CN108886071A - 硒光电倍增管及其制造方法 - Google Patents

硒光电倍增管及其制造方法 Download PDF

Info

Publication number
CN108886071A
CN108886071A CN201780015816.3A CN201780015816A CN108886071A CN 108886071 A CN108886071 A CN 108886071A CN 201780015816 A CN201780015816 A CN 201780015816A CN 108886071 A CN108886071 A CN 108886071A
Authority
CN
China
Prior art keywords
photomultiplier tube
grid
tube according
avalanche
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780015816.3A
Other languages
English (en)
Other versions
CN108886071B (zh
Inventor
阿米尔侯赛因·戈登
赵伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Foundation of State University of New York
Original Assignee
Research Foundation of State University of New York
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Foundation of State University of New York filed Critical Research Foundation of State University of New York
Publication of CN108886071A publication Critical patent/CN108886071A/zh
Application granted granted Critical
Publication of CN108886071B publication Critical patent/CN108886071B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/085Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors the device being sensitive to very short wavelength, e.g. X-ray, Gamma-rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)

Abstract

提供一种场成形多井光电倍增管及其制造的方法。光电倍增管包括场成形多井雪崩探测器,包括下绝缘体、a‑Se光电导层和上绝缘体。该a‑Se光电导层位于下绝缘体和上绝缘体之间。沿光电倍增管的长度设置光相互作用区域、雪崩区域和收集区域,并且光相互作用区域和收集区域位于雪崩区域的相对侧。

Description

硒光电倍增管及其制造方法
优先权
本申请要求于2016年1月7日向美国专利商标局提交的美国临时专利申请No.62/275,927的优先权,其全部内容通过引用并入本申请。
技术领域
本发明通常涉及固态辐射成像探测器领域,尤其涉及具有场成形的多井探测器结构的非晶硒辐射探测器。
背景技术
核医学领域及其在诊断成像中的应用正在快速增长,并且正在研究使用单元件或像素阵列探测器的形式的固态光电倍增管,产生类似于传统光电倍增管(PMT)的性能特征。固态技术的优点是坚固耐用、尺寸紧凑、对磁场不敏感。到目前为止,从雪崩光电二极管(APD)阵列构建的硅光电倍增管(SiPM)似乎是正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT)成像中替代PMT的唯一候选者,并迅速发展。然而,与PMT相比,SiPM不以线性模式运行,并且光子探测效率低、面积小、成本高、均匀性差且产率低。
为了实现类似于PMT大约106的雪崩增益(gav),SiPM在高于击穿的非线性盖革模式下运行,这导致光学串扰。对于线性模式器件的高增益APD,由于碰撞电离引起的雪崩倍增过程是随机的并且产生过量噪声。
随着倍增因子(M)在APD中通过升高电场(F)而增加,雪崩增益的波动逐渐变得更差。考虑到在实际半导体材料中,单个载流子倍增的理想情况很少,并且电子和空穴都能够产生碰撞电离[1],M对F的斜率是两个载流子电离率(k)之比的强函数,其中1≤k<0。晶体硅中的高k值有助于APD和SiPM的均匀性和产率问题。先前为影印机开发的非晶硒(a-Se)是该准则的唯一例外。
与结晶固体相比,a-Se容易在大面积上以低得多的成本均匀生产,并且a-Se是在高场下产生雪崩的唯一非晶材料。这种碰撞电离过程的关键特征在于只有空穴成为热载流子并经历雪崩倍增。因此,雪崩硒器件是具有非常低k值的线性模式器件。在商业上,a-Se中的雪崩增益使得能够开发第一个比人类视觉具有更高的灵敏度的光学相机,并且,该光学相机例如能够捕获诸如极光和日食的天文现象[2]。a-Se在蓝色波长下具有~90%的探测效率,这使其能够完美耦合到发射蓝光的闪烁体上,用于高能探测器辐射探测。a-Se是室温半导体,即使在高场下也具有宽带隙和超低漏电流。
直接转换型a-Se的FPD的限制包括由于电子噪声导致的低剂量成像性能降低,因为在10V/微米时,在a-Se中产生电子-空穴对所需的能量为50eV。尽管已经研究了具有更高转换的其他光电导材料,但由于电荷俘获和制造问题,直接转换型a-Se的FPD仍远未商业化。通过使电场增加到高于30V/微米,即在1000微米层上为30,000V,可能改善a-Se的转换。然而,这种电场增加对于可靠的探测器构造和运行极具挑战性,并且是不切实际的。
由于低载流子迁移率和越渡时间限制的脉冲响应导致时间分辨率低且高能辐射转换为电荷的转换增益低,非晶固体即无序的非晶固体作为光子计数模式下的可行的辐射成像探测器已被排除。已经提议了具有分开的吸收区域和雪崩区域的直接转换a-Se层,但是重大障碍阻碍了具有分开吸收区域和探测器雪崩区域的直接转换a-Se层的实际实施。
已经提出了具有Frisch栅的单极固态探测器[11-13]。然而,这种探测器结构对于直接转换雪崩增益是不实用的,因为井中的最高电场在半导体和像素电极之间的界面处发展,导致了大电荷注入引起探测器的高暗电流和对探测器潜在的不可逆转的损坏。
已经使用高粒度微观结构多井结构,即多井固态探测器(MWSD)制造了单极时间差分(UTD)固态探测器。还提出了基于UTD电荷感应和雪崩倍增增益的垂直探测器结构,即场成形多井雪崩探测器(SWAD)和纳米电极多井高增益雪崩冲击光电探测器(NEW-HARP)[5-6]。
发明内容
本文提供了一种多井硒探测器及其制造方法,其克服了常规系统的缺点,其改善了由光生载流子包的扩散所设定的信号上升时间。
因此,本发明的各方面处理了上述问题和缺点,并提供了下述优点。本发明的一个方面提供了一种单载流子固态光电倍增管器件结构,其使用非晶硒(a-Se)作为光电导材料,当该材料与闪烁晶体耦合时,其具有间接的X-射线和伽马射线探测能力。
本发明的一个方面提供了一种具有场成形多井雪崩探测器的光电倍增管,包括下绝缘体;a-Se光电导层;和上绝缘体。a-Se光电导层位于下绝缘体和上绝缘体之间。沿光电倍增管的长度设置光相互作用区域、雪崩区域和收集区域,并且光相互作用区域和收集区域位于雪崩区域的相对侧。
本发明的另一方面提供一种具有场成形多井雪崩探测器的光电倍增管,包括绝缘体、与绝缘体相邻的a-Se光电导层、光相互作用区域、雪崩区域和收集区域。光相互作用区域、雪崩区域和收集区域沿光电倍增管的长度设置,光相互作用区域和收集区域位于雪崩区域的相对侧。
附图说明
根据下面结合附图的详细描述,本发明的某些实施例的上述方面和其他方面、特征和优点将更加明显,其中:
图1是根据本发明的实施例的多井硒光电倍增管(Se-PM)的剖视图;
图2示出了图1中的Se-PM中的场强;
图3是根据本发明另一实施例的多井Se-PM的剖视图;
图4示出了图3的Se-PM中的场强;
图5是示出本发明的加权电势相对距离的曲线图;
图6(a)是本发明的场电压相对距离的曲线图;
图6(b)是本发明的增益相对距离的曲线图。
具体实施方式
下面将参考附图对本发明的某些实施例进行详细描述。在描述本发明时,为了清楚理解本发明的概念,省略了对本领域已知的相关函数或结构的说明,以避免不必要的细节模糊本发明。
本发明公开了一种固态雪崩辐射探测器及其构建方法,使用非晶材料作为光电导层。固态雪崩辐射探测器基于场成形,通过在多个低场区域之间使高场雪崩区域局域化,改进了Sauli的器件[7],Lee等人的美国专利No.6,437,339、A.H.Goldan等人的美国专利No.8,129,688,A.H.Goldan等人的公开号No.2016/0087113A1且美国专利申请号No.14,888,879的美国专利、以及A.H.Goldan等人的公开号No.2015/0171232A1且美国专利申请号No.14/414,607的美国专利,这些专利的每一个的内容通过引用并入本申请。
图1是根据本发明的实施例的多井Se-PM的剖视图。图2示出了图1中的Se-PM在运行期间的场强。
如图1和图2所示,光电倍增管器件设置有级联的横向即水平SWAD结构100、下绝缘体112、a-Se光电导层130和上绝缘体114。a-Se光电导层130位于下绝缘体112和上绝缘体114之间。电介质可以与绝缘体互换。沿着级联的横向SWAD结构100的长度,提供光相互作用区域140、雪崩区域150和收集区域180。光相互作用区域140和收集区域180与雪崩区域相邻并位于雪崩区域的相对侧上。
雪崩区域150在纵向方向上,即沿水平取向,通过光刻法形成,而不是像常规器件那样通过垂直膜厚度形成。通过光刻法限定雪崩区域150,创建了稳定、可靠并可重复的探测器架构。
光相互作用区域140具有上部即前部光学窗口141和下部即后部光学窗口142,用于从级联横向SWAD结构100的上方和下方分别输入第一光144和第二光146。
高压源149设置在光相互作用区域140的末端,收集器182设置在收集区域180的末端,且高压源149和收集器182设置在级联横向SWAD结构100的相对水平端部上。
a-Se光电导层130位于下绝缘体112和上绝缘体114之间。优选地,下绝缘体112为聚酰亚胺,优选地,上绝缘体114为化学气相沉积的聚(对二甲苯)聚合物,其提供防潮屏障和介电屏障,例如,派瑞林(Parylene)。下绝缘体112位于衬底110附近并在其上方,优选地,衬底110是玻璃衬底。
沿着级联横向SWAD结构100的雪崩区域150的水平长度以预定间隔设置多个栅152,154,156,158,即横向Frisch栅,多个栅152,154,156,158中的每个栅设置在距多个栅152,154,156,158中的相邻另一栅的一个或多个预定距离处。
在图1的多井Se-PM中,多个栅中的每个栅具有相对的第一部分和第二部分。也就是说,栅152包括分别形成在上绝缘体114和下绝缘体112上的第一部分152a和第二部分152b。栅154包括第一部分154a和第二部分154b,栅156包括第一部分156a和第二部分156b,并且栅158包括第一部分156a和第二部分156b,这些部分类似地定位。栅极能够形成在相应的绝缘体中或绝缘体上。由于电场低,栅极不需要封装在绝缘体中。
通过偏置多个栅152,154,156,158中的每个栅的电极来创建高场区域,从而实现多级雪崩增益。相应地,随着所有栅极都被电介质/绝缘体封装,实际的Se-PM设置有绝缘阻挡层,其消除了a-Se内部的场热点的形成,并且还消除了来自金属到半导体的电荷注入。
图2示出了在多个栅中的各个栅之间形成的四个放大级172,174,176,178。图2示出了电压变化,a-Se内没有场热点。上、下光学窗口141、142与雪崩区域150的总尺寸的比率增加使放大级引起的填充因子减小,代价是降低时间分辨率。
减少栅数量会降低增益。或者,增加栅数量提供相应的增益增加。通过增加栅数量能够获得本质无限的增益。因为通过光刻在水平取向添加栅,能提供增益而不增加垂直厚度。
图3是根据本发明另一实施例的多井Se-PM的剖视图。图4示出了图3的Se-PM运行期间的场强。
如图3和图4所示,级联横向SWAD结构300设置有位于相互作用区域340中的多个栅352、354、356、358,在光相互作用区域340中具有多个高压分压器349a、349b、349c、349d。多个栅352、354、356、358仅位于下绝缘体312上。收集区域380设置有收集器382。图3的其他组件对应于对图1的操作。为了简洁,这里不再重复对其描述。
图4示出了使高场雪崩区域局域化在栅352和栅354之间的增益级372中、以及在栅354和栅356之间的增益级374中、在栅356和栅358之间的增益级376中导致横向SWAD的高斯电场成形;从而将雪崩倍增限制在栅平面之间并消除来自金属电极的电荷注入。这种水平多级场成形实现了单级垂直雪崩器件无法实现的增益水平。
图3和4示出了Se-PM的加权电势分布,横向SWAD的栅在紧邻收集器处提供了极强的近场效应。仅当雪崩空穴漂移通过最终栅极并到达收集器时,才能由读出电子器件感应和感测信号,如图4所示。因此,近似理想的UTD电荷感测仅在电荷云的空间宽度上对探测器的时间分辨率提供物理限制。
如图4所示,在栅352的最靠近增益级372的一侧上、在栅354的靠近增益级374的一侧上、在栅356的两侧、以及栅358最靠近增益级378的一侧上形成热点。
图5是示出本发明加权电势相对于距离的曲线图。图5示出了在本发明的水平光电倍增管运行期间仅空穴电荷收集的加权电势分布。
图6(a)是本发明的使用具有四个增益级的横向SWAD的级联高斯场成形区域的场电压相对距离的曲线图。图6(b)是本发明的增益与距离的图,示出了对于n=4的Se-PM,在~106[V/V]的模拟雪崩增益gav
虽然已经参考本发明的某些方面示出和描述了本发明,但是本领域技术人员应当理解的是,在不背离本发明所附权利要求及其等同物所限定的精神和范围的情况下,可以在形式和细节上进行各种改变。
参考文献
[1]P.P.Webb,R.J.Mclntyre,and J.Conrad,RCA review 35,p.234(1974).
[2]H.Shimamoto,T.Yamashita et al.,IEEE Micro 31,p.51(2011).
[3]A.H.Goldan,O.Tousignant et al.,Appl.Phys.Lett.101,p.213503(2012).
[4]A.H.Goldan,J.A.Rowlands,O.Tousignant et al.,J.Appl.Phys.1 13(2013).
[5]A.H.Goldan and W.Zhao,Med.Phys.40,p.010702(2013).
[6]A.H.Goldan,J.A.Rowlands,M.Lu,and W.Zhao,Proc.Conf.Rec.IEEE NSS/MICN32-4,Seattle,WA(2014).
[7]F.Sauli,GEM:A new concept for electron amplification in gasdetectors.Nucl.Instr.and Meth.A,386(2-3):531-534,1997.

Claims (20)

1.一种具有场成形多井雪崩探测器的光电倍增管,包括:
下绝缘体;
a-Se光电导层;和
上绝缘体,
其中,所述a-Se光电导层在所述下绝缘体和所述上绝缘体之间,
其中,沿光电倍增管的长度,设置光相互作用区域、雪崩区域和收集区域,并且
其中光相互作用区域和收集区域位于雪崩区域的相对侧。
2.根据权利要求1所述的光电倍增管,其特征在于,所述a-Se光电导层位于所述下绝缘体和所述上绝缘体之间。
3.根据权利要求1所述的光电倍增管,其特征在于,所述雪崩区域以水平取向形成,并且
其中所述a-Se光电导层和所述上绝缘体以垂直取向形成在下绝缘体上。
4.根据权利要求1所述的光电倍增管,其特征在于,所述雪崩区域通过光刻形成。
5.根据权利要求1所述的光电倍增管,其特征在于,所述光相互作用区域包括上部光学窗口和下部光学窗口,
其中上部光学窗口设置为用于从探测器上方输入第一光,并且
其中下部光学窗口设置为用于从检测器下方输入第二光。
6.根据权利要求1所述的光电倍增管,还包括:
位于光相互作用区域末端的高压源;和
位于收集区域末端的收集器,
其中所述高压源和所述收集器位于所述探测器的相对水平端上,以在所述高压源和所述收集器之间形成电场。
7.根据权利要求1所述的光电倍增管,还包括沿雪崩区域的水平长度以预定间隔定位的多个栅。
8.根据权利要求7所述的光电倍增管,其特征在于,所述多个栅中的每个栅设置在距所述多个栅中的相邻另一栅的预定距离处。
9.根据权利要求7所述的光电倍增管,其特征在于,所述多个栅形成多个横向Frisch栅,其间具有多个放大级。
10.根据权利要求7所述的光电倍增管,其特征在于,偏置所述多个栅以产生高场区域,以提供多级雪崩增益,所述多级雪崩增益消除了a-Se内的场热点的形成,并且消除了来自高场金属-半导体界面的电荷注入。
11.根据权利要求10所述的光电倍增管,其特征在于,所述多级雪崩增益被限制在所述多个栅的栅平面之间,并且消除了来自金属电极的电荷注入。
12.一种具有场成形多井雪崩探测器的光电倍增管,包括:
绝缘体;
与绝缘体相邻的a-Se光电导层;
光相互作用区域;
雪崩区域;以及
收集区域,
其中光相互作用区域、雪崩区域和收集区域沿光电倍增管的长度设置,并且
其中光相互作用区和收集区位于雪崩区域的相对侧。
13.根据权利要求12所述的光电倍增管,其特征在于,所述雪崩区域以水平取向形成,并且所述a-Se光电导层以垂直取向形成在下绝缘体上。
14.根据权利要求12所述的光电倍增管,其特征在于,所述雪崩区域通过光刻形成。
15.根据权利要求12所述的光电倍增管,其特征在于,所述光相互作用区域包括设置为用于输入待测光的光学窗口。
16.根据权利要求12所述的光电倍增管,还包括:
位于光相互作用区域的多个高压分压器;
位于收集区域的末端的收集器。
17.根据权利要求12所述的光电倍增管,还包括沿着雪崩区域的水平长度的多个栅。
18.根据权利要求17所述的光电倍增管,其特征在于,所述多个栅中的每个栅设置在距所述多个栅中的相邻另一栅的预定距离处。
19.根据权利要求17所述的光电倍增管,其特征在于,所述多个栅形成多个横向栅,其间具有多个放大级,并且
其中多级雪崩增益被限制在多个栅之间,并且消除了来自金属电极的电荷注入。
20.根据权利要求17所述的光电倍增管,其特征在于,将所述多个栅偏置来产生高场区域,以提供多级雪崩增益,所述多级雪崩增益消除了a-Se内的场热点的形成,并消除了来自高场的金属-半导体界面的电荷注入。
CN201780015816.3A 2016-01-07 2017-01-09 硒光电倍增管及其制造方法 Active CN108886071B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662275927P 2016-01-07 2016-01-07
US62/275,927 2016-01-07
PCT/US2017/012714 WO2017120583A1 (en) 2016-01-07 2017-01-09 Selenium photomultiplier and method for fabrication thereof

Publications (2)

Publication Number Publication Date
CN108886071A true CN108886071A (zh) 2018-11-23
CN108886071B CN108886071B (zh) 2022-04-19

Family

ID=59274054

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780015816.3A Active CN108886071B (zh) 2016-01-07 2017-01-09 硒光电倍增管及其制造方法

Country Status (9)

Country Link
US (3) US10825939B2 (zh)
EP (1) EP3400616B1 (zh)
JP (1) JP6921858B2 (zh)
KR (1) KR102232038B1 (zh)
CN (1) CN108886071B (zh)
AU (1) AU2017205654B9 (zh)
CA (1) CA3010845C (zh)
ES (1) ES2858089T3 (zh)
WO (1) WO2017120583A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6921858B2 (ja) 2016-01-07 2021-08-18 ザ リサーチ ファウンデイション フォー ザ ステイト ユニヴァーシティ オブ ニューヨーク セレン光電子増倍管及びその製作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7256402B1 (en) * 2004-04-15 2007-08-14 Denny Lee Flat panel X-ray imager with a grid structure
CN101038857A (zh) * 2006-03-03 2007-09-19 株式会社半导体能源研究所 制造半导体装置的方法
CN101405618A (zh) * 2006-04-04 2009-04-08 株式会社岛津制作所 放射线检测器
CN101669186A (zh) * 2007-04-26 2010-03-10 松下电器产业株式会社 X射线摄像设备及x射线摄影装置
US20120038013A1 (en) * 2009-04-23 2012-02-16 Karim Karim S Method and apparatus for a lateral radiation detector

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023058B1 (zh) 1970-12-23 1975-08-05
JPS5250165U (zh) 1975-10-08 1977-04-09
US4586068A (en) 1983-10-07 1986-04-29 Rockwell International Corporation Solid state photomultiplier
JPS6159723U (zh) 1984-09-25 1986-04-22
US5146296A (en) 1987-12-03 1992-09-08 Xsirius Photonics, Inc. Devices for detecting and/or imaging single photoelectron
WO1992009109A1 (en) 1990-11-08 1992-05-29 Xsirius Scientific Corporation Silicon avalanche photodiode array
US5475227A (en) 1992-12-17 1995-12-12 Intevac, Inc. Hybrid photomultiplier tube with ion deflector
US5326978A (en) 1992-12-17 1994-07-05 Intevac, Inc. Focused electron-bombarded detector
JPH07320681A (ja) 1993-07-14 1995-12-08 Intevac Inc 高感度ハイブリッド・フォトマルチプライア・チューブ
JP2945253B2 (ja) 1993-10-19 1999-09-06 シャープ株式会社 音声切替装置
AU1859797A (en) 1996-02-12 1997-08-28 University Of Akron, The Multimedia detectors for medical imaging
US6204087B1 (en) 1997-02-07 2001-03-20 University Of Hawai'i Fabrication of three-dimensional architecture for solid state radiation detectors
US6011265A (en) 1997-10-22 2000-01-04 European Organization For Nuclear Research Radiation detector of very high performance
EP0948803B1 (en) 1997-10-22 2006-11-08 European Organization for Nuclear Research Radiation detector of very high performance.
ATE249094T1 (de) 1998-06-11 2003-09-15 Petr Viscor Flacher elektronenemitter
FR2790100B1 (fr) 1999-02-24 2001-04-13 Commissariat Energie Atomique Detecteur bidimensionnel de rayonnements ionisants et procede de fabrication de ce detecteur
US6492657B1 (en) 2000-01-27 2002-12-10 Burle Technologies, Inc. Integrated semiconductor microchannel plate and planar diode electron flux amplifier and collector
FR2827966B1 (fr) 2001-07-26 2003-09-12 Commissariat Energie Atomique Detecteur de rayonnements ionisants, a lame solide de conversion des rayonnements, et procede de fabrication de ce detecteur
CA2396325C (en) 2001-09-06 2010-03-30 Sumitomo Electric Industries, Ltd. Zn1-xmgxsyse1-y pin photodiode and zn1-xmgxsyse1-y avalanche-photodiode
US6828730B2 (en) 2002-11-27 2004-12-07 Board Of Trustees Of The University Of Illinois Microdischarge photodetectors
US7332726B2 (en) 2004-06-19 2008-02-19 Integrated Sensors, Llc Plasma panel based ionizing radiation detector
WO2006091741A2 (en) 2005-02-23 2006-08-31 Georgia Tech Research Corporation Edge viewing photodetector
EP1891464A4 (en) 2005-06-16 2013-02-13 Integrated Sensors Llc IONIZING PHOTONIC RADIATION DETECTOR BASED ON A PLASMA SCREEN
JP4819437B2 (ja) * 2005-08-12 2011-11-24 浜松ホトニクス株式会社 光電子増倍管
CN101379615B (zh) 2006-02-01 2013-06-12 皇家飞利浦电子股份有限公司 盖革式雪崩光电二极管
WO2007098493A2 (en) 2006-02-22 2007-08-30 The Regents Of The University Of California Large-area flat-panel photon detector with hemispherical pixels and full area coverage
US7928317B2 (en) 2006-06-05 2011-04-19 Translucent, Inc. Thin film solar cell
US7683340B2 (en) 2006-10-28 2010-03-23 Integrated Sensors, Llc Plasma panel based radiation detector
GB2469961B (en) 2007-02-27 2011-05-18 Toshiba Res Europ Ltd A photon detector
WO2008140627A1 (en) 2007-04-18 2008-11-20 Translucent Photonics, Inc. Thin film solar cell
US7652257B2 (en) 2007-06-15 2010-01-26 General Electric Company Structure of a solid state photomultiplier
JP5102580B2 (ja) 2007-10-18 2012-12-19 株式会社日立ハイテクノロジーズ 荷電粒子線応用装置
US8461537B2 (en) 2008-01-15 2013-06-11 Koninklijke Philips Electronics N.V. Solid state radiation detector elements including magnetic hard silicon photomultipliers
ITTO20080045A1 (it) 2008-01-18 2009-07-19 St Microelectronics Srl Schiera di fotodiodi operanti in modalita' geiger reciprocamente isolati e relativo procedimento di fabbricazione
US20100108893A1 (en) 2008-11-04 2010-05-06 Array Optronix, Inc. Devices and Methods for Ultra Thin Photodiode Arrays on Bonded Supports
IT1392366B1 (it) 2008-12-17 2012-02-28 St Microelectronics Rousset Fotodiodo operante in modalita' geiger con resistore di soppressione integrato e controllabile, schiera di fotodiodi e relativo procedimento di fabbricazione
US8669533B2 (en) 2009-10-01 2014-03-11 Vladimir Bashkirov Ion induced impact ionization detector and uses thereof
KR101127982B1 (ko) 2010-05-28 2012-03-29 한국과학기술원 배면 입사 구조를 갖는 실리콘 광전자증배관, 그 제조방법 및 이를 이용한 방사선 검출기
GB201014843D0 (en) 2010-09-08 2010-10-20 Univ Edinburgh Single photon avalanche diode for CMOS circuits
WO2012034178A1 (en) 2010-09-17 2012-03-22 University Of Wollongong Radiation detector method and apparatus
KR101711087B1 (ko) 2010-12-07 2017-02-28 한국전자통신연구원 실리콘 포토멀티플라이어 및 그 제조 방법
KR101648023B1 (ko) 2010-12-21 2016-08-12 한국전자통신연구원 트렌치 분리형 실리콘 포토멀티플라이어
EP2518755B1 (en) 2011-04-26 2014-10-15 FEI Company In-column detector for particle-optical column
DE102011052738A1 (de) 2011-08-16 2013-02-21 Leica Microsystems Cms Gmbh Detektorvorrichtung
US8975715B2 (en) 2011-09-14 2015-03-10 Infineon Technologies Ag Photodetector and method for manufacturing the same
US8872159B2 (en) 2011-09-29 2014-10-28 The United States Of America, As Represented By The Secretary Of The Navy Graphene on semiconductor detector
US10197501B2 (en) 2011-12-12 2019-02-05 Kla-Tencor Corporation Electron-bombarded charge-coupled device and inspection systems using EBCCD detectors
US9553220B2 (en) * 2012-07-19 2017-01-24 The Research Foundation For The State University Of New York Field-shaping multi-well avalanche detector for direct conversion amorphous selenium
DE102012214690B4 (de) 2012-08-17 2015-12-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hybrider Detektor zum Detektieren elektromagnetischer Strahlung und Verfahren zu seiner Herstellung
JP5925711B2 (ja) 2013-02-20 2016-05-25 浜松ホトニクス株式会社 検出器、pet装置及びx線ct装置
EP2987186B1 (en) 2013-04-19 2020-07-01 Lightspin Technologies, Inc. Integrated avalanche photodiode arrays
WO2014194071A1 (en) * 2013-05-29 2014-12-04 The Research Foundation For The State University Of New York Nano-electrode milti-well high-gain avalanche rushing photoconductor
US9941103B2 (en) * 2013-10-19 2018-04-10 Kla-Tencor Corporation Bias-variant photomultiplier tube
US11728356B2 (en) * 2015-05-14 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion element and imaging device
US10748730B2 (en) 2015-05-21 2020-08-18 Kla-Tencor Corporation Photocathode including field emitter array on a silicon substrate with boron layer
US10422888B1 (en) 2015-07-17 2019-09-24 Triad National Security, Llc Scintillation detectors
FR3041817B1 (fr) 2015-09-30 2017-10-13 Commissariat Energie Atomique Photodiode de type spad
WO2017120582A1 (en) 2016-01-07 2017-07-13 The Research Foundation For The State University Of New York Multi-well selenium device and method for fabrication thereof
JP6921858B2 (ja) * 2016-01-07 2021-08-18 ザ リサーチ ファウンデイション フォー ザ ステイト ユニヴァーシティ オブ ニューヨーク セレン光電子増倍管及びその製作方法
US10177267B2 (en) 2017-03-03 2019-01-08 Bolb Inc. Photodetector
US10624593B2 (en) 2017-10-04 2020-04-21 General Electric Company Systems for a photomultiplier
US10854768B2 (en) 2018-12-20 2020-12-01 Hewlett Packard Enterprise Development Lp Optoelectronic component with current deflected to high-gain paths comprising an avalanche photodiode having an absorbing region on a p-doped lateral boundary, an n-doped lateral boundary and an amplifying region
US10797194B2 (en) 2019-02-22 2020-10-06 Hewlett Packard Enterprise Development Lp Three-terminal optoelectronic component with improved matching of electric field and photocurrent density
KR20230002424A (ko) 2020-04-24 2023-01-05 소니 세미컨덕터 솔루션즈 가부시키가이샤 광 검출기 및 전자 기기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7256402B1 (en) * 2004-04-15 2007-08-14 Denny Lee Flat panel X-ray imager with a grid structure
CN101038857A (zh) * 2006-03-03 2007-09-19 株式会社半导体能源研究所 制造半导体装置的方法
CN101405618A (zh) * 2006-04-04 2009-04-08 株式会社岛津制作所 放射线检测器
CN101669186A (zh) * 2007-04-26 2010-03-10 松下电器产业株式会社 X射线摄像设备及x射线摄影装置
US20120038013A1 (en) * 2009-04-23 2012-02-16 Karim Karim S Method and apparatus for a lateral radiation detector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A. H. GOLDAN,等: "《Amorphous selenium lateral Frisch photodetector and photomultiplier for high performance medical x-ray and gamma-ray imaging applications》", 《 PROC.SPIE 7622,MEDICAL IMAGING 2010: PHYSICS OF MEDICAL IMAGING,76223R 》 *

Also Published As

Publication number Publication date
AU2017205654B9 (en) 2021-12-09
US11710798B2 (en) 2023-07-25
WO2017120583A8 (en) 2018-08-23
CA3010845C (en) 2023-09-19
US20220085222A1 (en) 2022-03-17
WO2017120583A1 (en) 2017-07-13
ES2858089T3 (es) 2021-09-29
AU2017205654B2 (en) 2021-11-18
JP6921858B2 (ja) 2021-08-18
JP2019506756A (ja) 2019-03-07
US20210028317A1 (en) 2021-01-28
EP3400616A1 (en) 2018-11-14
CA3010845A1 (en) 2017-07-13
EP3400616A4 (en) 2019-08-21
US20190027618A1 (en) 2019-01-24
KR20180092323A (ko) 2018-08-17
CN108886071B (zh) 2022-04-19
EP3400616B1 (en) 2020-12-30
AU2017205654A1 (en) 2018-08-02
US11183604B2 (en) 2021-11-23
US10825939B2 (en) 2020-11-03
KR102232038B1 (ko) 2021-03-26

Similar Documents

Publication Publication Date Title
Renker et al. Advances in solid state photon detectors
US10868202B2 (en) Method for fabrication a multi-well amorphous selenium detector
US9941428B2 (en) Nano-electrode multi-well high-gain avalanche rushing photoconductor
Fu et al. A novel CZT detector using strengthened electric field line anode
US11710798B2 (en) Selenium photomultiplier and method for fabrication thereof
D’Ascenzo et al. The Digital Silicon Photomultiplier
Goldan et al. Amorphous selenium detector utilizing a Frisch grid for photon-counting imaging applications
Jendrysik PoS (Vertex 2013) 043 Silicon Photomultiplier–Concepts, Characteristics
Bolotnikov CdZnTe position-sensitive drift gamma-ray detectors
Avella Characterisation of Silicon Photomultipliers coupled to inorganic scintillating crystals for timing applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant