CN108871552A - 一种基于声源识别的噪声监测方法与系统 - Google Patents
一种基于声源识别的噪声监测方法与系统 Download PDFInfo
- Publication number
- CN108871552A CN108871552A CN201810649429.1A CN201810649429A CN108871552A CN 108871552 A CN108871552 A CN 108871552A CN 201810649429 A CN201810649429 A CN 201810649429A CN 108871552 A CN108871552 A CN 108871552A
- Authority
- CN
- China
- Prior art keywords
- noise
- sound
- sound source
- data
- identification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H17/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
本发明提供了一种基于声源识别的噪声监测方法,包括以下步骤:S1、通过声音采集设备采集环境声;S2、利用噪声分析软件和电脑控制前端计算所采集的环境声的声学和心理声学等数据,并将其发送至声源解析模块;S3、基于声源解析模块中的声源神经网络模型和噪声等级分类模块,判断不同噪声源的噪声等级,同时根据噪声等级结果计算噪声修正值;S4、将噪声修正值与环境声级测量值进行求和,最终得到噪声声级;S5、将噪声声级发回终端控制系统。本发明的有益效果是:既反映了噪声声级的大小也考虑了不同声源所造成的主观感受差异,因此,更能真实反映噪声实际状况,有利于克服噪声监测不精准的问题。
Description
技术领域
本发明涉及噪声监测方法,尤其涉及一种基于声源识别的噪声监测方法与系统。
背景技术
噪声监测是解决城市噪声污染的基础条件,我国目前采用的噪声监测技术是根据环保部2012年发布的《环境噪声监测技术规范、城市声环境常规监测》(HJ 640—2012),根据这一技术规范监测的主要指标有,每个监测点位测量10 min的等效连续A声级Leq、累积百分声级L10、L50、L90、Lmax、Lmin和标准偏差(SD)。监测时间为昼间正常工作时段,每年监测1次。从监测的方式和指标来看,目前的噪声监测数据不能完全反映噪声环境实际情况。这主要是因为现行噪声监测指标主要是噪声环境的声级数据,以环境声强弱来反映噪声情况,环境声越高越强,则指代噪声污染越严重。然而事实证明,这样的噪声判断指标存在一定误差,特别是在自然声较多的区域,噪声声级仅是噪声污染判断的一个指标,而声源对噪声的影响不能忽视。当前已有的噪声源监测技术是对噪声信号的识别,识别的前提是认定所识别的声音为噪声。主要通过对声音信号模式的识别来判断噪声所处的方位,确定噪声污染的来源。这样的识别技术主要是针对已认定为噪声的特定场所的噪声识别,采用的方法是分析噪声的物理信号特征。目前很多场所噪声不能判断其发生场所,导致噪声靶向不明确。
噪声是对声环境达到负面影响时的描述。如同视觉环境一样,声环境是也一种景观环境,正因如此,加拿大作曲家默里•沙弗率先提出了声景概念,改变了国际社会对环境噪声的认识。在声景理念下,欧盟、日本等国展开了大量研究,以声景标准来讨论噪声问题,其中最主要的议题是不同声音带来的噪声影响。他们的研究批判了以声级单一指标来反映噪声状况的错误,并通过对公共空间、生态环境的大量研究,指出声音类别、场所环境、受声者主体等因素对噪声的影响。虽然声景研究填补了以声级反映噪声的缺陷,但目前的状况是“一事一议”。针对生态性较高的场所,以项目研究的方式明确其噪声环境状况,提出保护措施。这样的噪声监测与管理方式过于繁琐,缺少指标性描述,不适于我国快速城市化发展面临的问题。
由于人类社会进入工业化时代以后,城市逐步成为人类社会最主要也是最大的人居环境,由此开启了以交通噪声为主的声环境时代。基于工业时代发展起来的声环境监测技术基本针对交通噪声,因此以声级指数作为噪声指数来发表。然而实际情况是声级指标不等同于噪声指标,噪声是指人们对不愿意听到的声音过高时产生的身心负担。由于机械声是工业时代城市的主要环境声源,一般认为声级越大、声环境越差、噪声污染越严重。然而,随着城市向绿色、生态方向发展,城市中越来越多地出现了自然声以及人们喜闻乐见的生活声,以等效连续A声级Leq作为噪声级的监测方法,没有区分不同声源带来的影响,特别不适宜生态城市环境中存在较多的生态声音的状况。
发明内容
为了解决现有技术中的问题,本发明提供了一种基于声源识别的噪声监测方法与系统。
本发明提供了一种基于声源识别的噪声监测方法,包括以下步骤:
S1、通过声音采集设备采集环境声;
S2、利用噪声分析软件和电脑控制前端计算所采集的环境声的声学和心理声学数据,并将其发送至声源解析模块;
S3、基于声源解析模块中的声源神经网络模型和噪声等级分类模块,判断不同噪声源的噪声等级,同时根据噪声等级结果计算噪声修正值;
S4、将噪声修正值与环境声级测量值进行求和,最终得到噪声声级;
S5、利用数据传输系统,将噪声声级发回终端控制系统。
本发明还提供了一种基于声源识别的噪声监测系统,包括数据采集系统、数据解析系统、数据传输系统和终端接收系统,其中,所述数据采集系统的输出端与所述数据解析系统的输入端连接,所述数据解析系统的输出端通过数据传输系统与所述终端接收系统的输入端连接。
本发明的有益效果是:通过上述方案,既反映了噪声声级大小也考虑了不同声源的噪声程度,更能反映噪声实际状况,有利于克服噪声监测不精准的问题。
附图说明
图1是本发明一种基于声源识别的噪声监测方法的声源神经网络模型示意图。
图2是本发明一种基于声源识别的噪声监测方法的声源神经网络模型示意图。
图3是本发明一种基于声源识别的噪声监测方法的噪声源等级划分示意图。
图4是本发明一种基于声源识别的噪声监测系统的示意图。
具体实施方式
下面结合附图说明及具体实施方式对本发明作进一步说明。
已有研究表明,环境声主要可以分为四大类:自然声、生活声、机械声和混合声;其中,混合声包括以上三类声音的各种混合模式。在现实世界中,混合声存在较多,即便是单类声音环境也或多或少地包含有其他类别的声音。大量研究结果表明,人们偏好自然声、厌恶机械声、对生活声保持中立(主要与受声者的主观背景和行为状态相关)。本技术发明基于已有的声景研究结果以及掌握的大量环境声实地调查数据,通过建立神经网络学习模型,发展噪声声源识别技术,并将其应用在噪声监测工作中。
图1、2表达了通过研究已获得的神经网路学习模型。由于针对不同类别声源的影响因素及其数量有所不同,图1所示模型主要用来分析影响因素较多,需要进行类别合并的声源识别;图2所示模型主要用来分析影响因素较集中,可利用大量数据直接进行神经网络学习的模型。由于自然声、生活声和机械声三类单一声源的影响因素较为明确,可采用图2神经网络模型进行声源类别判断,混合声则采用图1模型进行判断。
在神经网络判断声源类别基础上,通过主观评价实验,将环境声声源进行噪声等级划分,见图3所示。再以噪声等级对环境声声级进行校准,提出环境声的噪声等级。环境声噪声校准主要采用现有噪声评定标准,以道路交通声为主的连续等效声级为噪声级,其他声源产生的噪声效果与道路交通声进行对比,通过实验室条件下的主观评价实验制定调整等级,最终给出不同噪声源的噪声值。
本发明提供的一种基于声源识别的噪声监测方法,包括:(1)利用现有通用的声音采集设备采集环境声;(2)利用噪声分析软件和电脑控制前端计算所采集的环境声的声学和心理声学数据,并将其发送至声源解析模块;(3)基于声源解析模块中的声源神经网络模型和噪声等级分类模块,判断不同噪声源的噪声等级,同时根据噪声等级结果计算噪声修正值(4)根据噪声等级结果计算噪声修正值,同时将修正值与环境声级测量值进行求和,最终得到噪声声级,见如下公式:
F=x+y (4)
F——噪声等级值;
x——噪声等级修正值;
y——环境声级测量值。
(5)利用数据传输系统,将噪声声级发回终端控制系统,从而实现对城市噪声环境的有效管理和决策。
如图4所示,本发明提供的一种基于声源识别的噪声监测系统,包括数据采集系统1、数据解析系统2、数据传输系统3和终端接收系统4,其中,所述数据采集系统1的输出端与所述数据解析系统2的输入端连接,所述数据解析系统2的输出端通过数据传输系统3与所述终端接收系统4的输入端连接。
本发明在噪声监测中引入声源识别技术,通过对不同环境声噪声感知的研究,构建反映噪声声源特性的指标体系,在噪声监测过程中加入噪声源指标,通过神经网络识别噪声声源,发展一种基于声源识别的噪声监测技术。
本发明提供的一种基于声源识别的噪声监测方法与系统,可以改正现有噪声测量中的问题,弥补测量设备只能提供环境声级不能提供噪声级的不足。通过将声源识别计算模型结合到现有噪声测量设备上,能够提供反映真正噪声(人们不愿意听到的声音)的噪声测量值,消除当前以环境声级作为噪声声级存在的误差,使噪声测量更加科学,噪声测量设备更加精准、有效。这一发明技术将能够为健康、宁静的城市环境建设提供科学的数据测量方法;为科学地管理城市环境噪声提供有效的技术工具,使城市噪声执法做到有的放矢;还可以为城市生态环境保护建设提供有价值的技术数据。通过这一技术发明,能够提供精确的噪声测量设备,从而能够使居民更准确地了解其身处环境的噪声状况,满足人们日益增长的生活品质要求。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
Claims (2)
1.一种基于声源识别的噪声监测方法,其特征在于,包括以下步骤:
S1、通过声音采集设备采集环境声;
S2、利用噪声分析软件和电脑控制前端计算所采集的环境声的声学和心理声学数据,并将其发送至声源解析模块;
S3、基于声源解析模块中的声源神经网络模型和噪声等级分类模块,判断不同噪声源的噪声等级,同时根据噪声等级结果计算噪声修正值;
S4、将噪声修正值与环境声级测量值进行求和,最终得到噪声声级;
S5、利用数据传输系统,将噪声声级发回终端控制系统。
2.一种基于声源识别的噪声监测系统,其特征在于:包括数据采集系统、数据解析系统、数据传输系统和终端接收系统,其中,所述数据采集系统的输出端与所述数据解析系统的输入端连接,所述数据解析系统的输出端通过数据传输系统与所述终端接收系统的输入端连接。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810649429.1A CN108871552A (zh) | 2018-06-22 | 2018-06-22 | 一种基于声源识别的噪声监测方法与系统 |
PCT/CN2019/070961 WO2019242302A1 (zh) | 2018-06-22 | 2019-01-09 | 一种基于声源识别的噪声监测方法与系统 |
ZA2021/00452A ZA202100452B (en) | 2018-06-22 | 2021-01-21 | Noise monitoring method and system based on sound source identification |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810649429.1A CN108871552A (zh) | 2018-06-22 | 2018-06-22 | 一种基于声源识别的噪声监测方法与系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108871552A true CN108871552A (zh) | 2018-11-23 |
Family
ID=64340474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810649429.1A Pending CN108871552A (zh) | 2018-06-22 | 2018-06-22 | 一种基于声源识别的噪声监测方法与系统 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN108871552A (zh) |
WO (1) | WO2019242302A1 (zh) |
ZA (1) | ZA202100452B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109829490A (zh) * | 2019-01-22 | 2019-05-31 | 上海鹰瞳医疗科技有限公司 | 修正向量搜索方法、目标分类方法及设备 |
WO2019242302A1 (zh) * | 2018-06-22 | 2019-12-26 | 哈尔滨工业大学(深圳) | 一种基于声源识别的噪声监测方法与系统 |
CN110907895A (zh) * | 2019-12-05 | 2020-03-24 | 重庆商勤科技有限公司 | 噪声监测识别定位方法、系统及计算机可读存储介质 |
CN113267249A (zh) * | 2021-05-12 | 2021-08-17 | 杭州仁牧科技有限公司 | 基于大数据的多通道噪声分析系统及分析方法 |
CN114387987A (zh) * | 2021-12-31 | 2022-04-22 | 中建科技集团有限公司 | 生态噪声源的测量方法、装置、终端及存储介质 |
CN116699521A (zh) * | 2023-07-25 | 2023-09-05 | 安徽碧水环业生态科技有限公司 | 一种基于环境保护的城市噪声定位系统及其方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112612993B (zh) * | 2020-12-04 | 2023-06-23 | 天津市生态环境监测中心 | 一种声环境质量监测的评价方法 |
CN113782053B (zh) * | 2021-09-04 | 2023-09-22 | 天津大学 | 值得保护的城市声景观品质自动监测方法 |
CN115031829A (zh) * | 2022-06-06 | 2022-09-09 | 扬芯科技(深圳)有限公司 | 一种产品噪音测试方法及系统 |
CN118013707A (zh) * | 2024-01-19 | 2024-05-10 | 大连理工大学 | 道路步行空间声景舒适度的视听要素协同调控装置及方法 |
CN118395843B (zh) * | 2024-04-15 | 2024-09-27 | 中科海智(青岛)轨道交通研究院有限公司 | 一种道路声屏障声学设计模拟计算方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5373452A (en) * | 1988-09-02 | 1994-12-13 | Honeywell Inc. | Intangible sensor and method for making same |
CN102928071A (zh) * | 2012-10-25 | 2013-02-13 | 北京市市政工程研究院 | 基于心电指标的道路交通噪声检测系统和方法 |
CN103323532A (zh) * | 2012-03-21 | 2013-09-25 | 中国科学院声学研究所 | 一种基于心理声学参量的鱼类识别方法及系统 |
CN103471709A (zh) * | 2013-09-17 | 2013-12-25 | 吉林大学 | 乘用车车内噪声声品质预测方法 |
CN105473988A (zh) * | 2013-06-21 | 2016-04-06 | 布鲁尔及凯尔声音及振动测量公司 | 确定机动车辆的噪声源的噪声声音贡献的方法 |
CN107084851A (zh) * | 2017-04-18 | 2017-08-22 | 常州大学 | 基于统计能量流分析预测高速列车车内心理声学参数的方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7818168B1 (en) * | 2006-12-01 | 2010-10-19 | The United States Of America As Represented By The Director, National Security Agency | Method of measuring degree of enhancement to voice signal |
CN104346531B (zh) * | 2014-10-30 | 2017-02-22 | 重庆大学 | 一种基于社会力模型的医院声环境模拟系统 |
CN105513489B (zh) * | 2016-01-15 | 2018-06-29 | 上海交通大学 | 构建城市噪声地图的方法 |
CN108871552A (zh) * | 2018-06-22 | 2018-11-23 | 哈尔滨工业大学(深圳) | 一种基于声源识别的噪声监测方法与系统 |
-
2018
- 2018-06-22 CN CN201810649429.1A patent/CN108871552A/zh active Pending
-
2019
- 2019-01-09 WO PCT/CN2019/070961 patent/WO2019242302A1/zh active Application Filing
-
2021
- 2021-01-21 ZA ZA2021/00452A patent/ZA202100452B/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5373452A (en) * | 1988-09-02 | 1994-12-13 | Honeywell Inc. | Intangible sensor and method for making same |
CN103323532A (zh) * | 2012-03-21 | 2013-09-25 | 中国科学院声学研究所 | 一种基于心理声学参量的鱼类识别方法及系统 |
CN102928071A (zh) * | 2012-10-25 | 2013-02-13 | 北京市市政工程研究院 | 基于心电指标的道路交通噪声检测系统和方法 |
CN105473988A (zh) * | 2013-06-21 | 2016-04-06 | 布鲁尔及凯尔声音及振动测量公司 | 确定机动车辆的噪声源的噪声声音贡献的方法 |
CN103471709A (zh) * | 2013-09-17 | 2013-12-25 | 吉林大学 | 乘用车车内噪声声品质预测方法 |
CN107084851A (zh) * | 2017-04-18 | 2017-08-22 | 常州大学 | 基于统计能量流分析预测高速列车车内心理声学参数的方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019242302A1 (zh) * | 2018-06-22 | 2019-12-26 | 哈尔滨工业大学(深圳) | 一种基于声源识别的噪声监测方法与系统 |
CN109829490A (zh) * | 2019-01-22 | 2019-05-31 | 上海鹰瞳医疗科技有限公司 | 修正向量搜索方法、目标分类方法及设备 |
CN109829490B (zh) * | 2019-01-22 | 2022-03-22 | 上海鹰瞳医疗科技有限公司 | 修正向量搜索方法、目标分类方法及设备 |
CN110907895A (zh) * | 2019-12-05 | 2020-03-24 | 重庆商勤科技有限公司 | 噪声监测识别定位方法、系统及计算机可读存储介质 |
CN113267249A (zh) * | 2021-05-12 | 2021-08-17 | 杭州仁牧科技有限公司 | 基于大数据的多通道噪声分析系统及分析方法 |
CN114387987A (zh) * | 2021-12-31 | 2022-04-22 | 中建科技集团有限公司 | 生态噪声源的测量方法、装置、终端及存储介质 |
CN116699521A (zh) * | 2023-07-25 | 2023-09-05 | 安徽碧水环业生态科技有限公司 | 一种基于环境保护的城市噪声定位系统及其方法 |
CN116699521B (zh) * | 2023-07-25 | 2024-03-19 | 安徽碧水环业生态科技有限公司 | 一种基于环境保护的城市噪声定位系统及其方法 |
Also Published As
Publication number | Publication date |
---|---|
ZA202100452B (en) | 2022-04-28 |
WO2019242302A1 (zh) | 2019-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108871552A (zh) | 一种基于声源识别的噪声监测方法与系统 | |
CN105606499B (zh) | 悬浮颗粒物质量浓度实时检测装置及测量方法 | |
CN111582718B (zh) | 基于网络层次分析法的电缆通道火灾风险评估方法及装置 | |
CN109146402A (zh) | 一种软件开发供应商交付质量的评估方法 | |
CN109325263A (zh) | 基于神经网络的桁架桥梁损伤位置与损伤程度识别方法 | |
CN109345101A (zh) | 基于综合评价分析法的教育质量评价分析方法 | |
CN106682768A (zh) | 一种答题分数的预测方法、系统、终端及服务器 | |
CN104978630A (zh) | 一种智能测试方法和装置 | |
CN105976282A (zh) | 一种试题难度量化方法及系统 | |
CN103745638B (zh) | 一种按摩手法三维力学测定仪 | |
Prezelj et al. | Traffic noise modelling and measurement: Inter-laboratory comparison | |
CN108665976A (zh) | 一种儿童专注力测评系统和方法 | |
CN110123261A (zh) | 语音识别视力测试仪 | |
CN108492880A (zh) | 一种基于互联网平台的智能健康状态测量系统及评级方法 | |
CN111144436A (zh) | 基于可穿戴设备的情绪压力筛查及危机预警方法和装置 | |
CN114387987A (zh) | 生态噪声源的测量方法、装置、终端及存储介质 | |
Hillman et al. | Current diagnostics and office practice: appropriate use of objective measures of vocal function in the multidisciplinary management of voice disorders | |
CN109411092A (zh) | 基于深度学习的睑板腺共聚焦显微镜智能分析评估系统及方法 | |
CN109567746A (zh) | 一种基于信号检测论的纹理粗糙度量化评价方法 | |
CN109657722A (zh) | 基于深度学习算法的舌苔图像识别方法及系统 | |
CN104317856A (zh) | 一种词汇量的测试与评估方法 | |
Gallo et al. | The effects of urban traffic plans on noise abatement: a case study | |
CN114225354B (zh) | 一种武术训练智能分析方法、系统及存储介质 | |
KR101816441B1 (ko) | 차량의 주행 감성 평가 장치 및 방법 | |
CN108304774A (zh) | 一种评价干路绿化带特性对驾驶人视觉影响的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181123 |
|
RJ01 | Rejection of invention patent application after publication |