CN108893872A - 一种三维蓬松多孔支架的制备方法 - Google Patents

一种三维蓬松多孔支架的制备方法 Download PDF

Info

Publication number
CN108893872A
CN108893872A CN201810891406.1A CN201810891406A CN108893872A CN 108893872 A CN108893872 A CN 108893872A CN 201810891406 A CN201810891406 A CN 201810891406A CN 108893872 A CN108893872 A CN 108893872A
Authority
CN
China
Prior art keywords
preparation
hole bracket
bulk multi
dimensional bulk
nanofiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810891406.1A
Other languages
English (en)
Other versions
CN108893872B (zh
Inventor
经鑫
米皓阳
刘跃军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Shensai New Materials Co.,Ltd.
Original Assignee
Hunan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Technology filed Critical Hunan University of Technology
Priority to CN201810891406.1A priority Critical patent/CN108893872B/zh
Publication of CN108893872A publication Critical patent/CN108893872A/zh
Application granted granted Critical
Publication of CN108893872B publication Critical patent/CN108893872B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • D01F6/625Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters derived from hydroxy-carboxylic acids, e.g. lactones
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4358Polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Artificial Filaments (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明公开了一种三维蓬松多孔支架的制备方法。本发明以生物相容性好、绿色可降解的聚合物为原料,经静电纺丝制备出纳米纤维结构,将纳米纤维置于酒精/干冰混合液中,利用干冰的升华在纳米纤维内部留下多孔结构,液氮快速冷冻固定多孔结构,冷冻干燥后制得三维蓬松多孔支架。本发明所述方法简单易行,所制备的三维蓬松多孔支架的孔径大、孔隙率高、泡孔之间有着良好的连通性,可以很好的促进细胞在支架内部的生长。

Description

一种三维蓬松多孔支架的制备方法
技术领域
本发明涉及多孔材料技术领域,更具体地,涉及一种三维蓬松多孔支架的制备方法。
背景技术
在组织工程中,良好的生物支架应该具有刚柔韧性、适当降解速率及良好的生物相容性,并尽可能的模拟细胞在体内的内环境,从而给细胞提供生长所需的微环境。纳米材料由于很好地模拟了细胞在体内的拓扑结构,从而在组织工程领域得到了越来越广泛的应用。静电纺丝技术能够连续制备纳米级或亚微米级的超细纤维,其制备的支架具有独特的微观结构和适当的力学性能,可以模拟天然细胞外基质的纳米网状结构,在组织工程支架制备方面具有独特的优势。
传统的静电纺丝薄膜却存在着几个显著的缺陷:1.纺丝的纳米纤维紧密堆叠,孔隙率较低,细胞无法向支架内部迁移;2.静电场随薄膜厚度增加而减小,导致支架厚度受限难以形成的三维结构。因此,提供一种高孔隙率和泡孔连通性的纳米纤维支架是目前组织工程领域中亟待解决的问题。
发明内容
本发明要解决的技术问题是针对现有技术中多孔支架的孔隙率低,连通性能差的不足,提供一种三维蓬松多孔支架的制备方法。
本发明的目的通过以下技术方案予以实现:
一种三维蓬松多孔支架的制备方法,其步骤包括:
S1.将聚合物溶解在相应溶剂中得到聚合物溶液;
S2.将步骤S1制备的聚合物溶液静电纺丝,得到纳米纤维;
S3.将步骤S2的纳米纤维置于预冷的酒精/干冰混合液中,静置;
S4.将步骤S3处理的纳米纤维取出置于水中,然后将其冷冻;
S5.将步骤S4冷冻后的纳米纤维干燥,得到聚合物三维多孔支架。
进一步地,步骤S1所述的聚合物为聚己内酯、聚乳酸、聚氨酯的一种。所述材料为绿色可降解、生物相容性好的聚合物材料,在植入人体后,不会伤害人体健康。
进一步地,步骤S1所述的溶剂为2,2,2-四氟乙醇、氯仿、四氢呋喃、二甲基甲酰胺的一种或多种。
进一步地,步骤S1所述聚合物溶液为8~15wt.%,聚合物溶液浓度越高,粘度越大,其制备的纤维直径越大。
优选地,步骤S1所述聚合物溶液为10wt.%。
进一步地,步骤S2所述静电纺丝电压为15~20 kV,纺丝接收距离为10~20 cm,接收液为酒精。带电的聚合物溶液喷出后,随着电场强度的增大,聚合物溶液液滴拉伸,溶剂挥发,聚合物溶液浓缩固化成纳米纤维,随着接收距离的增大,纤维的直径减小。
优选地,步骤S2所述静电纺丝电压为18kV,静电纺丝接收距离为15cm,静电纺丝接收液为酒精体积浓度为70%。
进一步地,步骤S3所述酒精与干冰的质量比为1:3~5。
进一步地,步骤S3的静置时间为20~30min。
静电纺丝的纳米纤维浸入酒精/干冰混合液中,干冰升华后产生的二氧化碳气体分子穿过纳米纤维,使纳米纤维致密结构变得蓬松。由于干冰的不断升华,纳米纤维中的孔隙间保持着良好的连通性。进一步优选地,步骤S3所述酒精与干冰的质量比为1:3,步骤S3的静置时间为25min。
进一步地,步骤S4的水温度为20~30℃,置于水中时间为3~7min。
进一步地,步骤S4所述冷冻方式为液氮迅速冷冻,冷冻时间为10~20 min。
聚合物纳米纤维在经过酒精/干冰混合液处理后,形成蓬松的多孔结构,将其浸入水中,加快了干冰的升华速度,保证了多孔结构的大孔径、高孔隙率及连通性。同时水分子经过液氮的快速冷冻结冰,保持了多孔结构的稳固性,防止泡孔塌陷。进一步优选地,步骤S4的水温度为25℃,置于水中时间为5min;液氮冷冻时间为15min。
进一步地,步骤S5所述干燥为冷冻干燥,干燥时间为12~36h。进一步优选地,冷冻干燥时间为24h。
与现有技术相比,有益效果是:
本发明所述的方法通过采用生物相容性好的聚合物为原料,经静电纺丝制备出纳米纤维,将纳米纤维置于酒精/干冰混合液中,通过干冰的升华在纳米纤维内部留下多孔结构,液氮快速冷冻固定多孔支架,冷冻干燥后制得三维蓬松多孔支架。本发明所述方法制备的三维蓬松多孔支架的孔径大、孔隙率高、泡孔之间有着良好的连通性,有利于细胞的粘附、生长、繁殖。
本发明所制备的三维蓬松多孔支架,以干冰升华提高孔径、孔隙率及泡孔连通性,不需要添加其他的致孔发泡剂,保证了原料的安全无毒性。与此同时,本发明用干冰为纳米纤维致孔形成三维蓬松多孔支架,保证了纳米纤维的连续完整性,有利于保持多孔支架的力学性能。
本发明所述的方法简单易行,制备出的三维蓬松多孔支架具有孔径大、高孔隙率、良好连通性,促进了细胞在多孔支架的浸润生长。
附图说明
图1是本发明制备的聚乳酸三维蓬松多孔支架扫描电镜照片;
图2是本发明制备的聚己内酯三维蓬松多孔支架扫描电镜照片;
图3是本发明制备的聚乳酸三维蓬松多孔支架与聚乳酸纤维膜比表面积测试结果对比;
图4是本发明制备的聚己内酯三维蓬松多孔支架与聚己内酯纤维膜比表面积测试结果对比。
具体实施方式
下面结合实施例进一步解释和阐明,但具体实施例并不对本发明有任何形式的限定。若未特别指明,实施例中所用的方法和设备为本领常规方法和设备,所用原料均为常规市售原料。
实施例1
S1.将聚己内酯与2,2,2-四氟乙醇溶解得浓度为10wt.%聚合物溶液;
S2.将步骤S1制备的聚己内酯溶液进行电压为18kV,接受距离为15cm的静电纺丝,用体积浓度70%的酒精作为静电纺丝接收液得到聚己内酯纳米纤维;
S3.将步骤S2制备得到的聚己内酯纳米纤维置于预冷的质量比1:3酒精/干冰混合液中,静置25min;
S4.将步骤S3处理的聚己内酯纳米纤维取出置于25℃的水中5min,然后取出用液氮迅速冷冻15min;
S5.将步骤S4冷冻后的聚己内酯纳米纤维冷冻干燥24h,得到聚己内酯三维多孔支架。
实施例2
S1.将聚己内酯与2,2,2-四氟乙醇溶解得浓度为8wt.%聚合物溶液;
S2.将步骤S1制备的聚己内酯溶液进行电压为15kV,接受距离为10cm的静电纺丝,用体积浓度70%的酒精作为静电纺丝接收液得到聚己内酯纳米纤维;
S3.将步骤S2制备得到的聚己内酯纳米纤维置于预冷的质量比1:3酒精/干冰混合液中,静置20min;
S4.将步骤S3处理的聚己内酯纳米纤维取出置于20℃的水中7min,然后取出用液氮迅速冷冻10min;
S5.将步骤S4冷冻后的聚己内酯纳米纤维冷冻干燥36h,得到聚己内酯三维多孔支架。
实施例3
S1.将聚己内酯与2,2,2-四氟乙醇溶解得浓度为15wt.%聚合物溶液;
S2.将步骤S1制备的聚己内酯溶液进行电压为20kV,接受距离为20cm的静电纺丝,用体积浓度70%的酒精作为静电纺丝接收液得到聚己内酯纳米纤维;
S3.将步骤S2制备得到的聚己内酯纳米纤维置于预冷的质量比1:5酒精/干冰混合液中,静置30min;
S4.将步骤S3处理的聚己内酯纳米纤维取出置于30℃的水中3min,然后取出用液氮迅速冷冻20min;
S5.将步骤S4冷冻后的聚己内酯纳米纤维冷冻干燥12h,得到聚己内酯三维多孔支架。
实施例4
S1.将聚乳酸与氯仿/二甲基甲酰胺(其中氯仿与二甲基甲酰胺的体积比为7:3)溶解得浓度为10wt.%聚合物溶液;
S2.将步骤S1制备的聚乳酸溶液进行电压为18kV,接受距离为15cm的静电纺丝,用体积浓度70%的酒精作为静电纺丝接收液得到聚乳酸纳米纤维;
S3.将步骤S2制备得到的聚乳酸纳米纤维置于预冷的质量比1:3酒精/干冰混合液中,静置25min;
S4.将步骤S3处理的聚乳酸纳米纤维取出置于25℃的水中5min,然后取出用液氮迅速冷冻15min;
S5.将步骤S4冷冻后的聚乳酸纳米纤维冷冻干燥24h,得到聚乳酸三维多孔支架。
实施例5
S1.将聚乳酸酯溶解在四氢呋喃中得浓度为10 wt.%聚合物溶液;
S2.将步骤S1制备的聚乳酸溶液进行电压为15kV,接受距离为10cm的静电纺丝,用体积浓度70%的酒精作为静电纺丝接收液得到聚乳酸纳米纤维;
S3.将步骤S2制备得到的聚乳酸纳米纤维置于预冷的质量比1:3酒精/干冰混合液中,静置20min;
S4.将步骤S3处理的聚乳酸纳米纤维取出置于20℃的水中7min,然后取出用液氮迅速冷冻10min;
S5.将步骤S4冷冻后的聚乳酸纳米纤维冷冻干燥36h,得到聚乳酸三维多孔支架。
实施例6
S1.将聚乳酸溶解在2,2,2-四氟乙醇得浓度为15wt.%聚合物溶液;
S2.将步骤S1制备的聚乳酸溶液进行电压为20kV,接受距离为20cm的静电纺丝,用体积浓度70%的酒精作为静电纺丝接收液得到聚乳酸纳米纤维;
S3.将步骤S2制备得到的聚乳酸纳米纤维置于预冷的质量比1:5酒精/干冰混合液中,静置30min;
S4.将步骤S3处理的聚乳酸纳米纤维取出置于30℃的水中3min,然后取出用液氮迅速冷冻20min;
S5.将步骤S4冷冻后的聚乳酸纳米纤维冷冻干燥12h,得到聚乳酸三维多孔支架。
根据实施例1和实施例4所制备的聚己内酯和聚乳酸三维蓬松多孔支架进行纤维直径、泡孔率和表观密度的检测,检测结果如表1:
表1
纤维直径(nm) 泡孔率(%) 表观密度(g/cm3
PCL 268±115 87.8±1.5 0.14±0.03
PLA 386±158 90.3±2.1 0.12±0.02
由图1~图2的电镜图及图3~图4的比表面积图可以得知,本发明所制备的三维多孔支架孔隙率高、泡孔连通性好。由表1的结果显示,根据本发明的制备的聚己内酯三维蓬松多孔支架的泡孔率达86.3%~89.3%,聚乳酸三维蓬松多孔支架的泡孔率达88.2%~92.4%。本发明制备的三维蓬松多孔支架适合细胞的粘附、生长和繁殖。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

1.一种三维蓬松多孔支架的制备方法,其特征在于,步骤包括:
S1.将聚合物溶解在相应溶剂中得到聚合物溶液;
S2.将步骤S1制备的聚合物溶液静电纺丝,得到纳米纤维;
S3.将步骤S2的纳米纤维置于预冷的酒精/干冰混合液中,静置;
S4.将步骤S3处理的纳米纤维取出置于水中,然后将其冷冻;
S5.将步骤S4冷冻后的纳米纤维干燥,得到聚合物三维多孔支架。
2.根据权利要求1所述三维蓬松多孔支架的制备方法,其特征在于,步骤S1所述的聚合物可以为聚己内酯、聚乳酸、热塑性聚氨酯中的一种。
3.根据权利要求1所述三维蓬松多孔支架的制备方法,其特征在于,步骤S1所述的溶剂为2,2,2-四氟乙醇、氯仿、四氢呋喃、二甲基甲酰胺中的一种或几种。
4.根据权利要求1所述三维蓬松多孔支架的制备方法,其特征在于,步骤S1所述聚合物溶液为8~15wt.%。
5.根据权利要求1所述三维蓬松多孔支架的制备方法,其特征在于,步骤S2所述静电纺丝电压为15~20kV,纺丝接收距离为10~20cm,静电纺丝接收液为酒精。
6.根据权利要求1所述三维蓬松多孔支架的制备方法,其特征在于,步骤S3所述酒精与干冰的质量比为1:3~5。
7.根据权利要求1所述三维蓬松多孔支架的制备方法,其特征在于,步骤S3所述静置时间为20~30min。
8.根据权利要求1所述三维蓬松多孔支架的制备方法,其特征在于,步骤S4的水温度为20~30℃,置于水中时间为3~7min。
9.根据权利要求1所述三维蓬松多孔支架的制备方法,其特征在于,步骤S4所述冷冻方式为液氮冷冻,冷冻时间为10~20 min。
10.根据权利要求1所述三维蓬松多孔支架的制备方法,其特征在于,步骤S5所述干燥为冷冻干燥,干燥时间为12~36h。
CN201810891406.1A 2018-08-07 2018-08-07 一种三维蓬松多孔支架的制备方法 Active CN108893872B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810891406.1A CN108893872B (zh) 2018-08-07 2018-08-07 一种三维蓬松多孔支架的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810891406.1A CN108893872B (zh) 2018-08-07 2018-08-07 一种三维蓬松多孔支架的制备方法

Publications (2)

Publication Number Publication Date
CN108893872A true CN108893872A (zh) 2018-11-27
CN108893872B CN108893872B (zh) 2021-11-09

Family

ID=64353434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810891406.1A Active CN108893872B (zh) 2018-08-07 2018-08-07 一种三维蓬松多孔支架的制备方法

Country Status (1)

Country Link
CN (1) CN108893872B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110935065A (zh) * 2019-12-04 2020-03-31 东华大学 一种大孔蓬松纤维基组织工程支架及其制备方法
CN111501110A (zh) * 2020-04-16 2020-08-07 西北工业大学 一种大孔径静电纺丝纳米纤维材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101002963A (zh) * 2006-12-31 2007-07-25 武汉工程大学 微孔双连续结构的多孔支架材料的制备方法
WO2008130068A1 (en) * 2007-04-23 2008-10-30 Modern Cell & Tissue Technologies Inc. Method for preparing a porous polymer scaffold using dry ice
CN102383267A (zh) * 2011-07-22 2012-03-21 北京化工大学 冻干法制备天然高分子基纳米纤维膜
CN102813562A (zh) * 2011-06-10 2012-12-12 冯淑芹 三维大孔径纳米级纤维支架与制备方法
CN104491932A (zh) * 2014-12-04 2015-04-08 上海工程技术大学 核/壳结构载药纳米防粘连膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101002963A (zh) * 2006-12-31 2007-07-25 武汉工程大学 微孔双连续结构的多孔支架材料的制备方法
WO2008130068A1 (en) * 2007-04-23 2008-10-30 Modern Cell & Tissue Technologies Inc. Method for preparing a porous polymer scaffold using dry ice
CN102813562A (zh) * 2011-06-10 2012-12-12 冯淑芹 三维大孔径纳米级纤维支架与制备方法
CN102383267A (zh) * 2011-07-22 2012-03-21 北京化工大学 冻干法制备天然高分子基纳米纤维膜
CN104491932A (zh) * 2014-12-04 2015-04-08 上海工程技术大学 核/壳结构载药纳米防粘连膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAVID J. MOONEY,DANIEL F. BALDWIN,NAM P. SUH,JOSEPH P. VACANTI,R: "Novel approach to fabricate porous sponges of poly(d,l-lactic-co-glycolic acid) without the use of organic solvents", 《BIOMATERIALS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110935065A (zh) * 2019-12-04 2020-03-31 东华大学 一种大孔蓬松纤维基组织工程支架及其制备方法
CN111501110A (zh) * 2020-04-16 2020-08-07 西北工业大学 一种大孔径静电纺丝纳米纤维材料的制备方法

Also Published As

Publication number Publication date
CN108893872B (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
Moroni et al. 3D fiber‐deposited electrospun integrated scaffolds enhance cartilage tissue formation
Rodríguez et al. Electrospinning cellulosic nanofibers for biomedical applications: structure and in vitro biocompatibility
CN107205955B (zh) 纳米纤维结构及其合成方法和用途
Khalf et al. Cellulose acetate core–shell structured electrospun fiber: fabrication and characterization
CN107715174B (zh) 一种含微孔隙和纳米纤维复合结构的仿生组织工程支架及其制备方法
CN111000751B (zh) 一种固态面膜及其制备方法
Zulkifli et al. Nanostructured materials from hydroxyethyl cellulose for skin tissue engineering
KR101260208B1 (ko) 상분리법을 이용한 나노섬유 구조 생체고분자의 제조방법
Tornello et al. Structural characterization of electrospun micro/nanofibrous scaffolds by liquid extrusion porosimetry: A comparison with other techniques
JP4354996B2 (ja) リン脂質を含有する繊維構造体
Rodrigues et al. Low-cost hybrid scaffolds based on polyurethane and gelatin
CN108893872A (zh) 一种三维蓬松多孔支架的制备方法
Zhou et al. Core–sheath wet electrospinning of nanoporous polycaprolactone microtubes to mimic fenestrated capillaries
Rafiq et al. Improvisations to electrospinning techniques and ultrasonication process to nanofibers for high porosity: Ideal for cell infiltration and tissue integration
JP4383763B2 (ja) 細胞培養基材およびその製造方法
CN109999222B (zh) 基于聚羟基脂肪酸酯/海藻酸钠电纺纳米纤维的神经导管材料的制备方法
Sa’adon et al. Fabrication of Dual Layer Polyvinyl Alcohol Transdermal Patch: Effect of Freezing-Thawing Cycles on Morphological and Swelling Ability
Lee et al. Facile pore structure control of poly (ε-caprolactone) nano-fibrous scaffold by salt-dispenser aided electrospinning
CN113929957B (zh) 一种多孔气凝胶支架及其制备方法与应用
CN113476653B (zh) 原位成纤-粒子沥滤法以制备纤维构筑的多孔组织工程支架的方法
CN106377798B (zh) 一种抑制纤维化的生物可降解纳米纱及其制备和应用
KR20120036218A (ko) 상분리법을 이용한 나노섬유 구조 생체고분자의 제조방법
CN114681678B (zh) 纳米纤维海绵及其制备方法
Qi et al. Biomimic tubulose scaffolds with multilayer prepared by electrospinning for tissue engineering
TWI811826B (zh) 細胞冷凍保存用之中空絲膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220318

Address after: 215000 No. 1, zone 5, No. 20, Datong Road, high tech Zone, Suzhou, Jiangsu (No. 11, Zone C, phase III of export processing zone)

Patentee after: Suzhou Shensai New Materials Co.,Ltd.

Address before: No. 88, Taishan Road, Tianyuan District, Zhuzhou City, Hunan Province, 412007

Patentee before: HUNAN University OF TECHNOLOGY

TR01 Transfer of patent right