CN1088557A - 硬脂酸盐法制备新型纳米晶陶瓷粉材料技术 - Google Patents
硬脂酸盐法制备新型纳米晶陶瓷粉材料技术 Download PDFInfo
- Publication number
- CN1088557A CN1088557A CN 93117487 CN93117487A CN1088557A CN 1088557 A CN1088557 A CN 1088557A CN 93117487 CN93117487 CN 93117487 CN 93117487 A CN93117487 A CN 93117487A CN 1088557 A CN1088557 A CN 1088557A
- Authority
- CN
- China
- Prior art keywords
- stearic acid
- nitrate
- ceramics powder
- strontium
- stearate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Compounds Of Iron (AREA)
Abstract
纳米晶陶瓷粉La1-xSrxFeO3及α-Fe2O3的硬脂
酸法制备技术提供了一种纳米晶的制备方法。以在
60℃条件下的熔融的硬脂酸为溶剂通过加入水基型
的硝酸盐溶液(如硝酸铁、硝酸镧)及脂肪族金属盐类
(如硬脂酸锶、醋酸锶,经过乳化、脱水形成陶瓷粉体
的生坯。再经过400~550℃,0.5~2小时,空气气氛
的灼烧,得到钙钛矿型复合氧化物纳米晶陶瓷粉
La1-xSrxFeO3(x=0~0.6)及α-Fe2O3。
Description
本发明涉及到用硬脂酸法制取钙钛矿型复合氧化物纳米晶陶瓷粉材料La1-xSrxFeO3oyO3(x=0-0.6,)以及α-Fe2O3的制备技术。
在现有的制备纳米晶或常规材料L1-xSrxFeO3的技术中,最常用的为共沉淀法J·Mizusaki等,J·American Ceramic Soeiety,66(1983)247。进一步的技术是采用柠檬酸盐法,但仍难以得到单相钙矿型,且平均粒尺寸小于20nm的目的产物。利用水热法技术制备这些材料,可以得到平均晶粒尺寸较小的目的产物,但需在高压下进行,而且需要的时间较长,大约需要24小时以上。采用溶胶-凝胶法也可制得平均晶粒尺寸较小的产物,但是制备这些材料的基本原料多为醇盐类化合物。它们不仅价格较贵,而且制备条件严格,需在无水的气氛中进行。
上述的现有技术,存在着技术复杂,耗能较高,小粒径的粉体不易得到等缺点。本发明较好的解决了上述问题,具有以下优点。
①工艺简单;②制备生坯的操作时间短(约1小时);③原料易得且价格便易;④不受原料中水的影响;⑤耗能少(不需高温高压,并在灼烧中自燃),可在500~550℃,0.5~2h的灼烧条件下得到纳米晶陶瓷粉。
先将固体硬脂酸置于玻璃容器中,加热至60℃使其溶融。将硝酸铁,硝酸镧按产物分子式Lal-xSrxFeO3(x=0-0.6)中铁、镧的摩尔比称取各硝酸盐,配成总盐量为80-90%的水溶液,然后加入熔融的硬脂酸中。开始搅拌,并加热升温至70-80℃,搅拌转速不小于200转/分。此时体系形成乳浊液。保持温度为70-90℃,使体系脱水,直至体系呈深色透明溶液,表明脱水完毕。按产物分子式中锶的摩尔比称取硬脂酸锶或醋酸锶加入该溶液中,继续保持温度80-90℃搅拌溶解后停止搅拌,自然冷却至40℃,即得到纳米陶瓷粉的生坯。
将所得到的生坯,置于陶瓷器皿中,放入马福炉,于空气气氛中,在400~550℃,0.5~2h的条件下灼烧,然后从马福炉中取出,在空气中自然冷却至室温,即得到单相钙钛矿型纳米晶陶瓷粉。控制400~550℃,0.5~2h的不同温度、时间条件,即可得到具有平均晶粒尺寸(10~30nm)纳米晶陶瓷粉。
本发明提供的技术中,混合硝酸盐水溶液总盐量的质量百分数为80~90%。硬脂酸与混合硝酸盐的质量比为0.8~1.2比1。搅拌转速大于200转/分。硝酸镧可由氧化镧溶于硝酸中得到。
实施例1、取硬脂酸550克,加入玻璃制的敝口溶器中,加热至60℃使其熔融成液状。取硝酸铁37克,氧化镧150克,硝酸(60%,wt%)300ml。将氧化镧溶于硝酸中,待溶解后,加入硝酸铁。然后配成总硝酸盐质量百分数为80%的水溶液,并将此溶液加入熔融的硬脂酸中。
开动搅拌装置进行搅拌,并加热到80℃。搅拌转速大于200转/分。此时体系形成深红色乳浊液。保持加热温度为90℃,使体系脱水。待脱水完毕后,溶液为深红色橙清液。
停止搅拌的加热,自然降温至40℃,即得到陶瓷粉的生坯料。
将此生坯料置于陶瓷皿中,放入马福炉,于空气气氛中,在550℃,灼烧0.5h。然后从马福炉中取出,在空气中自然冷却至室温,即得到平均晶粒尺寸为15.3nm,单相钙钛矿型LaFeO3纳米晶陶瓷粉。
实施例2、按实施例1的操作步骤,只加硝酸铁,不加硝酸镧在400℃,1h空气气氛灼烧,即得到α-Fe2O3陶瓷粉。
实施例3、按硬脂酸500克,硝酸铁371.95克,氧化镧120克,硝酸200ml的配比,重复实施例1的操作步骤。当脱水完毕后,按产物分子式中La1-xSrxFeO3(x=0.2),Sr的摩尔分数称取119.3克硬酯酸锶,在90℃温度下加入到脱水后的溶液中。搅拌均匀溶解后,停止搅拌,自然降温至40℃。
按实施例1的灼烧方法,在500℃,灼烧2h得到平均晶粒尺寸为13nm的La0.8Sr0.2FeO3单相钙钛矿型纳米陶瓷粉。
Claims (4)
1、一种制备钙钛矿型复合氧化物纳米晶陶瓷粉La1-xSrxFeO3(x=0~0.6)及α-Fe2O3陶瓷粉的方法,其特征是使用熔融的硬脂酸作为溶剂,硝酸镧,硝酸铁水溶液共混形成乳浊液并加热脱水;再将硬脂酸锶或醋酸锶加入已脱水的溶液中混合均匀;自然降温后得到陶瓷生坯料;灼烧后得到纳米晶陶瓷粉。
2、根据权利要求1的方法,其特征是硬脂酸:硝酸镧+硝酸铁+硬脂酸锶或醋酸锶的质量=0.8~1.2∶1。
3、根据权利要求1的方法,所说特征是硝酸镧,硝酸铁与硬脂酸锶或醋酸锶分两步加入硬脂酸中,第一步的脱水温度70~80℃,第二步的温度为80~90℃。
4、根据权利要求1的方法,其特征是陶瓷粉的灼烧条件为400~500℃,0.5~2h,空气气氛。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 93117487 CN1088557A (zh) | 1993-09-18 | 1993-09-18 | 硬脂酸盐法制备新型纳米晶陶瓷粉材料技术 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 93117487 CN1088557A (zh) | 1993-09-18 | 1993-09-18 | 硬脂酸盐法制备新型纳米晶陶瓷粉材料技术 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1088557A true CN1088557A (zh) | 1994-06-29 |
Family
ID=4992036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 93117487 Pending CN1088557A (zh) | 1993-09-18 | 1993-09-18 | 硬脂酸盐法制备新型纳米晶陶瓷粉材料技术 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1088557A (zh) |
-
1993
- 1993-09-18 CN CN 93117487 patent/CN1088557A/zh active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Douy | Polyacrylamide gel: an efficient tool for easy synthesis of multicomponent oxide precursors of ceramics and glasses | |
US5981445A (en) | Process of making fine ceramic powders from aqueous suspensions | |
NO180765B (no) | Fremgangsmåte for fremstilling av et supraledende materiale | |
Das | Nanocrystalline ceramics from sucrose process | |
Llusar et al. | Red ceramic pigments of terbium-doped ceria prepared through classical and non-conventional coprecipitation routes | |
Zhang et al. | Synthesis of YBa2Cu3O7− x fibers from an organic acid solution | |
CN104108737B (zh) | 铜-稀土纳米花瓣状金属氧化物的合成方法 | |
CN104528799A (zh) | 一种镁基稀土六铝酸盐超细粉体的制备方法 | |
JPH02503905A (ja) | 90kの超伝導体の改良された製造方法 | |
Yoshimura et al. | Low‐Temperature Synthesis of Cubic and Rhombohedral Y6WO12 by a Polymerized Complex Method | |
Wang et al. | Direct Formation of Crystalline Gadolinium‐Doped Ceria Powder via Polymerized Precursor Solution | |
CN101595060B (zh) | 固溶体微粒的制造方法 | |
CN1861742A (zh) | 一种碱土铝酸盐长余辉发光粉超细粉体制备方法 | |
CN1088557A (zh) | 硬脂酸盐法制备新型纳米晶陶瓷粉材料技术 | |
US5168095A (en) | Method for synthesizing a composite oxide by citrating process | |
CN108689429B (zh) | 一种低温固相合成钛酸盐粉体的方法 | |
CN100406406C (zh) | M型钡铁氧体磁性粉体的制备方法 | |
JPH03164427A (ja) | Rbco124超伝導材料及びその製造方法 | |
CN100537083C (zh) | Ag复合(Ca0.95Bi0.05)3Co4O9基氧化物热电材料的制备方法 | |
JPH0796443B2 (ja) | クエン酸塩法による複合酸化物の合成方法 | |
CN112341187A (zh) | 一种三峡库区滑坡位移监测用钛酸钡压电材料的制备方法 | |
US5071827A (en) | Production of superconductor materials | |
CN1088558A (zh) | 硬脂酸盐法制备纳米晶陶瓷粉 | |
JPH05279141A (ja) | 制御された化学量論およびミクロ構造を有するリチウムアルミノシリケイト、またはリチウムアルミネイトセラミックスの製造方法 | |
JPH04502609A (ja) | 均質な混合金属酸化物の製法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C01 | Deemed withdrawal of patent application (patent law 1993) |