500检测到电信号发生改变时,停止计时,记录反应时间,以氧化钙片的厚度与时间之比为反应速率,即可表征渣系溶解氧化钙的能力。
采用本实施例的检测方法,操作更加便捷,准确性有明显提高,适宜推广应用。
实施例5
本实施例的一种基于电信号变化检测炉渣反应能力的系统,基本结构同实施例4,所不同的是,如图3所示,本实施例的检测系统还包括用于加热熔化炉渣的炉体100,炉体100内设有测样管110,测样管110顶部设有进料口120,测样管110外侧设有硅钼加热棒130,炉渣即是在加入到测样管110中由硅钼加热棒130加热熔化,反应单元200即是设置在测样管110底部,炉体100上还设置有控制面板600,用于控制各个操作开关按钮,本实施例中通气管300上还设置有用于监测气流的压力表330。
本实施例实际检测时,在反应槽230内放置压好的氧化钙片,且氧化钙片的直径尺寸与反应槽230的直径尺寸相配合,氧化钙片基本铺满反应槽230底部,将氧化钙片放置入反应槽230内后,再向槽内放入一定量的氧化钙粉末,并采用毛刷将粉末扫向氧化钙片边缘,使氧化钙粉末填充满氧化钙片与反应槽230内壁间的微小间隙,防止后续炉渣从氧化钙片边缘直接与导电板220接触;将配好的恒定质量的炉渣加入测样管110中,操作控制面板600的按钮,按照设定好的程序对炉渣进行三段式高温熔化(同实施例4),然后操作控制面板600的开始按钮,使测样管110底部打开,炉渣排入正下方的反应槽230内与氧化钙片接触并开始反应,检测开始,检测过程与上述基本相同。
实施例6
本实施例的一种氧化钙溶于炉渣反应能力的检测方法,采用如上所述的检测系统,基本同实施例4,仅在以下步骤中有所不同:
S2、渣系升温处理:称取定量炉渣放入升温炉中,炉温设定1400℃,加热过程为三段式加热,首先在300℃和700℃的温度条件下分别保温30min,等温度上升至1400℃时再保温30min,确保各化合物之间充分反应继而进行检测操作;
S3、研磨制备氧化钙粉末:将块状氧化钙在研钵中破碎研磨成小颗粒的氧化钙,然后使用100目圆孔筛进行筛分,筛下物放入玛瑙研钵中继续细磨15min以上,使其通过200目圆孔筛,现磨现用,防止吸水变质;
S4、压制氧化钙片:在10MPa压力下,压制直径为50mm,厚度为1mm的氧化钙片,保压3min。
实施例7
本实施例的一种氧化钙溶于炉渣反应能力的检测方法,采用如上所述的检测系统,基本同实施例6,仅在以下步骤中有所不同:
S2、渣系升温处理:称取定量炉渣放入升温炉中,炉温设定1200℃,加热过程为三段式加热,首先在400℃和800℃的温度条件下分别保温40min,等温度上升至1200℃时再保温40min;
S3、研磨制备氧化钙粉末:将块状氧化钙在研钵中破碎研磨成小颗粒的氧化钙,然后使用150目圆孔筛进行筛分,筛下物放入玛瑙研钵中继续细磨15min以上,使其通过250目圆孔筛,现磨现用,防止吸水变质;
S4、压制氧化钙片:在12MPa压力下,压制直径为60mm,厚度为2mm的氧化钙片,保压5min。
实施例8
本实施例的一种氧化钙溶于炉渣反应能力的检测方法,采用如上所述的检测系统,基本同实施例6,仅在以下步骤中有所不同:
S2、渣系升温处理:称取定量炉渣放入升温炉中,炉温设定1300℃,加热过程为三段式加热,首先在350℃和750℃的温度条件下分别保温35min,等温度上升至1300℃时再保温35min;
S3、研磨制备氧化钙粉末:将块状氧化钙在研钵中破碎研磨成小颗粒的氧化钙,然后使用120目圆孔筛进行筛分,筛下物放入玛瑙研钵中继续细磨15min以上,使其通过220目圆孔筛,现磨现用,防止吸水变质;
S4、压制氧化钙片:在8MPa压力下,压制直径为55mm,厚度为1.5mm的氧化钙片,保压4min。
以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (10)

1.一种基于电信号变化检测炉渣反应能力的系统,其特征在于:包括反应单元(200)和电信号检测仪(500),反应单元(200)包括周侧的绝缘板(210)和底部的导电板(220),绝缘板(210)和导电板(220)围成用于容纳炉渣和氧化钙的反应槽(230),反应槽(230)内设有电极(240),电极(240)穿过绝缘板(210)与电信号检测仪(500)相连,导电板(220)也与电信号检测仪(500)相连;
使用时将压制好的厚度一致的片状氧化钙片放置在反应槽(230)内,且氧化钙片的直径尺寸与反应槽(230)的直径尺寸相配合,氧化钙片基本铺满反应槽(230)底部,将氧化钙片放置入反应槽(230)内后,再向槽内放入一定量的氧化钙粉末,并采用毛刷将粉末扫向氧化钙片边缘,使氧化钙粉末填充满氧化钙片与反应槽(230)内壁间的微小间隙,然后将熔化好的液态炉渣倒入反应槽(230)内并与氧化钙片进行接触,此时开始计时,当电信号检测仪(500)检测到电信号发生改变时,停止计时,记录反应时间,以氧化钙片的厚度与反应时间之比为反应速率,即可表征渣系溶解氧化钙的能力。
2.根据权利要求1所述的一种基于电信号变化检测炉渣反应能力的系统,其特征在于:还包括压力检测仪(400),压力检测仪(400)设置于导电板(220)底部,用于检测导电板(220)承受的压力。
3.根据权利要求1所述的一种基于电信号变化检测炉渣反应能力的系统,其特征在于:反应单元(200)顶部设有用于打开/关闭反应槽(230)的开口板(250)。
4.根据权利要求2所述的一种基于电信号变化检测炉渣反应能力的系统,其特征在于:还包括增压单元,增压单元包括一端延伸入反应槽(230)内的通气管(300)。
5.根据权利要求4所述的一种基于电信号变化检测炉渣反应能力的系统,其特征在于:通气管(300)的一侧设有补气管(320),通气管(300)远离反应槽(230)的一端设有螺旋活塞杆(310),螺旋活塞杆(310)与通气管(300)内壁螺纹配合并用于挤压通气管(300)内气体。
6.根据权利要求3所述的一种基于电信号变化检测炉渣反应能力的系统,其特征在于:开口板(250)上设置有泄压阀。
7.根据权利要求4所述的一种基于电信号变化检测炉渣反应能力的系统,其特征在于:通气管(300)上设置有用于控制气体进入的开关阀。
8.根据权利要求1所述的一种基于电信号变化检测炉渣反应能力的系统,其特征在于:反应单元(200)外侧包覆设置有保温层(140)。
9.根据权利要求1所述的一种基于电信号变化检测炉渣反应能力的系统,其特征在于:反应单元(200)外侧设置有微波加热器(700)。
10.根据权利要求1-9任一项所述的一种基于电信号变化检测炉渣反应能力的系统,其特征在于:反应槽(230)内的电极(240)设置于导电板(220)上方5-10mm处。
CN201810996132.2A 2018-08-29 2018-08-29 一种基于电信号变化检测炉渣反应能力的系统 Active CN108896477B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810996132.2A CN108896477B (zh) 2018-08-29 2018-08-29 一种基于电信号变化检测炉渣反应能力的系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810996132.2A CN108896477B (zh) 2018-08-29 2018-08-29 一种基于电信号变化检测炉渣反应能力的系统

Publications (2)

Publication Number Publication Date
CN108896477A CN108896477A (zh) 2018-11-27
CN108896477B true CN108896477B (zh) 2024-03-15

Family

ID=64358617

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810996132.2A Active CN108896477B (zh) 2018-08-29 2018-08-29 一种基于电信号变化检测炉渣反应能力的系统

Country Status (1)

Country Link
CN (1) CN108896477B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010278A2 (en) * 2001-07-24 2003-02-06 Societe D'amenagement Urbain Et Rural Automated process for detecting pathogenic organisms in water
JP2003207473A (ja) * 2002-01-15 2003-07-25 Heraeus Electro Nite Kk スラグの塩基度測定方法とその装置
JP2008202804A (ja) * 2006-05-22 2008-09-04 Sumikazu Tsuzura 廃棄物のプラズマ溶融処理方法及びその装置
CN102628828A (zh) * 2012-04-20 2012-08-08 河北联合大学 一种含碱高炉渣氧化铁活度的测定方法
CN102851517A (zh) * 2012-08-28 2013-01-02 江苏兴达高温合金科技有限公司 电渣炉用多元颗粒状还原渣进行电渣起弧的冶炼方法
CN103008621A (zh) * 2012-12-26 2013-04-03 中国科学院金属研究所 一种工业化生产3吨超纯净i-690合金电渣重熔锭的工艺方法
CN104931556A (zh) * 2015-06-26 2015-09-23 重庆大学 一种利用电流实时监测炉渣泡沫化程度的实验装置及方法
KR20160073835A (ko) * 2014-12-17 2016-06-27 오씨아이 주식회사 내구성을 향상시킨 레독스 흐름 전지의 셀 스택
CN108007961A (zh) * 2017-08-09 2018-05-08 安徽工业大学 一种基于电信号变化判断铁矿粉同化温度的方法
CN108130400A (zh) * 2017-12-21 2018-06-08 中南大学 一种促进脱磷渣中磷富集相颗粒聚集长大的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208833643U (zh) * 2018-08-29 2019-05-07 马鞍山赤源冶金科技有限公司 一种用于检测炉渣反应能力的系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010278A2 (en) * 2001-07-24 2003-02-06 Societe D'amenagement Urbain Et Rural Automated process for detecting pathogenic organisms in water
JP2003207473A (ja) * 2002-01-15 2003-07-25 Heraeus Electro Nite Kk スラグの塩基度測定方法とその装置
JP2008202804A (ja) * 2006-05-22 2008-09-04 Sumikazu Tsuzura 廃棄物のプラズマ溶融処理方法及びその装置
CN102628828A (zh) * 2012-04-20 2012-08-08 河北联合大学 一种含碱高炉渣氧化铁活度的测定方法
CN102851517A (zh) * 2012-08-28 2013-01-02 江苏兴达高温合金科技有限公司 电渣炉用多元颗粒状还原渣进行电渣起弧的冶炼方法
CN103008621A (zh) * 2012-12-26 2013-04-03 中国科学院金属研究所 一种工业化生产3吨超纯净i-690合金电渣重熔锭的工艺方法
KR20160073835A (ko) * 2014-12-17 2016-06-27 오씨아이 주식회사 내구성을 향상시킨 레독스 흐름 전지의 셀 스택
CN104931556A (zh) * 2015-06-26 2015-09-23 重庆大学 一种利用电流实时监测炉渣泡沫化程度的实验装置及方法
CN108007961A (zh) * 2017-08-09 2018-05-08 安徽工业大学 一种基于电信号变化判断铁矿粉同化温度的方法
CN108130400A (zh) * 2017-12-21 2018-06-08 中南大学 一种促进脱磷渣中磷富集相颗粒聚集长大的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A.C. Impedance Analysis of the Kinetics of Reactions between Molten Cu or Fe and CaO-Al2O3 Slag;Mitsutaka Hino et al.;ISIJ International;19921231;第32卷(第1期);43-49 *
Distribution Behavior of Aluminum and Titanium Between Nickel-Based Alloys and Molten Slags in the Electro Slag Remelting (ESR) Process;Jun Gil Yang et al.;METALLURGICAL AND MATERIALS TRANSACTIONS B;20170515;第48卷;2147-2156 *
钢渣中钙浸出的实验研究;刘英金 等;中国稀土学报;20080831;第26卷;94-97 *
高炉炼铁中含钛炉渣对Al_2O_3陶瓷杯的侵蚀行为;韦勐方;张建良;毛瑞;赵永彬;;钢铁研究学报;20131202(第12期);17-22 *

Also Published As

Publication number Publication date
CN108896477A (zh) 2018-11-27

Similar Documents

Publication Publication Date Title
CN105588781B (zh) 一种测定夹杂物在冶金用炉渣中溶解速率的装置及方法
CN103884730A (zh) 测定硅锰合金、硅铁合金元素的x射线荧光光谱仪分析法
Plevachuk et al. Thermophysical properties of liquid tin–bismuth alloys
CN107064045A (zh) 一种碳化硅复合材料中氧含量的测定方法
CN108896477B (zh) 一种基于电信号变化检测炉渣反应能力的系统
Wen et al. Influence of raw material type on heat transfer and structure of mould slag
CN109187182B (zh) 一种用于检测炉渣反应性能的方法
CN208833643U (zh) 一种用于检测炉渣反应能力的系统
Ducret et al. Liquidus temperatures and viscosities of FeO‐Fe2O3‐SiO2‐CaO‐MgO slags at compositions relevant to nickel matte smelting
CN103308200A (zh) 测温热电偶固定方法及固定用膨胀耐火泥
CN111751311B (zh) 一种氧氮氢分析仪器用石墨材料的制备方法
CN112595715B (zh) 一种高温熔渣中自由基相对含量的检测方法
Vidacak et al. An experimental study of the viscosities of Al 2 O 3-CaO-“FeO” slags
CN110156462A (zh) 冶炼不锈钢用耐侵蚀长寿命的浸入式水口及其生产方法
EP2327802A1 (de) Bestimmung der Badspiegelhöhe in metallurgischen Gefäßen
CN106007714B (zh) 用于铝及铝合金熔体中定氢探头固体电解质及制备方法
CN112857959A (zh) 一种煤灰渣样本的制备装置及制备方法
KR100661538B1 (ko) 고청정 시료 채취를 위한 복합프로브용 시료채취구
CN116380599B (zh) 一种大尺寸非金属夹杂物的制备方法及其应用
US5342489A (en) Method of measuring oxygen activities in slag
Lü et al. Activities of FeO in CaO-SiO 2-Al 2 O 3-MgO-FeO slags
CN109283212B (zh) 一种铁矿粉同化反应温度及同化反应速度的检测方法
CN110320132A (zh) 一种钎料润湿性铺展试验方法
CN109336583B (zh) 一种定磷探头用固体电解质及其制备方法
JPS5973763A (ja) 溶融金属中の珪素量迅速測定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant