CN108866489A - 一种具有抗菌功能的钛合金纳米涂层及其制备方法 - Google Patents

一种具有抗菌功能的钛合金纳米涂层及其制备方法 Download PDF

Info

Publication number
CN108866489A
CN108866489A CN201710342809.6A CN201710342809A CN108866489A CN 108866489 A CN108866489 A CN 108866489A CN 201710342809 A CN201710342809 A CN 201710342809A CN 108866489 A CN108866489 A CN 108866489A
Authority
CN
China
Prior art keywords
titanium alloy
coating
nano coating
alloy nano
antibacterial functions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710342809.6A
Other languages
English (en)
Other versions
CN108866489B (zh
Inventor
任玲
彭聪
杨柯
赵彦辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201710342809.6A priority Critical patent/CN108866489B/zh
Publication of CN108866489A publication Critical patent/CN108866489A/zh
Application granted granted Critical
Publication of CN108866489B publication Critical patent/CN108866489B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明的目的在于提供一种具有抗菌功能的钛合金纳米涂层及其制备方法,其特征在于,按照质量百分比计,所述涂层的化学成分为:Cu:2‑10%;Ce:0.04‑0.1%;Ti:余量。优选范围是:Cu:4‑8%;Ce:0.06‑0.08%;Ti:余量。本发明是在基体表面形成具有抗菌功能的钛铜铈纳米涂层,使基体获得具有广谱抗菌功能涂层,该涂层在生物介质及腐蚀性溶液中具有优异的耐腐蚀性能。

Description

一种具有抗菌功能的钛合金纳米涂层及其制备方法
技术领域
本发明属于金属材料表面沉积医用纳米涂层技术领域,具体提供一种具有抗菌功能的钛合金纳米涂层及其制备方法。
背景技术
在目前的医学领域内,由金属医疗器械植入物引发的细菌感染问题已经越来越需要引起重视。据统计,美国骨科植入物相关感染的年发病率达到4.3%左右。世界卫生组织(WHO)颁布的《院内感染防治实用手册》中有关数据显示,全世界每天有超过1400万人在遭受院内感染的痛苦,其中60%的细菌感染与使用的医疗器械有关。医疗器械引发的细菌感染一旦发生就会对患者造成灾难性的后果。患者需再经历1-2次手术取出植入医疗器械并清除病灶,这给患者带来沉重的经济与精神负担,同时也会对医院和社会等造成一定的负面影响。并且,目前在医用药物中,抗生素的使用日益加重,滥用抗菌药将导致耐药菌肆虐,一旦广泛耐药发生,即使是剖腹产、髋关节置换术等常规手术,患者死于手术并发感染的风险将倍增。因此,研究开发具有抗细菌感染功能的新型医用金属材料,对消除或减少与金属医疗器械引发的细菌感染相关的疾病而言,具有重大的经济和社会意义。
发明内容
本发明的目的在于针对医疗领域内金属植入器械的不足,提供一种具有抗菌功能的钛合金纳米涂层及其制备方法。
为实现上述目的,本发明采用的技术方案为:
一种具有抗菌功能的钛合金纳米涂层,其特征在于,按照质量百分比计,所述涂层的化学成分为:Cu:2-10%;Ce:0.04-0.1%;Ti:余量。优选范围是:Cu:4-8%;Ce:0.06-0.08%;Ti:余量。
本发明所述纳米涂层喷涂在基体上,所述基体为医用纯钛/钛合金、医用不锈钢等。
本发明所述TiCuCe纳米涂层的厚度为5-10微米,TiCuCe纳米涂层的纳米压痕硬度值为20GPa以上。
本发明还提供了所述钛合金纳米涂层的制备方法,其特征在于:
(1)采用电弧离子镀技术,镀TiCuCe层:靶材为钛铜铈合金靶,将真空室内真空度抽到3×10-3Pa~1×10-2Pa,再对真空室加热至350~550℃;设定所需的气体流量为50~100sccm,向真空室内通入氩气,控制气压在0.2~1Pa之间;然后对基体施加-500~-1000V范围内的脉冲负偏压,使气体发生辉光放电,对样品进行辉光清洗10~20分钟;再调整氩气流量,使真空室气压控制在0.2~0.9Pa之间,同时开启合金靶弧源,设置弧电流为70~90A,对样品进行轰击(优选5~10分钟);然后调整脉冲负偏压至-100V~-600V,沉积TiCu涂层50~150分钟;
(2)沉积结束后,迅速停弧、停基体脉冲负偏压、停止通入气体,继续抽真空,工件随炉冷却至50℃以下。
涂层中加入Cu和Ce是保证其生物功能的必要条件,也是本发明的主要创新点。本发明是在保证纯钛优异的生物相容性前提下,加入一定量的Cu和Ce,使涂层在人体环境中时,微量的铜离子从表面溶出,以发挥涂层的抗菌性能,且铈元素的添加能起到增强抗菌性和耐蚀性的作用,同时,加Cu后硬度和耐磨性都会有所提高。最终,制备得到同时兼顾纯钛优异的生物相容性和铜元素杀菌性能及良好的耐蚀性能的生物功能性涂层材料。
与现有技术相比,本发明的有益效果是:
1、本发明是在基体表面形成具有抗菌功能的钛铜铈纳米涂层。医用纯钛因其良好的生物相容性,现已获得广泛的临床应用,现添加2-10wt.%的铜元素,0.04%-0.1wt.%的铈元素,使其获得具有广谱抗菌功能的抗感染医用金属涂层。
2、本发明采用电弧离子镀技术制备得到的钛合金纳米涂层中,Cu以纳米晶结构析出,降低了涂层内应力,提高了涂层硬度,其膜基结合力达到70N以上。
3、本发明采用轴向磁场增强的电弧离子镀技术,与传统的电弧离子镀技术相比,离子能量及密度明显增加,放电过程中的大颗粒发射明显减少,薄膜致密度明显改善,薄膜表面粗糙度也明显提高,从而有效保证涂层在生物介质及腐蚀性溶液中的耐腐蚀性能。
附图说明
图1抗菌TiCuCe纳米涂层材料的X射线衍射分析结果图。
具体实施方式
一种TiCuCe纳米涂层,它包括基体,所述涂层的铜含量,按质量百分比计为2-10%,稀土元素铈含量为0.04%-0.1%;优化的成分中,铜的含量为4-8%,稀土元素铈含量为0.06%-0.08%。所说的基体是指医用纯钛或钛合金、医用不锈钢等。
实施例1-5:
镀TiCuCe层:采用电弧离子镀技术,靶材为钛铜铈合金靶,实施例1-5的靶材中铜含量依次为:2%,4%,6%,8%,10%(质量百分比);铈含量依次为:0.05%,0.06%,0.07%,0.08%,0.09%(质量百分比)。
基材采用医用纯钛(牌号为TA1ELI),试样尺寸为15mm×15mm×5mm,镀膜面尺寸为15mm×15mm。镀膜前将样品表面进行研磨、抛光、超声清洗及干燥,然后将其放入真空室样品台上,待真空室内真空度达到6×10-3Pa时,对真空室加热至400℃,向真空室通入氩气,设定气体流量为80sccm,气压控制在0.7Pa,基体加脉冲负偏压-800V,对样品进行辉光清洗10分钟;然后,调整氩气气流量,使真空室气压调整为0.5Pa,同时开启钛铜铈合金靶弧源,弧流稳定在70A,对样品进行轰击8分钟;调脉冲负偏压至-400V,沉积TiCuCe膜100分钟;
沉积结束后,迅速停弧、停基体脉冲负偏压、停止通入气体,继续抽真空,工件随炉冷却至50℃以下。
实施例6-10:
镀TiCuCe层:采用电弧离子镀技术,靶材为钛铜铈合金靶,实施例6-10的靶材中铜含量依次为:2%,4%,6%,8%,10%(质量百分比);铈含量依次为:0.05%,0.06%,0.07%,0.08%,0.09%(质量百分比)。
基材采用医用钛合金(牌号为TC4),试样尺寸为15mm×15mm×5mm,镀膜面尺寸为15mm×15mm。镀膜前将样品表面进行研磨、抛光、超声清洗及干燥,然后将其放入真空室样品台上,待真空室内真空度达到8×10-3Pa时,对真空室加热至500℃,向真空室通入氩气,设定气体流量为90sccm,气压控制在0.8Pa,基体加脉冲负偏压-900V,对样品进行辉光清洗10分钟;然后,调整氩气气流量,使真空室气压调整为0.6Pa,同时开启钛铜铈合金靶弧源,弧流稳定在80A,对样品进行轰击8分钟;调脉冲负偏压至-600V,沉积TiCuCe膜120分钟;
沉积结束后,迅速停弧、停基体脉冲负偏压、停止通入气体,继续抽真空,工件随炉冷却至50℃以下。
实施例11-15:
镀TiCuCe层:采用电弧离子镀技术,靶材为钛铜铈合金靶,实施例11-15的靶材中。铜含量依次为:2%,4%,6%,8%,10%(质量百分比);铈含量依次为:0.05%,0.06%,0.07%,0.08%,0.09%(质量百分比)。
基材采用医用不锈钢(牌号为316L),试样尺寸为15mm×15mm×5mm,镀膜面尺寸为15mm×15mm。镀膜前将样品表面进行研磨、抛光、超声清洗及干燥,然后将其放入真空室样品台上,待真空室内真空度达到1×10-2Pa时,对真空室加热至400℃,向真空室通入氩气,设定气体流量为60sccm,气压控制在0.5Pa,基体加脉冲负偏压-600V,对样品进行辉光清洗10分钟;然后,调整氩气气流量,使真空室气压调整为0.7Pa,同时开启钛铜铈合金靶弧源,弧流稳定在90A,对样品进行轰击8分钟;调脉冲负偏压至-500V,沉积TiCuCe膜120分钟;
沉积结束后,迅速停弧、停基体脉冲负偏压、停止通入气体,继续抽真空,工件随炉冷却至50℃以下。
采用扫描电镜测试实施例1-15的涂层厚度,纳米压痕测试涂层硬度,声发射划痕仪测试涂层结合力,根据钛合金点蚀电位测量方法(国家标准:GB/T 17899-1999)得到阳极极化曲线,测试其耐蚀性能,且根据“JIS Z2801-2000《抗菌加工制品-抗菌性试验方法和抗菌效果》、GB/T 21510-2008《纳米无机材料抗菌性能检测方法》等标准规定,定量测试样品对常见细菌(大肠杆菌、金黄色葡萄球菌等)作用后的杀菌率。各项测试结果如表1所示。
表1涂层各项性能测试结果表
由实验结果可以看出,涂层厚度为4.9-5.6μm,涂层硬度达23.2-24.5GPa,并且,随铜元素和稀土元素铈含量的升高,涂层结合力下降,但抗菌率上升,且合金元素含量太低或过高都会影响其耐蚀性能,结合综合性能分析可以得出,优化的涂层成分为,铜含量在4-8%(质量百分比),铈含量在0.06-0.08%(质量百分比)。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (7)

1.一种具有抗菌功能的钛合金纳米涂层,其特征在于,按照质量百分比计,所述涂层的化学成分为:Cu:2-10%;Ce:0.04-0.1%;Ti:余量。
2.按照权利要求1所述具有抗菌功能的钛合金纳米涂层,其特征在于,按照质量百分比计,所述涂层的化学成分为:Cu:4-8%;Ce:0.06-0.08%;Ti:余量。
3.按照权利要求1所述具有抗菌功能的钛合金纳米涂层,其特征在于:所述涂层喷涂在基体上,所述基体为医用纯钛/钛合金、医用不锈钢。
4.按照权利要求1所述具有抗菌功能的钛合金纳米涂层,其特征在于:纳米涂层的厚度为5-10微米。
5.一种权利要求1所述钛合金纳米涂层的制备方法,其特征在于:
(1)镀TiCuCe层:采用电弧离子镀技术,靶材为钛铜铈合金靶,将真空室内真空度抽到3×10-3Pa~1×10-2Pa,再对真空室加热至350~550℃;设定所需的气体流量为50~100sccm,向真空室内通入氩气,控制气压在0.2~1Pa之间;然后对基体施加-500~-1000V范围内的脉冲负偏压,使气体发生辉光放电,对样品进行辉光清洗10~20分钟;再调整氩气流量,使真空室气压控制在0.2~0.9Pa之间,同时开启合金靶弧源,设置弧电流为70~90A,对样品进行轰击;然后调整脉冲负偏压至-100V~-600V,沉积TiCuCe涂层50~150分钟;
(2)沉积结束后,迅速停弧、停基体脉冲负偏压、停止通入气体,继续抽真空,工件随炉冷却至50℃以下。
6.按照权利要求5所述钛合金纳米涂层的制备方法,其特征在于:步骤(1)中,对样品进行轰击的时间为5~10分钟。
7.一种权利要求1所述钛合金纳米涂层在医疗植入器械方面的应用,其特征在于:该涂层涂覆于口腔种植体、骨科植入物上。
CN201710342809.6A 2017-05-16 2017-05-16 一种具有抗菌功能的钛合金纳米涂层及其制备方法 Active CN108866489B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710342809.6A CN108866489B (zh) 2017-05-16 2017-05-16 一种具有抗菌功能的钛合金纳米涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710342809.6A CN108866489B (zh) 2017-05-16 2017-05-16 一种具有抗菌功能的钛合金纳米涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN108866489A true CN108866489A (zh) 2018-11-23
CN108866489B CN108866489B (zh) 2020-05-19

Family

ID=64320777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710342809.6A Active CN108866489B (zh) 2017-05-16 2017-05-16 一种具有抗菌功能的钛合金纳米涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN108866489B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020055A1 (en) * 1994-12-23 1996-07-04 Johnson Matthey Electronics, Inc. Sputtering target with ultra-fine, oriented grains and method of making same
CN101220454A (zh) * 2008-01-16 2008-07-16 哈尔滨工业大学 表面抗菌、耐磨的金属/陶瓷纳米多层膜的制备方法
CN102094173A (zh) * 2009-12-11 2011-06-15 核工业西南物理研究院 原位等离子体涂镀Ti/Cu复合涂层工艺
CN102418071A (zh) * 2011-12-08 2012-04-18 阳江市新毅剪刀有限公司 一种有抗菌镀层的不锈钢制品及制造方法
CN102453852A (zh) * 2010-10-19 2012-05-16 鸿富锦精密工业(深圳)有限公司 镀膜件及其制备方法
CN103031523A (zh) * 2011-09-30 2013-04-10 先健科技(深圳)有限公司 一种医疗器械的金属部件上的含铜复合涂层的制备方法及医疗器械
CN104494229A (zh) * 2014-12-08 2015-04-08 中国人民解放军装甲兵工程学院 一种抗菌耐磨纳米复合涂层及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020055A1 (en) * 1994-12-23 1996-07-04 Johnson Matthey Electronics, Inc. Sputtering target with ultra-fine, oriented grains and method of making same
CN101220454A (zh) * 2008-01-16 2008-07-16 哈尔滨工业大学 表面抗菌、耐磨的金属/陶瓷纳米多层膜的制备方法
CN102094173A (zh) * 2009-12-11 2011-06-15 核工业西南物理研究院 原位等离子体涂镀Ti/Cu复合涂层工艺
CN102453852A (zh) * 2010-10-19 2012-05-16 鸿富锦精密工业(深圳)有限公司 镀膜件及其制备方法
CN103031523A (zh) * 2011-09-30 2013-04-10 先健科技(深圳)有限公司 一种医疗器械的金属部件上的含铜复合涂层的制备方法及医疗器械
CN105343938A (zh) * 2011-09-30 2016-02-24 先健科技(深圳)有限公司 医疗器械
CN102418071A (zh) * 2011-12-08 2012-04-18 阳江市新毅剪刀有限公司 一种有抗菌镀层的不锈钢制品及制造方法
CN104494229A (zh) * 2014-12-08 2015-04-08 中国人民解放军装甲兵工程学院 一种抗菌耐磨纳米复合涂层及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
RUI LIU等: ""Antibacterial effect of copperbearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis"", 《SCIENTIFIC REPORTS》 *
SHUJING JIN等: ""Bio-Functional Cu Containing Biomaterials: a NewWay to Enhance Bio-Adaption of Biomaterials"", 《JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY》 *
ZHENG MA等: ""In vitro study on an antibacterial Ti–5Cu alloy for medical application"", 《J MATER SCI:MATER MED》 *
张体信: ""铈在铸造钛合金中的应用"", 《稀土》 *
张新平等: ""用作人体植入物的含铈钛合金的生物安全性评价"", 《中国稀土学报》 *

Also Published As

Publication number Publication date
CN108866489B (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
Zhang et al. A new antibacterial titanium–copper sintered alloy: preparation and antibacterial property
He et al. Biocompatibility, corrosion resistance and antibacterial activity of TiO2/CuO coating on titanium
Liu et al. Effect of Cu content on the antibacterial activity of titanium–copper sintered alloys
Chen et al. Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys
Zhang et al. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application
Zhao et al. Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys
Chu et al. Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application
Kuzminova et al. Antibacterial nanocomposite coatings produced by means of gas aggregation source of silver nanoparticles
Peng et al. Antibacterial TiCu/TiCuN multilayer films with good corrosion resistance deposited by axial magnetic field-enhanced arc ion plating
Ma et al. In vitro study on an antibacterial Ti–5Cu alloy for medical application
JP6293725B2 (ja) 抗微生物性金属を含む表面を有する医療用デバイス
Huang et al. Antibacterial properties and cytocompatibility of tantalum oxide coatings with different silver content
Luo et al. Surface characteristics, corrosion behavior, and antibacterial property of Ag-implanted NiTi alloy
US10945430B2 (en) Antibacterial medical product and method for producing same
Xin et al. Biological corrosion behaviour and antibacterial properties of Ti-Cu alloy with different Ti2Cu morphologies for dental applications
CN105343938B (zh) 医疗器械
Zhang et al. Microstructure, antibacterial properties and wear resistance of plasma Cu–Ni surface modified titanium
Tsao Effect of Sn addition on the corrosion behavior of Ti–7Cu–Sn cast alloys for biomedical applications
Huang et al. Cytocompatibility and antibacterial properties of zirconia coatings with different silver contents on titanium
CN111632205B (zh) 一种应用于植入医疗器械的医用涂层及其制备方法
Dong et al. Surface microstructure and antibacterial property of an active-screen plasma alloyed austenitic stainless steel surface with Cu and N
Subramanian In vitro corrosion and biocompatibility screening of sputtered Ti40Cu36Pd14Zr10 thin film metallic glasses on steels
Karabudak et al. An Investigation of Corrosion Resistance and Antibacterial Sensitivity Properties of Nano-Ag-Doped TiO 2 Coating and TiO 2 Coating Grown on NiTi Alloy with the Micro-Arc Oxidation Process
Si et al. A heterogeneous TiO2/SrTiO3 coating on titanium alloy with excellent photocatalytic antibacterial, osteogenesis and tribocorrosion properties
Chang et al. Characterization and antibacterial performance of ZrNO–Ag coatings

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant